Quantitative aspects of the stability of some dynamical systems

dc.contributor.advisorHunt, Brian Ren_US
dc.contributor.authorGonzalez Tokman, Ceciliaen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2010-10-07T06:04:39Z
dc.date.available2010-10-07T06:04:39Z
dc.date.issued2010en_US
dc.description.abstractThis thesis is concerned with the study of quantitative aspects of the stability of some dynamical systems that exhibit hyperbolic features. Results include scaling laws for bubbling bifurcations, description of limit invariant measures for metastable systems and shadowing properties of a data assimilation algorithm in the context of hyperbolic systems.en_US
dc.identifier.urihttp://hdl.handle.net/1903/10914
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledBifurcationsen_US
dc.subject.pquncontrolledData Assimilationen_US
dc.subject.pquncontrolledEnsemble Kalman Filteren_US
dc.subject.pquncontrolledHyperbolic Dynamicsen_US
dc.subject.pquncontrolledPiecewise Smooth Metastable Systemsen_US
dc.subject.pquncontrolledScaling Lawsen_US
dc.titleQuantitative aspects of the stability of some dynamical systemsen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GonzalezTokman_umd_0117E_11575.pdf
Size:
879.88 KB
Format:
Adobe Portable Document Format