Affine Pavings of Hessenberg Ideal Fibers
dc.contributor.advisor | Brosnan, Patrick | en_US |
dc.contributor.author | Xue, Ke | en_US |
dc.contributor.department | Mathematics | en_US |
dc.contributor.publisher | Digital Repository at the University of Maryland | en_US |
dc.contributor.publisher | University of Maryland (College Park, Md.) | en_US |
dc.date.accessioned | 2020-09-25T05:35:42Z | |
dc.date.available | 2020-09-25T05:35:42Z | |
dc.date.issued | 2020 | en_US |
dc.description.abstract | We define certain closed subvarieties of the flag variety, Hessenberg ideal fibers, and prove that they are paved by affines. Hessenberg ideal fibers are a natural generalization of Springer fibers. In type $G_2$, we give explicit descriptions of all Hessenberg ideal fibers, study some of their geometric properties and use them to completely classify Tymoczko's dot actions of the Weyl group on the cohomology of regular semisimple Hessenberg varieties. | en_US |
dc.identifier | https://doi.org/10.13016/evqm-0y32 | |
dc.identifier.uri | http://hdl.handle.net/1903/26442 | |
dc.language.iso | en | en_US |
dc.subject.pqcontrolled | Mathematics | en_US |
dc.subject.pquncontrolled | affine paving | en_US |
dc.subject.pquncontrolled | dot action | en_US |
dc.subject.pquncontrolled | flag variety | en_US |
dc.subject.pquncontrolled | Hessenberg variety | en_US |
dc.subject.pquncontrolled | Springer fiber | en_US |
dc.subject.pquncontrolled | Tymoczko | en_US |
dc.title | Affine Pavings of Hessenberg Ideal Fibers | en_US |
dc.type | Dissertation | en_US |
Files
Original bundle
1 - 1 of 1