Approximation by Spherical Waves in Lp-Space

dc.contributor.authorAgranovsky, Marken_US
dc.contributor.authorBerenstein, Carlos A.en_US
dc.contributor.authorKuchment, Peteren_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T10:01:30Z
dc.date.available2007-05-23T10:01:30Z
dc.date.issued1996en_US
dc.description.abstractWe prove that functions of the form f(1x-a1), a in a closed surface, are dense in the space of all functions in Lp, for zn/(n+1). This property fails for 1zn/(n+1). By letting f be a Gsussian, we obtain a result about approximation by wavelets generated by the Gaussian.en_US
dc.format.extent657203 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/5750
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1996-31en_US
dc.subjectalgorithmsen_US
dc.subjectIntelligent Control Systemsen_US
dc.titleApproximation by Spherical Waves in Lp-Spaceen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_96-31.pdf
Size:
641.8 KB
Format:
Adobe Portable Document Format