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Chapter 1

Introduction

This thesis is concerned with the study of quantitative aspects of the stability

of certain dynamical systems that exhibit some type of strong hyperbolic features.

The content of Chapters 2 and 3 is closely related to the the topic of open dynamical

systems, which aims to understand the evolution of systems with holes in the phase

space. This topic has received increasing attention in the last few years; see [DY06]

for an exposition of such systems.

In Chapter 2, we establish rigorous scaling laws for the average bursting time

for bubbling bifurcations of an invariant manifold, assuming the dynamics within

the manifold to be hyperbolic. This type of global bifurcation appears in nearly

synchronized systems, and is conjectured to be typical among those breaking the

invariance of an asymptotically stable hyperbolic invariant manifold. We consider

bubbling precipitated by generic bifurcations of a fixed point in both symmetric

and non-symmetric systems with a codimension one invariant manifold, and discuss

their extension to bifurcations of periodic points. We also discuss generalizations

to invariant manifolds with higher codimension, and to systems with random noise.

Most of this work was published in [GTH09], jointly with Brian R. Hunt.

In Chapter 3, we consider a piecewise smooth expanding map of the inter-

val possessing two invariant subsets of positive Lebesgue measure and exactly two
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ergodic absolutely continuous invariant probability measures (ACIMs). When this

system is perturbed slightly to make the invariant sets merge, we describe how the

unique ACIM of the perturbed map can be approximated by a convex combination

of the two initial ergodic ACIMs. The result is generalized to the case of finitely

many invariant components. This work, joint with Brian R. Hunt and Paul Wright,

was recently accepted for publication, [GTHW].

The goal of Chapter 4 is to investigate a data assimilation procedure (DAP),

an ensemble Kalman filter (EKF) studied in [HKS07], in the context of hyperbolic

systems. We show that for every trajectory on an attractor, the predictions produced

by the DAP remain close to the truth for all time provided the ensemble is properly

initialized, making the DAP reliable. We deal with the case of one-dimensional

unstable direction first, and later extend to higher dimensional unstable spaces.

A feature of this approach is that no model linearizations are involved, making it

efficient and potentially of interest for applications in high dimensional systems.

Lyapunov exponents are also investigated.
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Chapter 2

Scaling laws for bubbling bifurcations

2.1 Introduction

The goal of this article is to quantify how quickly an attracting invariant man-

ifold with internally chaotic dynamics loses stability through a bubbling bifurcation

in a certain class of systems. This type of bifurcation occurs when the invariant

manifold ceases to be a asymptotically stable due to one of its embedded orbits

becoming unstable in a direction transverse to the manifold [ABS96]. Under this

circumstance, the invariant manifold can still attract a set of positive Lebesgue mea-

sure (and thus, support a physical measure). However, this attractor is extremely

sensitive to small perturbations that make the manifold non-invariant. This scenario

arises, for example, in physical systems with approximate (but not exact) symme-

try, and can give rise to intermittent dynamics called bubbling, where a trajectory

spends most of its time near the manifold but occasionally bursts away.

There are experimental results and formal calculations for particular models

that predict scaling laws for the average time between bursts and the size of the

perturbed attractor as a function of bifurcation parameters in generic bifurcation

scenarios, see [VHO+96] and references therein. Our results make rigorous the

theoretical predictions presented in [ZHO03], concerning scaling laws for the average

interburst time in terms of parameters and positive Lyapunov exponents of the
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bifurcating orbit. We prove the validity of similar scaling laws for more general

dynamical systems displaying bubbling bifurcations. These results are applicable to

generic systems, as well as to systems that have inherent symmetries.

The scaling laws we describe involve two parameters. One is a normal pa-

rameter as defined in [ABS96]. The normal parameter does not affect the invariant

manifold nor the dynamics within it; but does affect the dynamics transverse to the

manifold. The other parameter is a symmetry-breaking parameter that we call q,

which when nonzero, perturbs trajectories from the manifold that is invariant for

q = 0. An example with two such parameters is as follows.

(un, vn) 7→ (un+1, vn+1) = (G(un, 0) + k(vn − un), G(vn, q) + k(un − vn)). (2.1)

Here, the invariant manifold for q = 0 is the synchronization manifold u = v. The

coupling strength k is a normal parameter.

In this article, we consider a model of such systems in the form of skew-product

as follows:

(xn, yn) 7→ (xn+1, yn+1) = (T (xn), F (xn, yn, p, q)), (2.2)

where p and q are the parameters of the model. We consider x and y to be coor-

dinates along and transverse to the invariant manifold, respectively, where we have

made the simplifying assumption that the dynamics of x are independent of y and

the parameters. We study the case of a uniformly hyperbolic base map T with an

invariant SRB (or physical) measure µ.

For q = 0, we assume that the system has an invariant manifold {(x, y)|y = 0},

that the corresponding invariant measure µ × δ0 undergoes a bubbling bifurcation
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at a fixed point (x∗, 0) at p = 0 and that p is a normal parameter in the sense of

[ABS96]. More generally, our results apply to systems that can be written in the

form (2.2) by a choice of coordinates in a neighborhood of an invariant manifold.

We discuss the scope of this model in §2.3.2. In more general cases, the orbit losing

stability could be a periodic orbit. At various points in this paper we discuss how

to extend our results to this case.

For q = 0, trajectories in the basin of µ×δ0 visit every neighborhood of (x∗, 0).

For definiteness, we assume that (x∗, 0) is stable to perturbations of y for p < 0 and

unstable for p > 0. The results of [ABS96] imply that generically, when p > 0 is

sufficiently small the invariant measure µ × δ0 still has a basin of attraction with

positive Lebesgue measure. For p > 0 and q 6= 0, trajectories that come close to

(x∗, 0) can burst away from y = 0. Depending on the y dynamics, trajectories that

burst may come back close to y = 0 and repeat the bursting behavior, or they may

remain away from y = 0. The former type of dynamics is called bubbling and the

latter, transient dynamics. The existence of a physical or SRB measure for p > 0

and q 6= 0 and its dependence on parameters is a difficult question. Some results in

this direction, in the context of partially hyperbolic diffeomorphisms, can be found

in [Dol04] and references therein. Our results do not distinguish between bubbling

and transient phenomena, and estimate the average time it takes for a trajectory

initialized near y = 0 to burst for the first time. In the case of bubbling, we expect

this average bursting time also to be representative of the average time between

bursts. For the sake of exposition, we refer to the bifurcation that leads to bursts

as a bubbling bifurcation, whether or not bubbling actually occurs.
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The scaling of the average bursting time for small p and q depends on the type

of bifurcation the fixed point (x∗, 0) undergoes when q = 0 and p passes through

0. As in [ZHO03], we consider both the case of a generic transcritical bifurcation

(Theorem 2.1) and that of a generic pitchfork bifurcation (Theorem 2.2). Our main

results are stated in §2.2.2. We study two qualitatively different forms of bursting:

multiplicative and additive. In the former case, bursts are driven by the dominant

effect of the expansion parameter p. In the latter case, bursts occur due to the

accumulation of perturbations to the system, quantified by q. (In [ZHO03], these

were called drift-dominated and noise-dominated, respectively. We have adopted the

new terminology to avoid possible confusion with other common uses of the former

terms.) We also distinguish between hard and soft bifurcations. A hard bifurcation

occurs when the maximum burst size changes suddenly as p increases, while in a

soft bifurcation the maximum burst size increases gradually with p.

Besides providing a proof for the results predicted in [ZHO03], we extend the

range of parameters over which the scaling law is valid, obtaining uniform bounds

for the logarithm of the average bursting time, proportional to the sum of positive

Lyapunov exponents of the bifurcating fixed point in the invariant manifold. Fur-

thermore, we extend those results to more general dynamics: the scaling law is valid

for skew-product systems with uniformly hyperbolic maps in the base variables

(x) and for fiber (y) dynamics displaying a generic type of bifurcation explained

in §2.2.1 (conditions (i)-(v)) and generalized in §2.3.2. These bifurcations include

generic transcritical and pitchfork bifurcations of fixed points. Period-doubling bi-

furcations can also be treated with our tools, since the second power of a map
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with a period-doubling bifurcation gives a map with a pitchfork bifurcation. No-

tice that a saddle-node bifurcation is not possible because the normal parameter

assumption ensures that the fixed point persists on both sides of the bifurcation.

Transcritical bifurcations can occur when the system is not symmetric with respect

to reflection about the invariant manifold, while systems with reflectional symmetry

will commonly have pitchfork bifurcations. As an example, the coupled system (2.1)

is symmetric for q = 0, but if one of the coupling terms is eliminated it becomes

asymmetric.

The structure of the paper is as follows. In Section 2.2, we first set up a

model system in §2.2.1 and derive a Taylor approximation to F that we use in the

subsequent sections. We state the main results in §2.2.2, and discuss three gener-

alizations in §2.2.3; the case of a periodic bifurcating orbit in 2.2.3.1, the case of

multiple transverse directions in 2.2.3.2, and a case of systems with random pertur-

bations in 2.2.3.3. In Section 2.3 we analyze the dynamics and bifurcation of the

invariant manifold. In §2.3.1, we prove some quantitative results about recurrence

in hyperbolic systems that are relevant for our tasks. In §2.3.2, we discuss the mech-

anism of bubbling bifurcations and a generalization of the model presented in §2.2.1

to which our results apply. In Section 2.4 we prove the main results. In §2.4.1 we

establish upper and lower bounds for the average bursting time in the linear regime

(where the nonlinear terms in the Taylor approximation are small). In §2.4.2 we

complete the proofs, extending those results to the nonlinear setting.
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2.2 Statement of results

2.2.1 The model

Throughout this paper, we assume that we have a dynamical system with a

compact, connected, hyperbolic invariant manifold X that undergoes a bubbling

bifurcation. In our context, a bubbling bifurcation will be understood as the one

that occurs when a parameter crosses a value at which the invariant manifold loses

asymptotic stability. This loss of stability is due to one embedded orbit becoming

unstable. In the terminology of [ABS96], at the bifurcation, the normal Lyapunov

exponent to the invariant manifold X becomes 0 on one orbit but remains negative

on other orbits.

To separate the dynamics on X from the transverse dynamics, we will work

with skew-product systems: we assume that (near X) the dynamical system can be

written in the form (2.2), where T : X 	 is a transitive C2 Anosov diffeomorphism

or a uniformly expanding map, and F is C1+1 in x and is C3 as a function of y, p

and q. We let µ be the SRB measure for T (see 2.3.1.1).

For q = 0 we impose the following conditions:

(i) F (x, 0, p, 0) = 0 for all x and p, so that X = {(x, y)|y = 0} is an invariant

manifold.

(ii) x∗ ∈ X is a fixed point. We let Λ be the sum of positive Lyapunov exponents

of x∗ associated to T .

(iii) X is asymptotically stable for p < 0, ∂F
∂y

(x, 0, 0, 0) > 0 for all x, ∂F
∂y

(x∗, 0, 0, 0) =

8



1 and ∂2F
∂p∂y

(x∗, 0, 0, 0) > 0, so that p = 0 is a bifurcation value corresponding

to the loss of asymptotic stability of X.

We remark that the assumption that ∂F
∂y

(x, 0, 0, 0) > 0 always holds if the map (2.2)

is a diffeomorphism, because then ∂F
∂y

(x, 0, 0, 0) must be nonzero for all x, and if it is

negative we consider the second iterate of (2.2). The following assumption related

to (iii) is generalized to the non-degeneracy condition (iii”) in §2.3.2.

(iii’) The global maximum of ∂F
∂y

(·, 0, 0, 0) is unique and occurs at x∗. This implies

that the orbit (x∗, 0, 0, 0) is the only orbit becoming unstable as p passes

through 0.

(iv) The bifurcation of the fixed point x∗ as p goes through 0 is either a generic

transcritical bifurcation (in the asymmetric case) or a generic pitchfork bifur-

cation (in the symmetric case, where F (x, y, p, 0) = −F (x,−y, p, 0)).

We also assume the non-degeneracy condition:

(v) ∂F
∂q

(x∗, 0, 0, 0) 6= 0, so that varying q from 0 breaks the invariance of X near

x∗.

With these requirements in mind, our model takes the following form:

xn+1 = T (xn)

yn+1 = F (xn, yn, p, q)

= (f(xn) + h(xn)p)yn + qg(xn) +O(qy + p2y + pq + q2 + y2),

(2.3)

where f(x) = ∂F
∂y

(x, 0, 0, 0), g(x) = ∂F
∂q

(x, 0, 0, 0), h(x) = ∂2F
∂p∂y

(x, 0, 0, 0). Notice that

∂kF
∂pk

(x, 0, 0, 0) = 0 for all k ≥ 1 by condition (i) above.
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For definiteness, we assume q ≥ 0, and we think of q as the strength of the

asymmetry in the system; we also refer to the term qg(x) as the kick. By (iii)

above, f(x∗) = 1 and h(x∗) > 0, and by the non-degeneracy condition (v), we have

g(x∗) 6= 0. In fact, without loss of generality, we assume g(x∗) = 1 = h(x∗). This

amounts to possibly rescaling q and p, and possibly changing the sign of y.

For p > 0 and q = 0, the invariant manifold X is no longer asymptotically

stable due to the fixed point x∗ becoming unstable in a direction transverse to the

manifold. However, since 0 < f(x) < 1 for x 6= x∗, then most orbits close to X

continue to be attracted to X. This is due to the fact that when p is small, the

transverse dynamics is contracting outside a neighborhood of x = x∗.

Let a(x) = 1
ρ!
∂ρF
∂yρ

(x, 0, 0, 0), where ρ ∈ {2, 3} corresponds to the most signifi-

cant non-linearity of the dynamics of x∗ for q = 0, that is, ρ = 2 for a transcritical

bifurcation and ρ = 3 for a pitchfork bifurcation. Then a(x∗) 6= 0, and without loss

of generality, we can rescale y to assume a(x∗) = ±1. The remaining higher order

terms involve only higher powers of y, p and q.

If the system does not have inherent symmetry constraints, we have generically

that ρ = 2, and the bifurcation that x∗ goes through as p crosses 0 is a transcritical

bifurcation. In this case, we can write:

F (x, y, p, q) = (f(x) +h(x)p)y+ qg(x) +a(x)y2 +O(qy+ p2y+ pq+ q2 + y3), (2.4)

with a(x∗) 6= 0.

On the other hand, if the system is symmetric with respect to changing the

sign of y, or if x∗ undergoes a period-doubling bifurcation and we consider the
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second iterate of the map, the generic value is ρ = 3 and the corresponding generic

bifurcation for x∗ is a pitchfork bifurcation. In this case, we can write:

F (x, y, p, q) = (f(x)+h(x)p)y+qg(x)+a(x)y3 +b(x)y2 +O(qy+p2y+pq+q2 +y4),

(2.5)

with a(x∗) 6= 0 and b(x∗) = 0 (of course, b(x) = 0 for all x if F (x, y, p, 0) is an odd

function of y).

In both scenarios, the size of the bursts may be small and determined by the

size of the perturbation parameters. We call this case a soft transition; it happens

if qa(x∗)g(x∗) < 0 in the asymmetric case, and if a(x∗) < 0 in the symmetric case.

If qa(x∗)g(x∗) > 0 in the asymmetric case or a(x∗) > 0 in the symmetric case, the

size of bursts is not so limited; we call this case a hard transition.

2.2.2 Main results

In order to state the results, we introduce some notation. For a fixed threshold

Y > 0 and {(xn, yn)}n∈Z+ trajectory of (2.2), we define its bursting time as:

τ(Y, x0, y0) = min
n≥0
{|yn| > Y }.

Recall that µ is the SRB measure for T : X 	. For y0 fixed, we define the average

bursting time as:

τ(Y, y0) =
1

2y0

∫
X×[−y0,y0]

τ(Y, x, y)dµ(x)dy.

Since perturbations from the invariant manifold y = 0 are proportional to q, we will

generally consider y0 to be of order q and set τ(Y ) := τ(Y, q). We will simply write

τ when the threshold is clear from the context.
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Remark 2.2.1. Our proofs also apply to the case where T is a nontransitive Anosov

diffeomorphism or, more generally, an Axiom A diffeomorphism, with x∗ belonging

to a hyperbolic attractor A. In this case, the basin of the SRB measure µ supported

in A may no longer have full Lebesgue measure, and there may be other SRB

measures for T , supported away from A.

Our main result in the case of generic transcritical bifurcations (ρ = 2) is the

following.

Theorem 2.1. Consider a family of skew product systems as in (2.3), with F as

in (2.4) satisfying all conditions in § 2.2.1 above (2.3). Assume that p, q > 0.

Then, there is a constant C̃ > 1 and a threshold Y independent of p and q in the

hard transition case (qa(x∗)g(x∗) > 0), and proportional to max(p,
√
q) in the soft

transition case (qa(x∗)g(x∗) < 0), such that the scaling of the bursting time satisfies:

• (Multiplicative case). For each ε > 0, if (p, q
p2 ) is sufficiently close to (0, 0) and

q ≥ p2e−pC̃
1
p
, then

(1− ε)Λ <
log τ(Y )
1
p

log p2

q

< (1 + ε)Λ.

• (Additive case). There exists C > 0 independent of p, q and the map T on X

such that for (q, p
2

q
) sufficiently close to (0, 0),

C−1Λ ≤ log τ(Y )
1

q
1
2

≤ CΛ.

(Recall that Λ is the sum of positive Lyapunov exponents of the fixed point x∗.)

This result is proved in §2.4.2.1.
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In the case of pitchfork bifurcations, which are generic for symmetric systems

(ρ = 3), the main result is:

Theorem 2.2. Consider a family of skew product systems as in (2.3), with F as

in (2.5) satisfying all conditions in Section 2.2.1 above (2.3). Assume that p, q > 0.

Then, there is a constant C̃ > 1 and a threshold Y independent of p and q in

the hard transition case (a(x∗) > 0), and proportional to max(
√
p, 3
√
q) in the soft

transition case (a(x∗) < 0), such that the scaling of the bursting time satisfies:

• (Multiplicative case). For each ε > 0, if (p, q

p
3
2

) is sufficiently close to (0, 0)

and q ≥ p
3
2 e−pC̃

1
p
, then

(1− ε)Λ ≤ log τ(Y )

1
p

log p
3
2

q

≤ (1 + ε)Λ,

• (Additive case). There exists C > 0 independent of p, q and the map T on X

such that for (q, p
3
2

q
) sufficiently close to (0, 0),

C−1Λ ≤ log τ(Y )
1

q
2
3

≤ CΛ.

This result is proved in §2.4.2.2.

The results predicted in [ZHO03], with the additional hypothesis that q is

not exponentially small compared to p, are consequences of Theorems 2.1 and 2.2.

These results are:

Corollary 2.3. Consider the following model systems of bubbling bifurcations:
xn+1 = 2xn (mod 1)

yn+1 = (f(xn) + p)yn + ayρn + q for |y| < 1 and ρ ∈ {2, 3},

(2.6)
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where f(0) = 1, 0 < f(x) < 1 for x 6= 0, a 6= 0, and parameters p, q > 0 are

sufficiently small. In the multiplicative regime (p
ρ
ρ−1 � q > p

ρ
ρ−1 e−pC̃

1
p
, for some

C̃ > 1), for a threshold Y chosen as in the theorems above, the average bursting

time obeys the following scaling laws:

lim
(p, q

p2
)→(0,0)

log τ(Y )
1
p

log p2

|a|q

= log 2, when the coupling is asymmetric (ρ = 2) and

lim
(p, q

p
3
2

)→(0,0)

log τ(Y )
1
p

log p3/2

|a|1/2q

= log 2, when the coupling is symmetric (ρ = 3).

We have included in the conclusion of Corollary 2.3 terms from [ZHO03] in-

volving a; while these terms do not affect the limits, they may make the limits

converge faster.

Remark 2.2.2. The function f(x) = cos(2πx) considered in [ZHO03] does not meet

our hypotheses because for technical reasons we have assumed f to be positive.

However, our proofs can be adapted to such an f .

2.2.3 Generalizations

Here, we discuss three generalizations of our results. The first one concerns

the replacement of the bifurcating fixed point by a periodic orbit. The second one is

about the case of multidimensional transverse direction, that is, when the invariant

manifold has codimension greater that one. The last one is to the case of random

additive noise.
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2.2.3.1 Periodic bifurcating orbit.

In case the bifurcating orbit is periodic of period d instead of a fixed point,

after imposing non-degeneracy conditions, we could set up a model for bubbling

bifurcations similar to that of 2.2.1. In this situation, when x gets near the periodic

orbit, we would study the d-th power of T . The main difference with the fixed point

case is that instead of having just one fixed point to keep track of, we would have d

of them, and this introduces some technical difficulties. Although we do not carry

out in detail all the calculations needed for this generalization, we do discuss the

differences with the fixed point situation and provide ideas of how to extend the

theorems in this case; see Remarks 2.3.7, 2.3.9 and 2.4.8.

2.2.3.2 Multidimensional transverse direction.

In this section we discuss a generalization of our analysis to the case when

the codimension of the bifurcating invariant manifold X is larger than 1. As in

hypotheses (i), (ii) and (iii) in §2.2.1, we assume that the attracting chaotic invariant

manifold disappears when a direction transverse to X becomes unstable, that the

orbit that first becomes unstable is a fixed point x∗, and that the bifurcation occurs

at the parameter value p = 0.

Let ~y represent the multidimensional directions complementary to x. Our

model system (2.3) then becomes:
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
xn+1 = T (xn)

~yn+1 = ~F (xn, ~yn, p, q).

If ~F is sufficiently smooth with respect to ~y, p and q, we can bound the higher order

terms as before. Following [ABS96], we impose the non-degeneracy condition that

for p = q = 0, the fixed point x∗ has a unique neutral direction transverse to X with

eigenvalue 1, and that all other eigenvalues of ∂
~F
∂~y

(x∗, 0, 0, 0) have magnitude less than

1. We choose a norm defined by an inner product for ~y, such that the corresponding

norm of ∂ ~F
∂~y

(x∗, 0, 0, 0) is equal to 1. Corresponding to (iii’), we assume that there

are functions f and h on X, with f having a unique maximum of 1 at x = x∗, such

that ‖∂ ~F
∂~y

(x, 0, p, 0)‖ = f(x) + h(x)p + O(p2). Then, one can show that the largest

eigenvalue of ∂ ~F
∂~y

(x∗, 0, p, 0) is 1 + h(x∗)p + O(p2). We call ~v(p) the corresponding

eigenvector for the adjoint to ∂ ~F
∂~y

(x∗, 0, p, 0), and let ~g(x) = ∂ ~F
∂q

(x, 0, 0, 0). Then, we

can bound the growth of the norm of ~y as in the one-dimensional case,

|~yn+1| ≤ (f(xn) + h(xn)p)|~yn|+ q‖~g(xn)‖+O(q|~yn|+ p2|~yn|+ pq + q2 + |~yn|2).

Thus, the analysis of §2.4.1.2 remains applicable. We can bound the growth of

the norm of ~y from below in a similar way, with an additional error term of order

|xn − x∗||~yn|.

~yn+1·~v(p) ≥ (f(xn) + h(xn)p)~yn·~v(p) + q~g(xn)·~v(p)

+O(q|~yn|+ p2|~yn|+ pq + q2 + |~yn|2 + |xn − x∗||~yn|).

(If ~g(x∗)·~v(0) < 0, we change the sign of ~v.) In order for the analysis in §2.4.1.1

to be applicable, the conditions that need to be satisfied are that ~g(x∗)·~v(0) 6= 0,
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corresponding to (v), and, additionally, non-degeneracy conditions analogous to

(iv) making x∗ undergo a transcritical or pitchfork bifurcation. The main remaining

complication to adapting the arguments in § 2.4 is that there is no analogue of

Lemma 2.4.1 in this case, because the direction of ~y can rotate while x is away from

x∗.

2.2.3.3 Random perturbations.

The results are generalized to some random dynamical systems, where the

deterministic mismatch g(xn) is replaced by a stationary sequence of independent

random variables gn. This is presented in §2.5. We could also treat the case of

combined random noise and deterministic mismatch with our methods.

2.3 Invariant manifold: dynamics and bifurcation

2.3.1 Dynamics on the invariant manifold

In this section, we present results we need for the base dynamics given by T , a

transitive C2 Anosov diffeomorphism. We assume T has a fixed point x∗, and derive

quantitative dynamical properties that are used in our estimates in §2.4, following

references [Bow75], [Che02] and [Aba04].

We note that all results of this section also apply to expanding maps. In

particular, the model system with base dynamics given by T (x) = mx (mod 1) is

rich enough to give a good understanding of most of these properties. For general

T , the analysis we present is somewhat more involved.
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2.3.1.1 Existence of Markov partitions and SRB measures.

Classical works of Sinai [Sin68] and Bowen [Bow70] show that uniformly hyper-

bolic dynamical systems have Markov partitions of arbitrarily small diameter. Such

partitions allow one to study the dynamics in symbolic terms, since all invariant

measures of hyperbolic systems are projections of invariant measures on symbolic

systems that are semi-conjugate to T .

Moreover, given any point x ∈ X, Pesin and Weiss show [PW97, Thm. 3] that,

after possibly passing to a power of T , a Markov partition R can be chosen in such

a way that x is in the interior of a Markov rectangle. We will choose such a special

Markov partition with the hyperbolic fixed point x∗ in the interior of a rectangle we

call R0.

Because of our hypotheses on T , there is always an invariant measure that is

physically relevant: the SRB or physical measure [Sin68, Bow70]. We will call it µ.

This measure is the one of interest for us, since its basin contains a full Lebesgue

measure set of trajectories. Another relevant property of µ is exploited in §2.3.1.3,

namely, that the µ measures of cylinders around a point (see definition below) are

asymptotically determined by the sum of positive Lyapunov exponents.

For a fixed Markov partition R = {R0, . . . , RD−1} of (X,T ), we denote by

ωi(x) the index of the partition set to which T i(x) belongs, provided that T i(x)

belongs to only one partition set. Note that this is undefined on the set for which

T i(x) belongs to the boundary of a partition set, which has µ measure zero [Che02,

Prop. 3.1]. We denote by ΩT,R the set of sequences (ωi)i∈Z ⊂ ΣD allowed by the
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dynamics of T . Cylinder sets are nonempty sets S ⊂ X of the form S = {x ∈

X|ωi(x) = bi, k ≤ i ≤ k + l}, up to a set of µ measure zero, for some k ∈ Z, l ≥ 0

and bi ∈ {0, 1, . . . , D − 1}. Such a cylinder set S has length l + 1 and is based

at k. We write C(k, k + l) to denote the collection of all cylinders of length l + 1

and base k. We say that two cylinders Si ∈ C(ki, k′i), i = 1, 2, are determined by

non-overlapping words if either k′1 < k2 or k′2 < k1.

Below, we use Pµ to denote the probability of an event with respect to µ. For

example,

Pµ(ωk = b) = µ({x ∈ X|ωk(x) = b}).

We also use Eµ for the expectation with respect to µ.

2.3.1.2 Expected hitting time.

For a µ measurable set S with µ(S) > 0, let τS(x) be the first time the orbit

of x visits (or hits) S, that is, τS(x) = min{k ≥ 0|T k(x) ∈ S}. By ergodicity, the

hitting time τS(x) is finite for µ almost every x ∈ X and defines a µ measurable

function on X. The following lemmas relate the expected hitting time with µ(S).

The first one, which follows from [Aba04, §5], gives an upper bound and holds for

cylinder sets. The second one gives a lower bound and is valid for all measurable

sets S of sufficiently small measure.

Lemma 2.3.1. There exists a constant Ũ = Ũ(T,R) ≥ 1 such that for every

cylinder set S,

Eµ(τS) :=

∫
X

τS(x)dµ(x) ≤ Ũ

µ(S)
.
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Lemma 2.3.2. If µ(S) < 1
4

then

Eµ(τS) :=

∫
X

τS(x)dµ(x) ≥ 1

4µ(S)
.

Proof. Let Sk := {x ∈ X|τS(x) = k}. Hence Sk ⊆ T−k(S) and therefore µ(Sk) ≤

µ(S), which gives the lower bound

Eµ(τS) =
∞∑
k=0

kµ(Sk) =
∞∑
k=1

k∑
j=1

µ(Sk) =
∞∑
j=1

∞∑
k=j

µ(Sk) =
∞∑
j=1

(
1−

j−1∑
k=0

µ(Sk)

)

≥
b 1
µ(S)
c∑

j=1

(1− jµ(S)) = b 1

µ(S)
c −
b 1
µ(S)
c(b 1

µ(S)
c+ 1)

2
µ(S)

= b 1

µ(S)
c
(

1−
µ(S)(b 1

µ(S)
c+ 1)

2

)
≥
(

1

µ(S)
− 1

)
1− µ(S)

2
≥ 1

4µ(S)
,

where the last inequality follows from the fact that µ(S) < 1
4
.

2.3.1.3 Consecutive number of iterates near a fixed point.

It is necessary for our purposes to understand the distribution of the number

of consecutive iterates a trajectory spends in a neighborhood of the fixed point x∗.

Following traditional notation, we let

Bx(n, ε) := {z| dist(T ix, T iz) < ε ∀i = 0, 1, . . . , n}.

A trajectory x stays within ε of x∗ for n iterates if x ∈ Bx∗(n, ε). Let Ξ := {λ1 ≥

λ2 ≥ · · · ≥ λdimX} be the Lyapunov spectrum of T at x∗. Let

Λ :=
dimX∑
i=1

(λi)+, where (λ)+ := max(λ, 0), and χ := eΛ.

A lower bound on the number of iterates close to x∗ is given by:
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Lemma 2.3.3. There exist constants C = C(T ) and ϕ = ϕ(Ξ) such that for all

δ > 0 sufficiently small,

µ(Bx∗(n, δ)) ≥ Cδϕχ−n.

Proof. It is shown in [Bow75, § 4.4] that for ε > 0 sufficiently small there is some

constant C̃ = C̃(T, ε) such that

µ(Bx∗(n, ε)) ≥ C̃χ−n.

Also, by Corollary 6.4.17 in [KH95], if ε > 0 is sufficiently small, there is a con-

stant A = A(T ) such that if x ∈ Bx∗(n, ε) then for 0 ≤ i ≤ n, dist(T ix, x∗) ≤

Aεe−λ̃min(i,n−i), where λ̃ := mini=1,...,dimX(|λi|), the distance of Ξ to 0. Fix ε > 0

and let ϕ = 2 logχ/λ̃ and k = d log δ−logAε

λ̃
e. Then Aεe−λ̃k ≤ δ and if k ≥ 0 we have

µ(Bx∗(n, δ)) ≥ µ(Bx∗(n+ 2k, ε)) ≥ C̃χ−(n+2k) ≥ Cδϕχ−n.

Obtaining upper bounds for the time spent close to x∗ requires a better un-

derstanding of the dynamical properties of T . Let ξ0(x), ξ1(x), . . . be the number

of consecutive iterates the trajectory of x spends in successive visits to a Markov

rectangle R0 containing x∗ in its interior.

The following lemmas will be useful in §2.4.1.

Lemma 2.3.4. There is a constant A = A(T,R) > 0 such that for every k ∈ N and

t > 0 we have:

Pµ(ξk ≥ t) ≤ Aχ−t.

Proof. This is a consequence of the so-called exponential cluster property for uni-

formly hyperbolic systems (see e.g. [Bow75, Che02]): there are constants C̃ and
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θ < 1 such that given any two cylinders S ∈ C(0, a) and S ′ ∈ C(0, b),

|Pµ(S ∩ T−n(S ′))− Pµ(S)Pµ(S ′)| ≤ C̃Pµ(S)Pµ(S ′)θn−a.

(Notice that T−n(S ′) ∈ C(n, n+ b), so n−a represents the gap between the symbols

determined by membership in S and those determined by membership in T−n(S ′).)

In particular, there is a constant C such that for any two cylinders S and S ′ deter-

mined by non-overlapping allowed words, we have that S and S ′ are independent up

to a multiplicative factor C in the following sense:

Pµ(S ∩ S ′) ≤ CPµ(S)Pµ(S ′) and hence Pµ(S|S ′) ≤ CPµ(S),

where by Pµ(S|S ′) we mean the conditional probability Pµ(S∩S′)
Pµ(S′)

.

To prove the lemma, we fix k and consider the following countable partition Z

(modulo sets of µ measure 0) of ΩT,R as follows. Each element of Z consists of the

cylinder set of sequences ω that share all symbols up to τk, where τk is the start of

the k-th sequence of 0’s. For example, for k = 1, sequences of the form 101 . . . and

1001 . . . would belong to the same element of Z, but sequences of the form 110 . . .

would be in a different element of the partition. This is a partition modulo sets of

µ measure 0 since with probability 1, τk <∞.

By the exponential cluster property, we know that for any Z ∈ Z,

Pµ(ξk ≥ t|Z) ≤ CPµ(0t),

where 0t is the sequence consisting of t zeros. Therefore,

Pµ(ξk ≥ t) =
∑
Z∈Z

Pµ(ξk ≥ t|Z)Pµ(Z) ≤ CPµ(0t)
∑
Z∈Z

Pµ(Z) = CPµ(0t).
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The lemma follows from the fact that for rapidly mixing systems, there exist

positive constants λ, Ã such that:

Pµ(0t) < Ãe−λt.

Furthermore, since µ is an SRB measure, we can take λ = logχ = Λ [Bow75].

Given a constant c < 1, let ηk :=
∑k

j=0 c
k−jξj.

Lemma 2.3.5. For c < 1 fixed, there are constants B and 0 < θ < 1, such that

whenever B ≤ t∗ ≤ t,

µk := Pµ(ηk ≥ t, ηj ≥ t∗ for j = 1, . . . , k − 1) ≤ Aθkχ−t.

Proof. First, we show that for any values of t, tj, the events {ξk = t} and {ηj ≥

tj for 0 ≤ j < k} are independent up to a multiplicative factor C given by the

exponential cluster property. Let us make use of the partition Z from the proof of

Lemma 2.3.4 and let Z0 = {Z ∈ Z : ηj ≥ tj for 0 ≤ j < k}. We remark that Z0 is

well defined, since for 0 ≤ j < k, ηj is constant µ-almost everywhere in each Z ∈ Z.

Thus, we have:

Pµ(ξk = t, ηj ≥ tj for 0 ≤ j < k) =
∑
Z∈Z

Pµ(ξk = t, ηj ≥ tj for 0 ≤ j < k|Z)Pµ(Z)

=
∑
Z∈Z0

Pµ(ξk = t|Z)Pµ(Z) ≤ CPµ(0t)Pµ(ηj ≥ tj for 0 ≤ j < k)

≤ CAχ−tPµ(ηj ≥ tj for 0 ≤ j < k).

Now, using Lemma 2.3.4 as the base step, valid for all t∗, t, we will prove

our result by induction. Assume we know that for some k, t∗ and t we have that
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µk ≤ Aθkχ−t. Then, for k + 1 we have:

µk+1 ≤
∑t−ct∗

s=0 Pµ(ξk+1 = s, ηk ≥ t−s
c
, ηj ≥ t∗ for j = 0, . . . , k)

+Pµ(ξk+1 ≥ t− ct∗, ηj ≥ t∗ for j = 0, . . . , k)

≤
∑t−ct∗

s=0 C(Aχ−s)(Aθkχ−( t−s
c

)) + C(Aχ−(t−ct∗))(Aθkχ−t∗)

≤ AθkAC

(
χ( 1
c−1)

χ( 1
c−1)−1

+ 1

)
χ−tχ−(1−c)t∗ .

This establishes the inductive step and the result provided

θ = AC

(
χ( 1

c
−1)

χ( 1
c
−1) − 1

+ 1

)
χ−(1−c)B and B is large enough that θ < 1.

Let Nk = ξ0 + ξ1 + · · ·+ ξk.

Lemma 2.3.6. For β sufficiently large and 0 < t ≤ χβ/2 , there is a constant

0 < θ̃ < 1 such that

µ̃k(t) := Pµ(Nk ≥ t+ kβ,Nj ≥ jβ for j = 0, . . . , k − 1) ≤ Aθ̃kχ−t.

Proof. By an argument analogous to the proof of Lemma 2.3.5, the events {ξk ≥ t}

and {Nj ≥ jβ for 0 ≤ j < k} are independent up to a multiplicative factor C.

Using Lemma 2.3.4 as the base step, valid for all t, we will proceed by induction.

The base step follows from Lemma 2.3.4. Assume we know that for some k and t

µ̃k(t) ≤ Aθ̃kχ−t. For k + 1 we have:
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µ̃k+1(t) ≤
∑bt+βc

s=1 CPµ(ξk+1 = s)µ̃k(t+ β − s) + CPµ(ξk+1 > bt+ βc)µ̃k(0)

≤ Aθ̃kCAχ−(t+β)
(
t+ β + 1

)
≤ Aθ̃k+1χ−t,

provided θ̃ := AC
(
t + β + 1

)
χ−β. For any choice of β, this last inequality gives

explicit restrictions on the allowed size of t in order for θ̃ < 1. In particular, for

sufficiently large β, the argument is valid for any t ≤ χβ/2.

Remark 2.3.7. The analysis of this section dealt with the dynamics close to a fixed

point x∗ of T . Results of this section can be adapted to study the dynamics close

to a periodic orbit of period d after taking the d-th power of T . This extension is

not completely trivial, since in this case we would have d fixed points x∗1, . . . , x
∗
d to

simultaneously keep track of. However, straightforward extensions of the arguments

in §2.3.1.3, yield similar bounds for the analogue of ξk, ηk, Nk in this setting. In

this case, Λ would be replaced by the sum of positive Lyapunov exponents of the

periodic orbit and χ = eΛ would change accordingly.

2.3.2 Bifurcation of the invariant manifold

In this section, we discuss the genericity of conditions (iii) and (iii’) of §2.2.1

about the bifurcation of the invariant manifold when q = 0. While condition (iii’)

is non-generic, we will weaken it to a condition (iii”) that we characterize as a

non-degeneracy assumption.
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The assumption in condition (iii) that X is asymptotically stable for p < 0

implies that the Lyapunov exponent, equal to the average of log ∂F
∂y

, is nonpositive

for all invariant measures of T when p < 0. Recall that f(x) = ∂F
∂y

(x, 0, 0, 0) > 0,

and observe that f is Lipschitz by our smoothness hypothesis for F . Then by

continuity, the average of log f(x) is nonpositive for all invariant measures of T , and

further (by condition (iii) again) the average is zero for the delta measure at x∗.

Thus, among all invariant measures of T , the average of log f(x) is maximized at

the bifurcating orbit. It has been conjectured [YH99] and numerically supported

[HO96] that generically, maximizing (optimal) invariant measures occur at measures

with periodic support. In this respect, we expect in general the loss of stability of

X to occur at a periodic orbit, and for simplicity we consider the case of a fixed

point x∗. Furthermore, it is a topologically generic property of Lipschitz and smooth

functions [Jen06] to have a unique maximizing invariant measure. Condition (iii’)

makes the stronger assumption that pointwise the maximum of log f(x) occurs at

x∗. We can easily weaken this assumption by requiring that it be true for some

change of coordinates. Specifically, we consider

ỹ = η(x)y, with η(x) > 0 for all x ∈ X and η(x∗) = 1. (2.7)

Under such coordinate change, the evolution equations for system (2.3) and param-

eters p = q = 0 become: 
xn+1 = T (xn)

ỹn+1 = F̃ (xn, ỹn, 0, 0),

(2.8)

with F̃ (x, ỹ, 0, 0) = η(T (x))F (x, 0, 0, 0) + ỹ η(T (x))
η(x)

f(x) + O(ỹ2). The corresponding
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coefficient of the linear term in the Taylor expansion of F̃ with respect to ỹ becomes:

f̃(x) =
η(T (x))

η(x)
f(x).

Thus, condition (iii’) can be replaced by

(iii”) There exists a change of coordinates of the form (2.7) for which f̃ has a unique

global maximum at x∗.

The following lemma suggests that it is plausible to expect such a change of

coordinates.

Lemma 2.3.8. Let f : X → R be a positive Lipschitz function. Suppose that

among all T invariant measures, the average of log f is maximized at (the measure

supported on) a fixed point x∗. Then, there exists a change of coordinates of the

form (2.7) for which the global maximum of f̃ occurs at x∗.

Proof. Let φ(x) = log f(x). This is well defined and Lipschitz, since f is positive

and Lipschitz. Existence of a change of coordinates ỹ = η(x)y changing f into f̃ is

equivalent to having a solution to the following co-homological equation:

φ̃(x) = φ(x) + ψ(T (x))− ψ(x), (2.9)

where φ̃(x) = log f̃(x) and ψ(x) = log η(x).

When T is uniformly hyperbolic, the normal form theorem [Jen06, 4.7] ensures

the existence of a Lipschitz solution ψ to (2.9) with the following property.

φ(x∗) ≥ φ(x) + ψ(T (x))− ψ(x) =: φ̃(x).

Therefore, the change of coordinates from f to f̃ given by f̃(x) = eψ(x)f(x) has a

global maximum at x∗.
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With this result in mind, condition (iii”) is similar to the assumption that the

average of log f(x) over invariant measures of T has a unique maximum at x∗.

Remark 2.3.9. Lemma 2.3.8 extends to the case when the average of log f over

the space of T invariant measures is maximized at a periodic orbit x∗1, . . . , x
∗
d; after

a coordinate change, the global maximum of f occurs at all d points of the orbit.

In this case, our non-degeneracy assumption is that f is maximized only at these d

points.

2.4 Proof of main results

All results in this section refer to dynamical systems of the form (2.3), satis-

fying assumptions (i)-(v) in §2.2.1 as well as either (iii’) in §2.2.1 or (iii”) in §2.3.2.

2.4.1 Average bursting time in the linear regime

The goal of this section is to derive a scaling law for the logarithm of the

average bursting time τ , valid for burst amplitudes small enough that we can use a

linear approximation to the y dynamics. We consider the effect of nonlinear terms

in the following section. We set a threshold y value Y , and investigate the average

time it takes for an initial condition starting close to X to burst (or escape) to the

threshold.

When p is small, Lebesgue almost all orbits of T will spend most of their time

in the region in which f(x) + h(x)p < 1, so that the y dynamics are contracting

near y = 0. However, since x∗ is in the support of µ, the x trajectory of Lebesgue
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almost every orbit will visit arbitrarily small neighborhoods of x∗ and thus remain

close to x∗ for arbitrarily long period of time, eventually resulting in a burst.

A quantitative understanding of this statement allows us to find a cylinder set

S ⊂ X such that whenever the x trajectory enters it, the trajectory is guaranteed

to reach the threshold Y . From this, we obtain an upper bound for the average

bursting time in terms of µ(S), since once in S, the time it takes to burst is relatively

negligible.

The lower bound needs further work, since in order to establish it, an under-

standing of all possible escape routes to the threshold Y is needed. In this part, we

will identify a set S ′ ⊂ X (not necessarily a cylinder but a union of cylinders) such

that the x coordinate of any trajectory that escapes must visit S ′ before escaping.

The definition of the set S ′ depends on the fact that trajectories may escape not

only through one long sequence of expansive iterates, but instead could follow a se-

quence of alternating expanding and contracting periods. We note that our results

will show that the former is asymptotically the most likely escape route, provided q

is bounded below as in the multiplicative cases of Theorems 2.1 and 2.2. The set

S ′ also depends on an intermediate y threshold that is presented in §2.4.1.2.

In order to establish upper and lower bounds on the average bursting time, we

restrict ourselves to finding lower and upper bounds on the measure of trajectories

that initiate a burst, µ(S) and µ(S ′). This is enough for our purposes, in view of

Lemmas 2.3.1 and 2.3.2.

We introduce two parameters for the threshold size: α = Y
q

quantifies the

number of iterates to reach the threshold for x = x∗ and p = 0, ignoring higher
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order terms. The non-linearity parameter s = Y ρ

max(pY,q)
measures the size of the

dominant non-linear term Y ρ, relative to the largest term in the linearization of

yn+1 − yn at xn = x∗. Note that p, q and s determine Y and hence α.

Next, we bound the higher order terms in (2.3) by σp|y| + ζq, where σ and

ζ can be made arbitrarily close to 0 by making p, q and s small. In particular, we

assume ζ, σ < 1.

Throughout this section, we write τ = τ(Y ) = τ(αq), and recall that Λ =∑dimX
i=1 (λi)+ = logχ is the sum of positive Lyapunov exponents of x∗ for T . We

also recall that q∆ is upper bound on the kick q(g(x) + ζ). Let 0 < c < 1 be an

upper bound on f(x) + h(x)p for x /∈ R0 and define

l̃(z) =
1 + z

z log(1 + z)
and K(p, α) :=

1

pαl̃(pα)
e
p
2
χ

log 1
c

4p(1+l̃(pα))
.

We say that parameters p, α satisfy condition (?) if α is sufficiently large

(independent of p and q) and either pα < 1
2

log 1
c
, or pα ≥ 1

2
log 1

c
and K(p, α) > 1.

We remark that when pα is sufficiently large and p, q and s are sufficiently small,

K(p, α) > 1 if k(p) := 1
p
epχ

log 1
c

5p
> α. The main result of this section is the following.

Theorem 2.4. For sufficiently small parameters p, q and s for which the threshold

size α satisfies condition (?), there is a constant C > 1 independent of p, q and the

map T on X such that

C−1Λ ≤ log τ(qα)
1
p

log(1 + pα)
≤ CΛ.

Moreover, in the limit that α→∞ and either pα→ 0 or pα→∞, C can be taken

arbitrarily close to 1.
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In order to prove the theorem, we first show that there is a manifold X−κ̃q :=

X × {−κ̃q}, with κ̃ = O(1) that gets mapped above itself (in the y direction),

therefore preventing all initial conditions starting above it to escape the strip X ×

[−αq, αq] from below. Then, we establish the upper and lower bounds in §2.4.1.1

and §2.4.1.2, respectively.

Lemma 2.4.1. There is a constant κ̃ independent of p and q such that the image

of any initial condition (x0, y0) of (2.3) with y0 ≥ −κ̃q satisfies y1 ≥ −κ̃q for all

sufficiently small p and q. Moreover, in this case, there exists x̃ > 0 independent

of p and q such that every trajectory for which y0 > −κ̃q that remains in the set

|x − x∗| < x̃ for a sufficiently long number of iterates n0, independent of p and q,

reaches a positive y value, that is yn0 > 0.

Proof. Consider x̃ sufficiently small so that when |x0−x∗| < x̃ we have that g(x0) >

1
2
, h(x0) < 3

2
, and such that there is 0 < r < 1 depending only on f such that for

|x0−x∗| ≥ x̃, f(x0) ≤ 1− 2r. When p and q are sufficiently small, 1 + 2p ≥ f(x0) +

(h(x0)+σ)p for |x0−x∗| < x̃, and 0 ≤ f(x0)+(h(x0)−σ)p ≤ 1−r for |x0−x∗| ≥ x̃.

Let κ̃ > 1−minx∈X{g(x)}
r

. For |x0−x∗| < x̃ and y0 ≥ −κ̃q, y1 ≥ −qκ̃(1+2p)+(1
2
−ζ)q.

Hence, if p and q are sufficiently small, ζ < 1
4

and y1 ≥ −κ̃q. For |x0 − x∗| ≥ x̃ and

y0 ≥ −κ̃q, we have y1 ≥ −κ̃q(1−r)+q(minx∈X{g(x)}−ζ). If p and q are sufficiently

small, ζ < 1 and by the choice of κ̃, y1 ≥ −κ̃q.

For the second statement, we know that if |x0 − x∗| < x̃ and y0 ≥ −κ̃q, then

y1 − y0 ≥ (1
2
− ζ − 2pκ̃)q. The result follows from the fact that we can apply the

estimate repeatedly, as long as |xi − x∗| < x̃.
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2.4.1.1 Upper bound for the bursting time.

In this section, we take an initial condition (x0, y0) starting above the manifold

X × {−κ̃q} and find a neighborhood of x = x∗ so that whenever the trajectory

remains in it for a sufficiently long number of iterates, it is guaranteed to escape.

First, we present a simple upper bound useful in the additive case. Another

upper bound will be obtained in Proposition 2.4.3 by taking into account the ex-

pansiveness close to x∗.

Proposition 2.4.2. For any ε > 0, if p, q and s are sufficiently small, and α is

sufficiently large, we have:

log τ

α
< (1 + ε)Λ.

Proof. Assume L− 1 is a Lipschitz constant for |f |+ |g|+ |h|. Let 0 < ˜̃δ < 1, ε′ > 0

sufficiently small and ˜̃x = min{1−˜̃
δ

L
,

˜̃
δε′

Lα
}. Then, for p, q and s sufficiently small, if

|x− x∗| < ˜̃x we have g(x)− ζ > ˜̃δ > 0 and f(x) + (h(x)− σ)p > 1− L˜̃x ≥ 1−
˜̃
δε′

α
.

In this situation, for |xn − x∗| ≤ ˜̃x and yn ≤ αq we have:

yn+1 ≥
(
f(xn) + h(xn)p

)
yn − σp|yn|+ q

(
g(xn)− ζ

)
≥ yn + (1− ε′)˜̃δq.

Therefore, a trajectory starting with a positive y value reaches the threshold if it

stays in the region |x−x∗| < ˜̃x for at least α

(1−ε′)˜̃
δ
< α(1+2ε′)

˜̃
δ

=: ˜̃n consecutive iterates.

Thus, in this setting, we can take S = Bx∗(˜̃x, ˜̃n+n0) as a surely escaping set, where

n0 = O(1) is as in Lemma 2.4.1. By Lemmas 2.3.1 and 2.3.3, it follows that there

is a constant U = U(T ) such that for sufficiently large α, an upper bound on the
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logarithm of the average bursting time is

log τ ≤ Λ
(1 + 3ε′)α

˜̃δ
+ logU − log ˜̃x.

Since ε′ > 0 may be arbitrarily small and ˜̃δ can be made arbitrarily close to 1 for

p, q and s sufficiently small, the statement follows.

Proposition 2.4.3. For any ε > 0, if p, q and s are sufficiently small and pα is

sufficiently large, an upper bound on the logarithm of the average bursting time is

given by:

log τ
1
p

log(1 + pα)
< (1 + ε)Λ.

Proof. Using the Lipschitz assumptions on f, g and h, we can find x̃ > 0 to be

specified later, and δ̃ > 0 so that for |x−x∗| < x̃ we have f(x)+(h(x)−σ)p > 1+ γ̃p

for some 0 < γ̃ < 1 − σ and g(x) − ζ > δ̃ > 0. By the choices of κ̃ and x̃, every

trajectory with initial condition y0 ≥ −κ̃q that is in the region |x − x∗| < x̃ for

n0 iterates we have that yn0 > 0. Hence, if the trajectory remains in the region

|x− x∗| < x̃ for another iterate, we will have that

yn0+1 ≥ (f(xn0) + h(xn0)p)yn + g(xn0)q − σ|pyn0| − ζq

≥ (1 + γ̃p)yn0 + δ̃q,

and if |x− x∗| < x̃ for another n consecutive iterates,

yn0+n ≥ (1 + γ̃p)n δ̃q
γ̃p
− δ̃q

γ̃p
.

Hence, all orbits that remain in the region |x− x∗| < x̃ for time

ñ := n0 +
log γ̃pα+δ̃

δ̃

log(1 + γ̃p)
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will reach the threshold αq within ñ steps.

Thus, in this setting, we can take S = Bx∗(x̃, ñ) as a surely escaping set. By

Lemma 2.3.3, we know that there are constants C = C(T ) and ϕ = ϕ(T ) such that:

µ(S) ≥ Cx̃ϕχ−ñ.

Thus, by Lemma 2.3.1 we have that there is a constant Ũ = Ũ(T ) such that an

upper bound on the average bursting time τ = τ(Y ) is:

τ ≤ Ũ x̃−ϕχñ + ñ. (2.10)

Therefore, there is a constant U = U(T ) such that for any ε > 0, if p, q and s

are sufficiently small and α sufficiently large, we have:

log τ ≤
(

1 +
ε

2

)
Λ

(
n0 +

log γ̃pα+δ̃

δ̃

log(1 + γ̃p)

)
+ logU(1− log x̃).

Furthermore, we can make γ̃ and δ̃ arbitrarily close to 1 by making x̃
p
, p, q and

s sufficiently small and pα sufficiently large. Choosing x̃ = p
log(1+pα)

, the proposition

follows.

2.4.1.2 Lower bound for the bursting time.

To get a lower bound for the bursting time, we need to consider different escape

routes. For a given y0, in order for a trajectory starting at height less than ỹ0q to

escape, it needs to get total expansion by a factor of α
ỹ0

. This expansion can be

achieved in one long sequence of expansive iterates, which corresponds to the case

presented in the previous subsection, or in several expansive sequences.
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An important characteristic of our model is that the linearized contraction rate

between any two expansive sequences is bounded above by some factor 0 < c < 1

independent of p and α, and that it takes a long time to recover from it. These

consideration will allow us to show that the measure of initial conditions that initiate

an escape is comparable to the measure of initial conditions that escape in just one

sequence of expansive iterates.

The goal of this section is to find a set S ′ ⊂ X that every escaping orbit must

visit in order to escape. More precisely, the last time a trajectory lies below an

intermediate threshold (specified below) before escaping, its x coordinate must lie

in S ′. In order to define S ′, we will consider the x dynamics in symbolic terms.

For this, we fix a Markov partition R for T , as in §2.3.1. Growth in the y term

happens when a trajectory spends a long time in the expansive neighborhood of

x∗. When a transition from expansive to non-expansive sequence (or vice versa)

occurs, there is a contraction as described above. We will represent a point x in X

by two sequences of numbers: ξ0(x), ξ1(x), . . . , indicating the number of consecutive

iterates the x trajectory spends in a Markov rectangle containing the fixed point x∗

and ξ̃1(x), ξ̃2(x), . . . , indicating the number of consecutive iterates the x trajectory

spends outside of it. We also let Nk := ξ0 + ξ1 + · · ·+ ξk and Ñk := ξ̃1 + · · ·+ ξ̃k. All

of these numbers can be thought of as random variables on the Borel probability

space (X,µ). Our set S ′ will be defined in terms of consecutive sequences of ξ.

Remark 2.4.4. In the case of the maps T (x) = mx (mod 1), there exists a Markov

partition for which the sequence of ξj corresponds to a sequence of iid geometric ran-
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dom variables on the Borel probability space (X,µ). In this case, calculations can be

done directly, using only properties of elementary discrete probability distributions.

In general, the random variables ξi are not independent. However, the expo-

nential cluster property (also known as ψ mixing property with exponential decay)

used in §2.3.1.3 allows one to show, in our parameter range, that the total proba-

bility of escape can be still compared with the probability of escaping through only

one long sequence of consecutive expanding iterates. This was estimated in §2.4.1.1.

First, we establish a lower bound in the average bursting time in terms of

pα, that is of special interest in the case when the multiplicative effect is negligible

(small pα). Later, in Proposition 2.4.6, we establish a sharper lower bound for the

multiplicative case (large pα).

We set ∆ = ‖g‖∞+ ζ = O(1), so that q∆ is a global upper bound on the kick.

For the Markov partition R, we let R0 be the rectangle containing x∗, and define

∆0 = supx∈R0
{g(x)} + ζ, so that q∆0 bounds the kick on R0. We recall that the

partition R can be chosen with arbitrarily small radius. Hence, ∆0 can be made

as close to 1 + ζ as desired. Also, let Γ = supx∈R0
{h(x) + σ}; then Γ can be made

arbitrarily close to 1 + σ.

Proposition 2.4.5. Let l(z) = z
ez−1

and let ε > 0. If p, q and s are sufficiently

small, α is sufficiently large, and pα ≤ 1
2

log 1
c
, we have:

log τ ≥ (1− ε)l(pα)Λα.

Proof. To establish this, we let ∆̃0 = ∆0

l((1+σ)pα)
. We also fix B > 0 as in the statement

of Lemma 2.3.5 and choose time 0 to be the last time that the y trajectory is below
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Bq, so that for n ≥ 1, yn never goes back below Bq before exceeding the threshold

Y . Notice that for xn ∈ R0,

yn+1 ≤
(
f(xn) + (h(xn) + σ)p

)
yn + q∆0 ≤ (1 + Γp)yn + q∆0.

First, we consider only escaping trajectories for which ξi ≤ α for all i before es-

caping. The measure of the remaining escaping trajectories will be included directly

in the final estimate. Then, by induction on ξ, for ξ ≤ α,

yξ − y0(1 + Γp)ξ ≤ q∆0
(1 + Γp)ξ − 1

Γp
≤ q∆0

eΓpξ − 1

Γp
≤ q∆̃0ξ.

Next, for xn /∈ R0 we have yn+1 ≤ cyn + q∆, so by induction on ξ̃,

yξ+ξ̃ ≤ cξ̃(y0(1 + Γp)ξ + q∆̃0ξ) +
q∆

1− c
.

Let c̃ = c(1 + Γp)α. Then c̃ < 1 if p, q and s are sufficiently small and pα ≤ 1
2

log 1
c
.

By induction, we obtain:

yNk+Ñk
≤ c̃ky0 +

q∆

(1− c)(1− c̃)
+ q∆̃0

( k∑
j=0

c̃k−jξj
)
.

If the threshold Y = αq is reached within k > 1 expansive sequences, then

recalling that y0 ≤ Bq we must have:

k∑
j=0

c̃k−jξj ≥
α− c̃kB

∆̃0

− ∆

∆̃0(1− c)(1− c̃)
.

In this context, we will say that a trajectory escapes by route k if k+1 is the smallest

integer for which the above holds. The set S ′ mentioned above consists of the union

of trajectories that may initiate an escape by route k over all k ∈ N, and those for

which there exists some i with ξi > α before escaping. We let ι be the smallest so

that ξι > α, and denote its measure by µ̂ι.
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To bound µ̂ι, we use the proof of Lemma 2.3.5 with t = α and c = c̃ defined

above. Adding over ι, we get that
∑

ι∈N µ̂ι ≤ Âχ−α, for some constant Â independent

of p, q and α.

Given any ε > 0, if α sufficiently large (depending on ε but independent of p

and q), we can apply Lemma 2.3.5 with t = (1− ε) α
∆̃0

> B and t∗ = B. We obtain

that the measure µk of x trajectories that initiate an escape by route k decays

exponentially with k. For k = 1, Lemma 2.3.4 implies that µ1 ≤ Aχ
−(1−ε) α

∆̃0 .

Combining the previous two paragraphs, we get that there exists some constant

L̃ such that the total measure µ(S ′) is bounded by

µ(S ′) ≤ L̃χ
−(1−ε) α

∆̃0 .

Recalling that σ → 0 as (p, q, s) → (0, 0, 0) and that ∆0 can be chosen ar-

bitrarily close to 1 by choosing R appropriately, and (p, q, s) sufficiently close to

(0, 0, 0), we combine the previous estimate with Lemma 2.3.2, and conclude that for

α sufficiently large, pα ≤ 1
2

log 1
c

and p, q and s sufficiently small we have:

log τ ≥ (1− ε)l(pα)Λα.

Recall that K(p, α) := 1
pαl̃(pα)

e
p
2
χ

log 1
c

4p(1+l̃(pα))
.

Proposition 2.4.6. Let ε > 0. For sufficiently small p, q and s for which pα ≤

1
2

log 1
c

and K(p, α) > 1, a lower bound on the scaling of log τ is:

log τ ≥ (1− ε)
(
1− l̃(pα)

)
Λ

log(1 + pα)

p
,

where l̃(pα)→ 0 as pα→∞.

38



Remark 2.4.7. The restriction on the size of α in terms of p can be improved by

taking into account the fact that typically, trajectories spend a long time outside of

the expanding region before coming back to it. This would allow larger thresholds

α. However, sufficiently large values of α would still need to be excluded. Therefore,

we only present the argument as stated in Proposition 2.4.6.

Proof of Proposition 2.4.6. Now we fix B > 0, to be specified later, and for the

moment choose time 0 to be the first time that the y trajectory exceeds Bq and yn

never goes back below Bq before escaping. After a sequence of expansions corre-

sponding to a block of length ξ followed by a contraction, similarly to the proof of

Proposition 2.4.5, we have:

yξ+ξ̃
y0

≤
(

(1 + Γp)ξ + ∆0

B
(1+Γp)ξ−1

Γp

)
c+ ∆

B(1−c)

≤ (1 + Γp)ξ
(

1 + ∆
B(1−c)c + ∆0

B
1−(1+Γp)−ξ

Γp

)
c

≤ (1 + Γp)ξ
(

1 + ∆
B(1−c)c + ∆0

B
ξ

)
c.

Let E(p) := log(1 + Γp). Then, by induction on k,

log

(
yNk+Ñk

y0

)
≤ NkE(p) + k log c+

∑k
j=1 log

(
1 + ∆

B(1−c)c + ∆0

B
ξj

)
≤ Nk

(
E(p) + ∆0

B

)
+ k

(
log c+ ∆

B(1−c)c

)
.

Therefore, for a trajectory to initiate an escape without returning to the region

y ≤ Bq before reaching the threshold, we need to have the following inequality

holding for some k, l:

log
α

B
≤ (Nk+l −Nl−1)

(
E(p) +

∆0

B

)
+ k

(
log c+

∆

B(1− c)c

)
.

39



Equivalently,

Nk+l −Nl−1 ≥ log α
B

E(p)+
∆0
B

− k
log c+ ∆

B(1−c)c

E(p)+
∆0
B

=: M0(α, p,B) + kβ(p,B) =: Mk(α, p,B).

We will say that such a trajectory escapes by route k. This condition depends

only on the x dynamics and will be used to bound the total measure of trajectories

that initiate an escape by route k from above. In this setting, we define the set

S ′ ⊂ X as the union of all trajectories that can initiate an escape by route k over

all k ∈ N.

By Lemma 2.3.6, we know that if β is sufficiently large and M0 is not expo-

nentially large in β, there is a constant 0 < θ̃ < 1 such that

µ(Nk+l −Nl−1 ≥M0 + kβ) ≤ Aθ̃kχ−M0 .

Now, we set B = α log(1+pα)
1+pα

, and recall that l̃(z) = 1+z
z log(1+z)

. For p, q and s

sufficiently small, the restriction in the size of M0 relative to β is satisfied as long as

K(p, α) =
B

α
e
p
2
χ

log 1
c

4(p+1/B)
> 1.

Then, by Lemma 2.3.2, the measure of S ′ is bounded by µ(S ′) ≤ A
1−θ̃χ

−M0 . In

consequence, for sufficiently small p, q and s we have:

log τ ≥ Λ log(1+pα)−log log(1+pα)

log(1+Γp)+∆0
1+pα

α log(1+pα)

+ log A
1−θ̃ − log 4

≥ (1− ε)Λ log(1+pα)

p(1+l̃(pα))
≥ (1− ε)(1− l̃(pα))Λ log(1+pα)

p
.
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If parameters p, α satisfy condition (?), upper and lower bounds from Propo-

sitions 2.4.3 and 2.4.6 combined yield Theorem 2.4.

Remark 2.4.8. In case the bifurcating orbit is periodic, {x∗1, . . . , x∗d}, the corre-

sponding f and h in the analogue of Equation (2.3) for T d have the same value at

all points of the bifurcating periodic orbit. Furthermore, there are smooth conjuga-

cies between the fiber maps restricted to small neighborhoods of the d fixed points.

In general, we would not be able to normalize g simultaneously at all d points; in-

stead, we would normalize g so that its maximum value on the periodic orbit is 1.

The estimates for the lower bound would need to be modified accordingly. The ones

for the upper bound remain valid.

2.4.2 Proof of scaling laws

In this section, we extend the linear analysis presented in §2.4.1 to the nonlin-

ear setting, and complete the proof of the results stated in §2.2.2. We also obtain

results that are valid in a parameter range broader than that of Theorems 2.1 and

2.2, as claimed in the introduction.

With the normalizations described in §2.2.1 and after possibly rescaling y, the

y dynamics on the fiber over the fixed point x∗ is described as follows. In the case

of transcritical bifurcations (general case), Equation (2.4) becomes

yn+1 = (1 + p)yn ± y2
n +O(qyn + p2yn + pq + q2 + y3

n), (2.11)

and in the case of pitchfork bifurcations (symmetric case), Equation (2.5) becomes

yn+1 = (1 + p)yn ± y3
n +O(qyn + p2yn + pq + q2 + y4

n). (2.12)
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In [ZHO03], Zimin, Hunt and Ott have classified the effect of the nonlinearities

depending on whether they accelerate or confine the burst. They call them hard

and soft transitions, respectively. We will analyze these two scenarios. We also

distinguish between multiplicative (drift-dominated) and additive (noise-dominated)

bubbling phenomena, which occur depending on the relative sizes of the parameters

p and q. Roughly speaking, when the effect of p is dominant, we call it multiplicative

bubbling, and when it is negligible, we call it additive bubbling.

We note that the analysis from §2.4.1.2 is applicable in the nonlinear setting

since it deals with a lower bound for the bursting time. On the other hand, we have

to adjust the upper bound estimates from §2.4.1.1 to incorporate nonlinear terms.

2.4.2.1 Asymmetric case: generic transcritical bifurcation.

Here, we show two scaling laws valid for generic asymmetric bubbling bifurca-

tions. They are valid for a threshold Y independent of p and q in the hard transition

case (a(x∗)g(x∗) > 0), proportional to p in the multiplicative case of soft transition

(a(x∗)g(x∗) < 0), and to
√
q in the additive case of soft transition, as will be shown

in the proofs. In this setting, the y dynamics of the fixed point x∗ can be written

as (2.11).

42



Multiplicative bubbling.

Proposition 2.4.9. If p2 > 4q > p
k(p)

, there exists a constant C̃ > 1 independent

of p, q such that if (p, q) is sufficiently close to (0, 0),

C̃−1Λ ≤ log τ(Y )
1
p

log(1 + p2

q
)
≤ C̃Λ.

Furthermore, for any ε > 0, if (p, q
p2 ) is sufficiently close to (0, 0),

(1− ε)Λ <
log τ(Y )
1
p

log p2

q

< (1 + ε)Λ.

Proof. Assume is p2 ≥ 4q. The attracting fixed point of the y dynamics is our

threshold of interest in the soft transition case (a = −1). Since y∗ ≈ p, we set

α = r p
q
, for some 0 < r ≤ 1. In this case, the parameter s introduced in §2.4.1 is

simply r = s, so s→ 0 if r → 0.

The hard transition case (a = 1), where no attractor is given by the local

analysis, corresponds to the scenario where a linear regime takes place and then it

is replaced by a nonlinear one. We set a threshold α = r p
q

to separate the linear

and nonlinear behaviors, for some r > 0 independent of p and q.

Let us take an initial condition y0 = q
p
. Assuming p is small and q is small but

not extremely small compared to p, 1
p
k(p) > 1

q
, Theorem 2.4 implies the following

scaling for sufficiently small r:

C−1Λ <
log τ(rp)

1
p

log(1 + rp2

q
)
< CΛ,

which, in turn, implies:

C−1
log(1 + rp2

q
)

log(1 + p2

q
)

Λ <
log τ(rp)

1
p

log(1 + p2

q
)
< CΛ.
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In the hard transition case, the burst is not confined in a small region. It

may be of order one. In this setting, we also investigate the average bursting time

associated to a threshold Y , which is determined by the y value at which the higher

order terms become significant, for example of size 1
3
y2. To bound log τ(Y ) from

below, we use τ(Y ) ≥ τ(rp) for rp < Y . We choose a threshold Y ≤ 1, that is

reached for all sufficiently small values of p and q and such that the higher order

terms are bounded by 1
3
y2 for rp < y < Y .

To find an upper bound on the scaling of log τ , we extend the analysis in

§2.4.1.1. There we found ñ such that if x spends ñ consecutive iterates in the region

|x−x∗| < x̃, then at the end of those iterations, y ≥ αq = rp. We can guarantee that

y ≥ Y if x spends t additional iterates in the region |x−x∗| ≤ x̃, where we determine

t as follows. When |xn−x∗| < x̃ and rp ≤ yn ≤ Y , yn+ 2
3
y2
n ≤ yn+1 ≤ (1+2p)yn+ 4

3
y2
n.

Hence, we have that yn+1 ≤ 8
3
yn.

Calling the time at which y exceeds rp time 0, we can bound from below the

solution of our original difference equation with the solution y(t) of a differential

equation inductively if we can check y(0) = rp and y(n + 1) ≤ y(n) + 2
3
y(n)2. For

values n ≤ 32
3rp
− 32

3
, this is the case for the solution of

ẏ =
3

32
y2, y(0) = rp.

This solution is given by y(t) = 1
1
rp
− 3

32
t
.

From this, we conclude that an extra t = 32
3

(Y−rp)
Y rp

≤ 32
3rp
− 32

3
< 32

3rp
iterates

in the non-contracting region would oblige a burst of size Y . Thus, proceding as in
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(2.10), for p, q and r sufficiently small, we have the following bounds:

C−1
log(1 + rp2

q
)

log(1 + p2

q
)

Λ <
log τ(Y )

1
p

log(1 + p2

q
)
< C

(
1 +

1

r log(1 + p2

q
)

)
Λ.

In particular, if we fix a sufficiently small value for r, the first statement follows.

We obtain the second statement, corresponding to the asymptotic scaling for

log τ(Y ) in the parameter regime considered in [ZHO03], p2 � q as follows. For

any ε > 0, if (p, q) is sufficiently close to (0, 0) and p2

q
sufficiently large, we can let

r = 1

log log p2

q

and obtain from the previous bounds:

(1− ε)Λ <
log τ(Y )
1
p

log p2

q

< (1 + ε)Λ.

Additive bubbling.

Proposition 2.4.10. If p2 < 4q, there exists a constant C̃ > 1 independent of p, q

such that if (p, q) is sufficiently close to (0, 0),

C̃−1Λ ≤ log τ(Y )
1

q
1
2

≤ C̃Λ.

Proof. Assume p2 < 4q. In the case of a soft transition (q > 0), the attracting fixed

point for the y dynamics is y∗ ≈
√
q. Our threshold of interest is of the order of

√
q.

Hence, we choose α = r 1√
q
. In this case, r =

√
s and condition s is small when r is

small.

In the hard transition case, the linear term is negligible with respect to the kick.

Therefore nonlinear terms become significant when the kick becomes negligible, and

no intermediate regime is governed by the expansive linear term. In this setting,

we investigate the threshold αq = r
√
q ≈ y∗, which separates the constant and

nonlinear behaviors.
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In both cases we first require to reach α = r√
q
, for some 0 < r ≤ 1 sufficiently

small, corresponding to the predominance of the linear regime. From Theorem 2.4,

if p, q and r are sufficiently small, we obtain:

C−1(1− r)Λ <
log τ(r

√
q)

r√
q

≤ CΛ.

In the hard transition case, by reasoning similarly to the multiplicative case,

we obtain that to pass from the linear setting to the threshold Y of order 1, 32
3r
√
q

extra iterates in the non-contracting region suffice. Hence, we have:

C−1r(1− r)Λ ≤ log τ(Y )
1

q
1
2

≤ Λ

(
Cr +

32

3r

)
.

Hence, if we fix a sufficiently small value for r, Proposition 2.4.10 follows.

2.4.2.2 Symmetric case: generic pitchfork bifurcation.

Here, we show two scaling laws valid for generic pitchfork bubbling bifurca-

tions. They are valid for a threshold Y independent of p and q in the hard transition

case (a(x∗) > 0), proportional to
√
p in the multiplicative case of soft transition

(a(x∗) < 0), and to 3
√
q in the additive case of soft transition, as will be shown in

the proofs. In this setting, the y dynamics of the fixed point x∗ can be written as

(2.12).
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Multiplicative bubbling.

Proposition 2.4.11. If p3 > 27
4
q2 and q >

√
p

k(p)
, there exists a constant C̃ > 1

independent of p, q such that if (p, q) is sufficiently close to (0, 0),

C̃−1Λ ≤ log τ(Y )

1
p

log(1 + p
3
2

q
)
≤ C̃Λ.

Furthermore, for any ε > 0, if (p, p
3
2

q
) is sufficiently close to (0, 0),

(1− ε)Λ <
log τ(Y )

1
p

log(1 + p
3
2

q
)
< (1 + ε)Λ.

Proof. Assume p3 ≥ 27
4
q2. The soft transition case occurs when a = −1. In this

situation, the cubic equation has three real roots and the continuation of the fixed

point 0, y∗ ≈
√
p, is stable. In this case, we set α = r

√
p

q
, where r corresponds to

√
s, and therefore s is small when r is.

The hard transition case occurs when a = 1. The threshold corresponding to

α = r
√
p

q
corresponds to the transition between linear and nonlinear behaviors.

The analysis is similar to the previous subsection. Let us take an initial con-

dition y0 = q
p
. Assuming that p is small and 1√

p
k(p) > 1

q
, by Theorem 2.4 we

get:

C−1
log(1 + r p

3
2

q
)

log(1 + p
3
2

q
)

Λ ≤
log τ(r

√
p)

1
p

log(1 + p
3
2

q
)
≤ CΛ.

As in the asymmetric case, when the transition is hard, we are also interested

in bursts up to order one, whose size Y is determined by higher order terms, but

independent of p and q. We choose it in such a way that the higher order terms are

bounded by 1
3
y3 for r

√
p ≤ y < Y . In this case, if |xn − x∗| ≤ x̃ and yn ≥ r

√
p, we

know that yn + 2
3
y3
n ≤ yn+1 ≤ (1 + 2p)yn + 4

3
y3
n.
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As in §2.4.2.1, yn
yn+1
≥ 3

8
, and we consider the differential equation:

ẏ =
9

256
y3, y(0) = r

√
p,

with solution given by y(t) =
√

r2p

1−2 9
256

r2pt
.

This function bounds from below the solution of our system up to t = 128
9r2p
− 128

9
.

This is the time it takes the solution of the differential equation to reach Y . Hence,

we get that an extra t = 128
9r2p

iterates in the non-contracting region would oblige

a burst of size Y . Thus, if p, q and r are sufficiently small, we have the following

bounds:

C−1
log(1 + r p

3
2

q
)

log(1 + p
3
2

q
)

Λ <
log τ(Y )

1
p

log(1 + p
3
2

q
)
< C

(
1 +

1

r2 log(1 + p
3
2

q
)

)
Λ.

Hence, if we fix a sufficiently small value for r, the first statement follows.

Furthermore, we obtain the asymptotic scaling for log τ(Y ) in the parameter regime

considered in [ZHO03], p
3
2 � q, as follows. For any ε > 0, if (p, q) is sufficiently

close to (0, 0) and p
3
2

q
sufficiently large, we can let r = 1

log log p
3
2
q

and obtain from the

previous bounds:

(1− ε)Λ <
log τ(Y )

1
p

log(1 + p
3
2

q
)
< (1 + ε)Λ.

Additive bubbling.

Proposition 2.4.12. If p3 < 27
4
q2, there exists a constant C̃ > 1 independent of

p, q such that if (p, q) is sufficiently close to (0, 0),

C̃−1Λ ≤ log τ(Y )
1

q
2
3

≤ C̃Λ.
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Proof. Assume p3 < 27
4
q2. Analogously to the asymmetric case, we first consider the

linear regime, determined by the fact that y∗ ≈ 3
√
q. We set the threshold αq = r 3

√
q.

In this setting, r = 3
√
s, and from Theorem 2.4, for ε > 0, if p, q and r are sufficiently

small, we obtain:

C−1(1− r)Λ ≤
log τ(r 3

√
q)

r

q
2
3

≤ CΛ.

As above, in the hard transition case, to pass from the linear setting to a threshold

Y of order 1, 128

9r2q
2
3

extra iterates in the non-contracting region suffice. Hence, for

sufficiently small p, q and r we have:

C−1r(1− 3

2
r)Λ ≤ log τ(Y )

1

q
2
3

≤
(
Cr +

128

9r2

)
Λ.

Hence, if we fix a sufficiently small value for r, Proposition 2.4.12 follows.

2.5 Random mismatch for symmetric systems

In this section, we carry out the analysis in the case when the perturbation

qg(xn) in (2.3) is replaced by an additive noise term of the form qgn, where {gn}n∈N

is a sequence of independent random variables identically distributed on [−1, 1],

according to a probability distribution P. This could represent a random noise

or mismatch in a synchronized system. We choose q to be the maximum noise

amplitude, so that −1 and/or 1 is in contained in the support of P.

In this case, we can treat bursts in the negative y direction in the same way

as bursts in the positive y direction. In the asymmetric case, having bursts in

both directions implies a hard transition, but the possibility that bursts may be
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more likely to initiate in the opposite direction from the y2 term makes the average

bursting time harder to bound from above.

In this section, we treat the case of symmetric y dynamics. A significant part

of our previous analysis remains applicable in both the symmetric and asymmetric

cases. In particular, since q bounds the noise term, the lower bound on the average

bursting time remains unchanged. For the upper bound, we have to find the expected

time to get a long sequence of coherent kicks, enough to push the trajectory beyond

the threshold. By a coherent sequence, we mean that there exists some δ̃ > 0 such

that |gk| > δ̃ for a sequence of consecutive values of k and all these gk have the

same sign. In the deterministic case, we were able to choose some δ̃ > 0 so that

whenever a trajectory was sufficiently close to x∗, the kick was of size at least δ̃. In

the random case, we will choose δ̃ depending on the distribution of the noise. In

what follows, we assume P has negative and positive values in its support. If this

was not the case, the analysis from the deterministic case would be applicable, with

δ̃ a lower bound on gk and the upper bound on the scaling from Proposition 2.4.3

changed to

log τ
1
p

log(1 + pα

δ̃
)
< (1 + ε)Λ.

Remark 2.5.1. Our methods are also suitable to study the case of combined random

noise and deterministic perturbation. The case that the support of P has both

positive and negative values corresponds to the case where the size of the noise is

larger than the perturbation. Though our analysis here only treats the case where

the perturbation is independent of x, it is not hard to remove this restriction.
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Multiplicative case.

We proceed as in Section 2.4.1.1 to establish an upper bound for the bursting

time. As in the proof of Proposition 2.4.3, we can find x̃ = O(p) so that for

|x− x∗| < x̃ we have

f(x) + (h(x)− σ)p > 1 + γ̃p for some 0 < γ̃ < 1− σ, and also

P(g > δ̃) > 0 and P(g < −δ̃) > 0 for some δ̃ > 0.

As in Section 2.2.1, the y dynamics are given by (2.5). Due to the symme-

try in y, a sufficiently long sequence of kicks in the same direction combined with

expansion, guarantee a soft burst, which in the multiplicative case corresponds to

y ≈ √p. As in Section 2.4.2.2, an extra number of expansive iterates implies a hard

burst. Hence, for sufficiently small values of p and q, we have in the hard transition

case a(x∗) > 0:

Proposition 2.5.2. If p3 ≥ 27
4
q2 and q >

√
p

k(p)
, p and q are sufficiently small, there

exist a constant C > 1 and a threshold Y independent of p, q such that

C−1Λ ≤ log τ(Y )

1
p

log(1 + p
3
2

q
)
≤ C

log(1 + p
3
2

δ̃q
)

log(1 + p
3
2

q
)
(Λ− log min{P(g > δ̃),P(g < −δ̃)}).

The last term comes from the requirement of a long sequence of coherent

noise. This is essential, since in the case of non-coherent realizations of the noise,

trajectories can spend several steps close to |y| = q
p
. This does not happen for the

deterministic case due to the instability of the fixed point of (2.5) which is close to

q
p
.
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In the particular case of noise given by Bernoulli random variables with pa-

rameter 1
2
, under the same assumptions on parameters as in the above proposition,

the scaling law is simplified to:

C−1Λ ≤ log τ(Y )

1
p

log(1 + p
3
2

q
)
≤ C(Λ + log 2).

Additive case.

Assume p, q and the non-linearity parameter s are sufficiently small. The

following upper bound for the bursting time is obtained by considering the escaping

route given by the occurrence of sufficient consecutive non-contracting coherent

kicks. In this setting, we choose δ̃ such that

P(g > 2δ̃) > 0, P(g < −2δ̃) > 0 for some δ̃ > 0 and

f(x) + h(x)p > 1− δ̃
α
,

so estimates in the additive case of Section 2.4.1.1 apply.

The upper bound from Section 2.4.1.1 corresponds to ˜̃n = α
δ̃

non-contracting

iterates, and the additional term in the estimate below comes from the requirement

of ˜̃n consecutive coherent kicks, which was automatic in the deterministic case:

log τ(αq) ≤ C(Λ− log min{P(g > 2δ̃),P(g < −2δ̃)})α,

for some C > 1 independent of p, q.

Furthermore, when the drift is negligible, a number of the order of α of coherent

kicks are needed to escape. Using arguments analogous to Section 2.4.1.2 we can
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find a constant C > 1 such that:

C−1Λα ≤ log τ(αq).

Combining the two estimates and assuming p and q are sufficiently small yields:

Proposition 2.5.3. For p3 ≤ 27
4
q2, there exists a constant C > 1 independent of

p, q such that

C−1 log Λ ≤ log τ(αq)

α
≤ C(Λ− log min{P(g > 2δ̃),P(g < −2δ̃)}).
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Chapter 3

Approximating invariant densities of metastable systems

3.1 Introduction

Metastable systems are studied in relation with phenomena ranging from

molecular [MDHS06] to oceanic [FPET07] dynamics. Typical trajectories of these

systems remain in one of its almost invariant (metastable or quasi-stationary) com-

ponents for a relatively long period of time, but eventually switch to a different

component and repeat this behavior. Quantitative aspects of these phenomena

have been studied through eigenvalue and eigenvector approximation techniques for

Markov models [MSF05, FP08]. Here, we are concerned with rigorous approximation

results for eigenvectors–in particular those that correspond to stationary measures

of the dynamics–in a more general (non-Markov) setting.

Broadly, our setting concerns the approximation of absolutely continuous in-

variant probability measures (ACIMs) for certain hyperbolic maps with metastable

states. These systems arise from perturbing an initial system T0 with two disjoint

invariant sets Il, Ir of positive Lebesgue measure. The initial map has two mutually

singular ergodic ACIMs, µl and µr. When T0 is perturbed in such a way that Il and

Ir lose their invariance and the perturbed map Tε has only one ACIM µε, we are

interested in approximating µε using µl and µr. Specifically, the systems we consider

are piecewise C2 expanding maps of an interval; see Figure 3.1.
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Our results can be understood in the context of dynamical systems with holes

as follows. As the invariance of the two initially invariant sets is destroyed by the

perturbation, we think of the small set of points Il∩T−1
ε Ir that switch from Il to Ir,

and likewise the set Ir ∩ T−1
ε Il, as being holes in the initially invariant sets. From

this point of view we expect to be able to approximate µε, for small ε, by a convex

combination αµl + (1− α)µr of the two initially invariant measures, with the ratio

α/(1− α) depending on the relative sizes of the holes.

Il

Ir

Figure 3.1: Dashed: initial system. Thick: metastable system.

Before discussing our results, we present two illustrative examples. We begin

with a simple random system. Consider the family of Markov chains in two states

l and r, with transition matrices

Qε =

1− εl→r εl→r

εr→l 1− εr→l

 ,

where ε = (εl→r, εr→l). We are interested in the behavior when ε ≈ 0. When ε = 0,

the two sets Il = {l} and Ir = {r} are invariant, giving rise to the two ergodic
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stationary probability measures µl = δl and µr = δr. When εl→r > 0, there is a

unique stationary probability measure

µε = αεµl + (1− αε)µr, where
αε

1− αε
=
εr→l
εl→r

.

Observe that the ratio of the weights αε/(1− αε), i.e. µε(Il)/µε(Ir), is equal to the

inverse ratio of the sizes of the holes, εr→l/εl→r.

Next, we consider two billiard tables Dl,Dr in the plane, as indicated in Fig-

ure 3.2. For ∗ ∈ {l, r}, let T∗ : I∗ 	 be the corresponding billiard map, i.e. the

Poincaré map for the first return of the billiard flow to ∂D∗. We use |∂D∗| to denote

the perimeter of D∗. A general reference for hyperbolic billiards is [CM06], where

one can find the background for the assertions below. We use the usual coordinates

(s, ϕ) on I∗, where s is arc length on ∂D∗, and ϕ ∈ [−π/2,+π/2] is the angle be-

tween the outgoing velocity vector and the inward pointing normal vector to ∂D∗.

Then it is well known that T∗ leaves (normalized) Liouville measure µ∗ invariant,

where µ∗ has the density φ∗ := dµ∗/ds dϕ = [2 |∂D∗|]−1 cosϕ. Next, for ε > 0, let hε

be a subsegment of ∂Dl ∩ ∂Dr of length ε, and let Dε be the billiard table resulting

after hε is removed. The corresponding density for the invariant Liouville measure

of the billiard map is φε = [2(|∂Dl|+ |∂Dr| − 2ε)]−1 cosϕ. Thus as ε→ 0,

φε → αφl + (1− α)φr, where
α

1− α
=
|∂Dl|
|∂Dr|

,

provided some care is taken to define all of the density functions involved on the

same space. Note that if we define the holes H∗,ε := T−1
∗ (hε × [−π/2,+π/2]), then

we can rewrite α/(1− α) = µr(Hr,ε)/µl(Hl,ε), so that again the ratio of the weights

equals the inverse ratio of the sizes of the holes. This example is most meaningful
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when Tl, Tr, and Tε are all ergodic, which is the case for the tables in Figure 3.2;

see §8.15 in [CM06].

Dr
hε

Dl

Figure 3.2: Two ergodic billiard tables connected by a hole.

In our main result, Theorem 3.1, we extend the principle behind the examples

above to the deterministic setting of piecewise C2 expanding maps, under fairly

general conditions described in §3.2. We show that as ε → 0 the invariant density

φε of Tε converges in L1 to a convex combination of the ergodic invariant densities of

T0, with the ratio of the weights given by the limiting inverse ratio of the sizes of the

holes. We emphasize that our results do not require any of the piecewise expanding

maps involved to have a Markov partition.

The density φε corresponds to an eigenvector with eigenvalue 1 for the Perron-

Frobenius operator acting on a suitable space of functions. Our assumptions imply

that for ε > 0, the operator has 1 as a simple eigenvalue, and also another real simple

eigenvalue slightly less than 1. In Theorem 3.2, we characterize the eigenvectors of

this lesser eigenvalue by showing that asymptotically they lie on the line spanned
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by dµl/dx− dµr/dx.

Unlike the two examples above, in the setting of piecewise C2 expanding maps

we have no explicit formulas for the invariant densities; even their existence is non-

trivial. Our methods rely on the fact that the densities of the ACIMs for Tε are of

bounded variation [LY73]. Hence, they can be decomposed into regular and singular

(or saltus) parts, as in [Bal07]. The key technical portions of our proofs include es-

timating and exploiting the locations and sizes of the jumps at the discontinuities of

the invariant densities, which occur on the forward trajectories of the critical points

of Tε.

This work is related to other recent work involving metastable systems and

piecewise expanding maps. Recently, [KL09] studied metastable systems arising

from piecewise smooth uniformly expanding maps with two invariant intervals. They

perturbed such an initial map by a family of Markov operators close to the identity to

produce a family of metastable systems for ε > 0. The associated Perron-Frobenius

operators acting on a suitable space of functions have 1 as a simple eigenvalue and

another simple eigenvalue ρε < 1. As ε → 0, ρε → 1, and the authors rigorously

computed the derivative limε→0+(1 − ρε)/ε. This provides information on the sta-

tionary exchange rate between the metastable states. Their work may be used to

show a corresponding result in our setting.

Our work is also related to current and ongoing investigations on linear re-

sponse. These problems have the feature that, as Ruelle [Rue98] puts it, it is pos-

sible to formulate conjectures based on intuition or formal calculations, but the

proofs often involve overcoming intricate technicalities. In our setting, we know
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that µε(Il) → α as ε → 0. A pertinent open problem would be to try and char-

acterize the higher-order terms R(ε) := µε(Il) − α. We do not expect R(ε) to be

differentiable at ε = 0 in general. As shown in [BS08], linear response fails pre-

cisely when the perturbations Tε are transverse to the topological class of T0, at

least for certain piecewise expanding unimodal maps T0 that are topologically mix-

ing. Results of [Kel82] show that in that setting the unique ACIM φε of Tε satisfies

|φε − φ0|L1 = O(ε log ε), where φ0 is the unique ACIM of T0. [Bal07] gives examples

where this estimate is optimal.

Theorem 3.1 can also be regarded as a statement of stochastic stability in the

sense that as the size of the perturbation goes to zero, the invariant measures that

describe the statistics of Lebesgue almost every orbit have a computable limit. In the

uniformly hyperbolic setting, this phenomenon has been studied in the ergodic case;

see for example [Via97]. In recent years, there has been work in studying stochastic

stability outside the setting of uniformly hyperbolic systems. For example, in [AT05],

the authors work at the boundary of expanding maps, in [AAV07] in the context of

non-uniformly hyperbolic diffeomorphisms and [Vás07] treats diffeomorphisms with

dominated splitting.

Another interesting problem for further research is to extend our results to

higher dimensional piecewise hyperbolic maps. While we use techniques specific to

one-dimensional maps, we are optimistic that the main elements of our proof, found

in §3.3.2, can be generalized.
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3.2 Statement of results

In this section, we define a class of dynamical systems with two nearly invariant

(metastable) subsets. They are perturbations of a one-dimensional piecewise smooth

expanding map with exactly two invariant subintervals Il and Ir of positive Lebesgue

measure. On each of these intervals, the unperturbed system has a unique ACIM.

The perturbations break this invariance by introducing what we consider to be holes

in the intervals; the hole(s) in Il map to Ir and vice versa. Each perturbed system

will have only one ACIM, and we will determine an asymptotic formula for its

density in terms of the invariant densities of the unperturbed system.

Let I = [0, 1]. In this paper, a map T : I 	 is called a piecewise C2 map with

C = {0 = c0 < c1 < · · · < cd = 1} as a critical set if for each i, T |(ci,ci+1) extends

to a C2 function on a neighborhood of [ci, ci+1]. We call T uniformly expanding

if its minimum expansion, infx∈I\C0 |T ′0(x)|, is greater than 1. As is customary for

piecewise smooth maps, we consider T to be bi-valued at points ci ∈ C where it is

discontinuous. In such cases we let T (ci) be both values obtained as x approaches

ci from either side, and T (ci±) the corresponding right and left limits. If a, b ∈ C,

T |[a,b] will be used to specifically denote the restriction of T with T |[a,b](a) = T (a+)

and T |[a,b](b) = T (b−).

We use Leb to denote normalized Lebesgue measure on I and L1 to denote the

space of Lebesgue integrable functions on I, with norm |f |L1 =
∫
I
|f(x)| dx. Also,

for f : I → C, we let |f |∞ be the supremum of f over I and var(f) be the total
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variation of f over I; that is,

var(f) = sup{
n∑
i=1

|f(xi)− f(xi−1)| : n ≥ 1, 0 ≤ x0 < x1 < · · · < xn ≤ 1}.

For clarity of presentation, we do not state our results under the broadest pos-

sible assumptions. However, see §3.2.4 for a number of relaxations of the hypotheses

below.

3.2.1 The initial system and its perturbations

We assume that the unperturbed system is a piecewise C2 uniformly expanding

map T0 : I 	 with C0 = {0 = c0,0 < c1,0 < · · · < cd,0 = 1} as a critical set. There is

a boundary point b ∈ (0, 1) such that Il := [0, b] and Ir := [b, 1] are invariant under

T0, i.e. for ∗ ∈ {l, r}, T0|I∗(I∗) ⊂ I∗. The existence of an ACIM of bounded variation

for T0|I∗ is guaranteed by [LY73]. We assume in addition:

(I1) Unique ACIMs on the initially invariant set.

T0|I∗ has only one ACIM µ∗, whose density is denoted by φ∗ := dµ∗/dx.

The uniqueness of such an ACIM can be guaranteed by transitivity or by additional

conditions described in [LY78]. From (I1), it follows that all ACIMs of T0 are convex

combinations of the ergodic ones, µl and µr.

We define the points in H0 := T−1
0 {b}\{b} to be infinitesimal holes. These are

all points that map to the boundary point b, except possibly b itself. Our reasons

for excluding b from the set of infinitesimal holes will be explained in §3.2.4. An

immediate consequence of this definition is that H0 ⊂ C0.
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(I2) No return of the critical set to the infinitesimal holes.

For every k > 0, (T k0 C0) ∩H0 = ∅.

This is a non-degeneracy condition that may be difficult to check for specific sys-

tems. However, one can show that any piecewise C2 expanding map of the interval

can be approximated by maps satisfying (I2), by making arbitrarily small C2 per-

turbations. Such perturbations can be constructed inductively, first adding to T0

an arbitrarily small C2 perturbation to obtain T0,1 such that (T0,1C0) ∩ H0 = ∅.

Successive perturbations should be made so that after the k−th perturbation the

resulting map T0,k satisfies (T k0,kC0) ∩H0 = ∅. Furthermore, each perturbation can

be made small enough compared to previous perturbations to guarantee that the

sum of the perturbations converges in C2 and that for each j, the distance between

T j0,kC0 and H0 does not decay to zero as k →∞.

In general, functions of bounded variation are only defined modulo a countable

set. However, as we will see in §3.4.2, condition (I2) implies that φ∗ can be defined

so that it is continuous at each of the infinitesimal holes in I∗. Thus it is meaningful

to discuss the values of φ∗ at such points.

(I3) Positive ACIMs at infinitesimal holes.

φl is positive at each of the points in H0 ∩ Il, and φr is positive at each of the

points in H0 ∩ Ir.

For example, this will be the case if T0|Il and T0|Ir are weakly covering,1 see [Liv95].

1A piecewise expanding map T : I 	 with C = {0 = c0 < c1 < · · · < cd = 1} as a critical set is

weakly covering if there is some N such that for every i, ∪Nk=0T
k([ci, ci+1]) = I
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(I4) Restriction on periodic critical points.

Either

(I4a) infx∈I\C0 |T ′0(x)| > 2, or

(I4b) T0 has no periodic critical points, except possibly that 0 or 1 may be

fixed points.

Because T0 may be bi-valued at points in C0, a critical point ci,0 is considered periodic

if there exists n > 0 such that ci,0 ∈ T n0 (ci,0). Condition (I4) is necessary in order

to ensure that the perturbed systems defined below satisfy uniform Lasota-Yorke

estimates. Since we cannot exclude the possibility of the forward orbit of a critical

point containing other critical points, these uniform estimates do not follow directly

from the original paper [LY73], but rather from later works, see §3.4.2.

For what follows, we consider C2-small perturbations Tε : I 	 of T0 for ε > 0.

This means that a critical set for Tε may be chosen as Cε = {0 = c0,ε < c1,ε <

· · · < cd,ε = 1}, where for each i, ε 7→ ci,ε is a C2 function for ε ≥ 0. Furthermore,

there exists δ > 0 such that for all sufficiently small ε, there exists a C2 extension

T̂i,ε : [ci,0 − δ, ci+1,0 + δ]→ R of Tε|[ci,ε,ci+1,ε], and T̂i,ε → T̂i,0 in the C2 topology. We

also assume:

(P1) Unique ACIM.

For ε > 0, Tε has only one ACIM µε, with density φε := dµε/dx.

(P2) Boundary condition.

The boundary point does not move, and no holes are created near the bound-

ary; precisely,
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(P2a) If b /∈ C0, then necessarily T0(b) = b. We assume further that for all ε > 0,

Tε(b) = b.

(P2b) If b ∈ C0, we assume that T0(b−) < b < T0(b+), and also that b ∈ Cε for

all ε.

If the boundary point does move under the perturbation, condition (P2) often

can be satisfied by performing a smooth change of coordinates close to the identity;

see §3.2.4.

3.2.2 Main results

The central question of this study is, for small ε, how can we asymptotically

approximate µε by a convex combination of µl and µr? To that end, let Hl,ε :=

Il∩T−1
ε (Ir) and Hr,ε := Ir∩T−1

ε (Il). We refer to these sets as holes. Once a Tε-orbit

enters a hole, it leaves one of the invariant sets for T0 and continues in the other. As

ε → 0, the holes converge (in the Hausdorff metric) to the infinitesimal holes from

which they arise.

Condition (P1) ensures that for ε > 0, at least one of the holes has positive

Lebesgue measure. In view of (I3), without loss of generality, we suppose that

µl(Hl,ε) > 0 and define

l.h.r. = lim
ε→0

µr(Hr,ε)

µl(Hl,ε)
,

if the limit exists. (l.h.r. stands for limiting hole ratio.)

Theorem 3.1 (Approximation of the invariant density). Consider the family

of perturbations Tε of T0 under the assumptions stated in §3.2.1. Suppose that l.h.r.
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above exists. Then as ε→ 0,

φε
L1

−→ αφl + (1− α)φr, where
α

1− α
= l.h.r..

We allow for l.h.r. = +∞, in which case α = 1. Several straightforward

generalizations of the above result are discussed in §3.2.4.

Remark 3.2.1. The limit l.h.r. will always exist as long as the perturbations open

up holes Hl,ε whose size is truly first order in ε: For simplicity, suppose that there

are only two infinitesimal holes, hl ∈ Il and hr ∈ Ir. Then we can always write

H∗,ε = (h∗ − a∗ε+ o(ε), h∗ + b∗ε+ o(ε)) for ∗ ∈ {l, r}, and if al + bl > 0, then

l.h.r. =
φr(hr)(ar + br)

φl(hl)(al + bl)
.

For example, this will be the case if Tε = T0 + εg + o(ε) for some smooth function g

with g(hl) > 0.

The case when the limit l.h.r. does not exist is addressed in §3.2.4.

Remark 3.2.2. An alternative definition of l.h.r. is as a limit of a ratio of escape

rates: For ∗ ∈ {l, r}, we can consider a dynamical system with a hole, where orbits

stop upon entering the hole, by using the unperturbed map T0|I∗ with H∗,ε as the

hole. See [DY06] for an exposition of such systems. Let R∗,ε be the exponential

escape rate of Lebesgue measure and suppose that there is only one infinitesimal hole

in each initially invariant interval. Then as ε→ 0, µ∗(H∗,ε)/R∗,ε → 1. [BY08, KL09]

Next, let Lε be the Perron-Frobenius operator associated with Tε acting on

the Banach space BV = {f : I → C : var(f) < ∞}2 with the variation norm, and

2In fact, we work in the quotient space obtained by identifying two functions of bounded
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let σ(Lε) denote the spectrum of Lε. It follows from e.g. [Kel89, Thm. 8.3(b)] that

L0 has one as an isolated eigenvalue of multiplicity two. Furthermore in [KL99]

the authors show that for fixed small δ > 0 and for every ε > 0 small enough,

σ(Lε)∩Bδ(1) consists of exactly two eigenvalues, 1 and ρε < 1, each of multiplicity 1.

As ε→ 0, ρε → 1 and the total spectral projection of Lε associated with σ(Lε)∩Bδ(1)

converges (at a given rate in an appropriate norm) to the total spectral projection of

L0 associated with σ(L0) ∩Bδ(1). Note that in §3.4.2 we will verify that a uniform

Lasota-Yorke inequality (3.7) holds in our setting. This is the only assumption of

[KL99] that is neither trivial nor well-known in our context.

Theorem 3.2 (Characterization of the eigenspace corresponding to the

lesser eigenvalue). For each ε > 0 small enough, there is a unique real-valued

function ψε ∈ BV satisfying Lεψε = ρεψε, |ψε|L1 = 1, and
∫
Il
ψεdx > 0. As ε→ 0,

ψε
L1

−→ 1

2
φl −

1

2
φr.

Remark 3.2.3. Suppose µl and µr are both mixing for T0. Given a typical ini-

tial density f ∈ BV (i.e. one with nonzero coefficient of ψε when expressed as a

linear combination of eigenvectors), as Lnε f → φε, the deviation Lnε f − φε becomes

approximately proportional to ψε for n large.

variation if they differ on at most a countable set. As no confusion arises, we use the same

notation for a function and its equivalence class.
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3.2.3 Examples

The three piecewise linear maps shown in Figure 3.3 satisfy assumptions (I1)-

(I4) from §3.2.1. In all three cases, normalized Lebesgue measure restricted to the

left or right intervals is the unique ACIM of the corresponding restricted system.

b hrhl b hrhlbhl hr

Figure 3.3: Piecewise linear maps giving rise to metastable systems.

Adding a small C2 perturbation g : I × [0, ε0) → I such that g(·, 0) ≡ 0 and

for ε 6= 0, g(b, ε) = 0, g(hl, ε) > 0 and g(hr, ε) < 0 gives a one-parameter family of

perturbations Tε := T0 + g(·, ε) satisfying assumptions (P1) and (P2).

If limε→0
Leb(Hr,ε)

Leb(Hl,ε)
= l.h.r., by Theorem 3.1, the invariant densities φε associated

to Tε satisfy

φε
L1

−→ αLeb|Il + (1− α)Leb|Ir , where
α

1− α
= l.h.r..

The possibility l.h.r. =∞ is allowed, and in this case,

φε
L1

−→ Leb|Il .

Other initial maps T0 for which Theorems 3.1 and 3.2 are applicable are shown

in Figure 3.4.
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Figure 3.4: Examples of initial maps T0 which give rise to metastable systems for

which our results hold.

3.2.4 Generalizations

Our results extend, with essentially the same proofs, to yield the following

straightforward generalizations.

Multiple invariant sets.

We can also allow T0 to have m ≥ 2 invariant sets of positive Lebesgue measure

I1, . . . , Im, provided it has a unique ACIM φi = dµi/dx on each Ii. The invariant

sets may be intervals or a union of intervals. See Figure 3.5. For simplicity, we limit

ourselves to the case when, for ε > 0, all of the transitions between the initially

invariant sets are first order in ε, i.e. for i 6= j, µi(Ii ∩ T−1
ε Ij) is either identically 0

or equals ε · βi,j + o(ε) for some βi,j > 0. In this case, under assumptions that are

straightforward generalizations of (I1)-(I4), (P1) and (P2), the unique invariant den-

sity φε of Tε converges as ε→ 0 to a convex combination of the φi. The coefficients

may be determined from the corresponding coefficients of the stationary measure

for the continuous time finite state Markov chain whose transition matrix has the

off-diagonal entries ε ·βi,j. (One can easily check that the stationary measure for this
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Markov chain is independent of ε for all small ε > 0, and also that our assumptions

imply that the transition matrix is irreducible and hence has a unique stationary

measure.)

If m > 2, the analogue of Theorem 3.2 says only that the eigenfunctions for Tε

whose eigenvalues approach 1, but are distinct from 1, limit on the space of linear

combinations of invariant densities for T0 with integral 0.

Figure 3.5: Initial maps T0 which give rise to metastable systems for which our

results can be generalized. The initially invariant sets are I1 = [0, 1/4] ∪ [1/2, 3/4]

and I2 = [1/4, 1/2]∪ [3/4, 1] (left) and I1 = [0, 1/4], I2 = [1/4, 3/4] and I3 = [3/4, 1]

(right).

Boundary condition.

The restriction that the boundary point does not move when T0 is perturbed

is inessential; when it is relaxed, it simply means that the metastable states for

Tε are slight perturbations of the initial invariant sets. In this case, a smooth

change of coordinates restores the hypothesis (P2). For example, when b /∈ C0

assumption (P2a) is actually superfluous, although the definitions in the statement

of Theorem 3.1 must be modified slightly. As remarked earlier, necessarily T0(b) = b.
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Furthermore, the graph of T0 intersects the diagonal transversely at this point. Thus

for all small ε > 0, there is a unique point bε near b satisfying Tε(bε) = bε. Then the

quasi-invariant sets for Tε are Il,ε := [0, bε] and Ir,ε := [bε, 1], and the corresponding

holes are defined by Hl,ε := Il,ε ∩ T−1
ε (Ir,ε) and Hr,ε := Ir,ε ∩ T−1

ε (Il,ε). Aside from

these minor modifications, the statements and proofs of our main results remain the

same.

When b ∈ C0, (P2b) can be relaxed by no longer requiring that b ∈ Cε for all

ε. In this case, when ε > 0, Cε contains a point bε that converges to b as ε → 0,

and the quasi-invariant sets and holes must be redefined as above. However, it

is still essential to assume that no holes are created near the boundary, which we

enforce with the assumption that T0(b−) < b < T0(b+). For example, if Tε(x) = [(3x

mod 1/2)+3ε]·1x<1/2+[(−3x mod 1/2)+1/2−ε]·1x>1/2, then all of our assumptions

aside from (P2) hold, with b = 1/2, µ∗ = Leb|I∗ , and l.h.r. = 1/3. However, as

ε → 0, φε
L1

−→ φr. The difficulty is that orbits ejected from Ir by Tε immediately

return to Ir.

Multiple limiting densities.

When the limit l.h.r. in §3.2.2 does not exist, we let

l.h.r. = lim inf
ε→0

µr(Hr,ε)

µl(Hl,ε)
, l.h.r. = lim sup

ε→0

µr(Hr,ε)

µl(Hl,ε)
.

Since the function µr(Hr,ε)

µl(Hl,ε)
is continuous in ε > 0, our arguments show that the set

of limit points for φε as ε→ 0 is precisely{
α̃φl + (1− α̃)φr :

α̃

1− α̃
∈ [l.h.r., l.h.r.]

}
.
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3.3 Proofs of the main theorems

In this section, we state the main properties of the invariant densities of the

initial system and its perturbations. Then, we present the proofs of Theorems 3.1

and 3.2. For notational convenience, we will assume that there are only two in-

finitesimal holes, hl ∈ Il and hr ∈ Ir; the proof without this restriction is essentially

unchanged.

3.3.1 Properties of the invariant densities

Here we record some of the relevant characteristics of the density functions

φε, φl, φr. First, if f ∈ BV , we can – and will – choose a representative of f with

only regular discontinuities, i.e. for each x, f(x) = (limy→x− f(y) + limy→x+ f(y))/2.

Then, following [Bal07], we can uniquely decompose f = f reg + f sal into the sum of

a regular and a singular (or saltus) part. Here f reg is continuous with var(f reg) ≤

var(f), and f sal is the sum of at most countably many step functions. We write

f sal =
∑

u∈S suHu, where S is the discontinuity set of f , su is the jump of f at u,

and Hu(x) = −1 if x < u, −1
2

if x = u and 0 if x > u. This representation imposes

the boundary condition f sal(1) = 0. Furthermore, var(f sal) =
∑

u∈S |su| ≤ var(f).

Proposition 3.3.1 (Key facts about the invariant densities). There exists

ε0 > 0 such that:

(i) Uniform bound on the variations of the invariant densities.

sup
0<ε<ε0

var(φε) < +∞.
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Also, var(φl), var(φr) < +∞.

(ii) Uniform bound on the Lipschitz constant of the regular parts.

For 0 < ε < ε0, each of the φregε is Lipschitz continuous with constant Lip(φregε ),

and

sup
0<ε<ε0

Lip(φregε ) < +∞.

Also, φregl and φregr are Lipschitz.

(iii) Approximate continuity near the infinitesimal holes.

For ∗ ∈ {l, r}, for each η > 0, there exists δ > 0 such that for all 0 < ε < ε0,

var[h∗−δ,h∗+δ](φ
sal
ε ) := the variation of φsalε over [h∗ − δ, h∗ + δ] < η.

Also, φ∗ is continuous at h∗.

The proof of Proposition 3.3.1 is technical, and so we defer it until §3.4.2.

3.3.2 Proofs

We recall that for any C1, C2 > 0, {f ∈ BV : |f |L1 ≤ C1, var(f) ≤ C2} is

pre-compact in L1. This fact will be used repeatedly in what follows.

Proof of Theorem 3.1

Using (i) of Proposition 3.3.1, we are able to choose a sequence of values ε′

converging to 0 such that φε′ converges in L1 to some function, which we denote

by φ0. Using the fact that φε is a fixed point of the Perron-Frobenius operator Lε

associated to Tε (see §3.4.1 for the definition), one can verify that φ0 is an invariant
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density for T0, and so there exists α such that φ0 = αφl + (1− α)φr. We will verify

that necessarily α/(1 − α) = l.h.r.. From this it follows that there is exactly one

limit point of φε as ε→ 0, and Theorem 3.1 follows.

Now for ε′ > 0, µε′(Hl,ε′) = µε′(Hr,ε′), because Il = Hl,ε′ ∪ (Il \ Hl,ε′) and

T−1
ε′ (Il) = Hr,ε′ ∪ (Il \Hl,ε′) are disjoint unions (modulo sets of zero Lebesgue mea-

sure), and φε′ = dµε′/dx is an invariant density for Tε′ . We will show that as ε′ → 0,

µε′(Hl,ε′) = αµl(Hl,ε′) + o(1) · µl(Hl,ε′), (3.1)

µε′(Hr,ε′) = (1− α)µr(Hr,ε′) + o(1) · µr(Hr,ε′), (3.2)

from which the equation α/(1−α) = l.h.r. and hence Theorem 3.1 follows immedi-

ately.

We prove only Equation (3.1), since the proof of Equation (3.2) is analogous.

Write

µε′(Hl,ε′) =

∫
Hl,ε′

φε′ dx = α

∫
Hl,ε′

φl dx+

∫
Hl,ε′

(φε′ − αφl) dx

= αµl(Hl,ε′) +O

(
sup
x∈Hl,ε′

|φε′(x)− αφl(x)|

)
· Leb(Hl,ε′).

But as ε′ → 0, Hl,ε′ → hl in the Hausdorff metric, and then µl(Hl,ε′)/Leb(Hl,ε′) →

φl(hl) > 0, because φl is continuous at hl. Thus our proof is completed by the

following:

Lemma 3.3.2. As ε′ → 0,

sup
x∈Hl,ε′

|φε′(x)− αφl(x)| → 0.

Although this uniform convergence might at first seem surprising, Proposi-

tion 3.3.1 (ii) and (iii) essentially say that near hl, {φε′} behaves like a family of
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equicontinuous functions.

Proof. We proceed by contradiction. Suppose that there exists C > 0 and a subse-

quence ε′′ → 0 of the ε′ values such as that for each ε′′, there is a point xε′′ ∈ Hl,ε′′

with |φε′′(xε′′)− αφl(xε′′)| > C. Necessarily, xε′′ → hl as ε′′ → 0.

We restrict all functions of interest to the left subinterval Il. Set γε′′ :=

φregε′′ −αφ
reg
l and ωε′′ := φsalε′′ −αφsall , so that φε′′−αφl = γε′′+ωε′′ . Using (ii) of Propo-

sition 3.3.1, let L be such that for all sufficiently small ε′′, Lip(γε′′) < L. Next, we

use (iii) with η = C/5 and make sure to choose the corresponding δ < C/(5L) small

enough so that var[hl−δ,hl+δ](αφ
sal
l ) < C/5 as well. Thus var[hl−δ,hl+δ](ωε′′) < 2C/5.

Then if x ∈ [hl − δ, hl + δ], and ε′′ is sufficiently small, xε′′ ∈ [hl − δ, hl + δ] and

|γε′′(x) + ωε′′(x)|

≥ |γε′′(xε′′) + ωε′′(xε′′)| − |γε′′(x) + ωε′′(x)− γε′′(xε′′)− ωε′′(xε′′)|

≥ C − [L · 2δ + 2C/5] ≥ C/5.

But this contradicts that γε′′ + ωε′′ = φε′′ − αφl
L1

−→ 0.

Proof of Theorem 3.2

First, we observe that the results of [KL99] guarantee that for small ε > 0,

ρε < 1 is a simple eigenvalue of multiplicity 1. Hence there are exactly two real-

valued eigenfunctions, ±ψε, satisfying Lεψε = ρεψε and |ψε|L1 = 1. But for such

functions,
∫
ψε dx =

∫
Lεψε dx = ρε

∫
ψε dx, so

∫
ψε dx = 0. We have the following

uniform bound on their variations, whose proof we defer until §3.4.2.
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Lemma 3.3.3 (Uniform bound on the variations of the ψε). There exists

ε1 > 0 such that sup0<ε<ε1 var(ψε) < +∞.

Let ψ0 be any limit point in L1 of ψε as ε→ 0. Then, since ρε → 1, it follows

that ψ0 is invariant under L0, and is thus a linear combination of φl and φr. Since

|ψ0|L1 = 1 and
∫
ψ0 dx = 0, necessarily ψ0 = ±1

2
φl ∓ 1

2
φr. Hence we can uniquely

specify ψε by the condition
∫
Il
ψε dx > 0, and Theorem 3.2 follows.

3.4 Proofs of the properties of the densities

In order to prepare for the proofs of Proposition 3.3.1 and Lemma 3.3.3, it will

be convenient to first show how to derive such properties for an invariant density

of a single, fixed piecewise expanding map. We do this in §3.4.1. Then, in §3.4.2,

we prove Proposition 3.3.1 and Lemma 3.3.3 by showing how such estimates can be

made uniformly for the family of maps Tε, ε ≥ 0.

Before beginning, we remark that if f ∈ BV , then for each x, |f |∞ ≤ |f(x)|+

var(|f |) ≤ |f(x)|+ var(f). Integrating, we find that |f |∞ ≤ |f |L1 + var(f). We will

use this fact repeatedly below.

3.4.1 Properties of an invariant density for a single piecewise expand-

ing map

Let T : I 	 be a piecewise C2 uniformly expanding map, with C = {0 = c0 <

c1 < · · · < cd = 1} as a critical set. Let L be the associated Perron-Frobenius

operator, i.e., the transfer operator acting on densities. We begin by briefly re-
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viewing a method for finding an invariant density of T . Such a method was intro-

duced in [LY73]; see Chapter 3 in [Bal00] for a more modern exposition. Let λT =

infx∈I\C |T ′(x)| > 1 be the minimum expansion and DT = supx/∈C |T ′′(x)| / |T ′(x)| be

the distortion of T . Then if f ∈ BV , x /∈ TC,

Lf(x) =
d∑
i=1

f(ξi(x)) |ξ′i(x)| 1Ji(x), (3.3)

where Ji = T |[ci−1,ci]([ci−1, ci]) and ξi = (T |[ci−1,ci])
−1 : Ji → [ci−1, ci]. One can show

that there exists constants β ∈ (0, 1) and CLY such that for each n ≥ 1 and f ∈ BV ,

the following Lasota-Yorke inequality holds:

var(Lnf) ≤ CLYβ
nvar(f) + CLY |f |L1 . (3.4)

In fact, β can be chosen as any number greater than λ−1
T , although we will not use

this fact. Set Fn = 1
n

∑n−1
k=0 Lk1. Then Fn

L1

−→ φ, where φ ∈ BV is the density of an

ACIM for T . Using Helly’s Theorem, one has that var(φ) ≤ CLY.

We wish to characterize the properties of the regular and singular terms in the

decomposition φ = φreg + φsal. First, let us define a hierarchy on the set of points

in the postcritical orbits S = ∪k≥1T
kC by #(u) := inf{k ≥ 1 : u ∈ T kC}. The

following characterization is motivated by the discussion of the invariant densities

for unimodal expanding maps found in [Bal07] and [BS08]. In particular, in [BS08,

§3.3] a norm is introduced on the sequence of jumps of φ along the postcritical orbit

with weights that grow exponentially in #(u).

Lemma 3.4.1. Given the hypotheses above,

(a) φreg is Lipschitz continuous. Furthermore, there exists a constant Cdis =
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Cdis(λT , DT ) such that Lip(φreg) ≤ Cdis(1 +CLY). Cdis(λT , DT ) can be defined

so that it depends continuously on λT > 1, DT ≥ 0.

(b) The discontinuity set of φ is a subset of S = ∪k≥1T
kC. If we write φsal =∑

u∈S suHu, then for each m ≥ 0,
∑
{u∈S:#(u)>m} |su| ≤ λ−mT CLY.

Proof. We begin by noting from Equation (3.3) that Fn is smooth except possibly

at points in ∪n−1
1 T kC. Write F sal

n =
∑

u∈S su,nHu. Then we can show that |su,n|

decays uniformly exponentially fast in #(u), i.e.

Sublemma. For each m,n ≥ 0,
∑
{u∈S: #(u)>m} |su,n| ≤ λ−mT CLY.

Proof of the Sublemma. Ifm ≥ n,
∑

#(u)>m |su,n| = 0, and
∑

#(u)>0 |su,n| = var(F sal
n ) ≤

var(Fn) ≤ CLY. Since Fn = n−1
n
LFn−1 + 1

n
, if #(u) > 1 we see from Equation (3.3)

with f = Fn−1 that |su,n| ≤ n−1
n
λ−1
T

∑
{v∈S:Tv=u} |sv,n−1|. Thus if 0 < m < n,

∑
#(u)>m

|su,n| ≤
∑

#(u)>m

n− 1

n
λ−1
T

∑
{v∈S:Tv=u}

|sv,n−1|

≤n− 1

n
λ−1
T

∑
#(u)>m−1

|su,n−1| ≤ · · ·

≤n−m
n

λ−mT
∑

#(u)>0

|su,n−m| ≤ λ−mT CLY.

In the inequalities above, we use the fact that if #(u) > 1, then T−1(u) does not

contain any critical points.

Using a diagonalization argument, we may find a subsequence nj such that

for each u, su,nj converges as nj → ∞ to some number, which we write as ŝu. In

particular, for each m,
∑

#(u)>m |ŝu| ≤ λ−mT CLY, and F sal
nj

L1

−→ F sal, where we define

F sal =
∑

u∈S ŝuHu. Furthermore, a standard distortion estimate (see for example
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the proof of Proposition 3.3 in [Bal07]) shows that there exists a constant Cdis such

that for each n ≥ 0, Lip((Ln1)reg) ≤ Cdis |Ln1|∞ ≤ Cdis(1 + var(Ln1)). Here, Cdis

depends only on the minimum expansion and on the distortion of T . In particular,

supn≥1 Lip(F reg
n ) ≤ Cdis(1 + CLY). By the Arzelà-Ascoli Theorem, we may find a

continuous function F reg such that some subsequence of {F reg
nj
} converges in L∞ to

F reg.

By the uniqueness of the decomposition φ = φreg + φsal, we conclude that

φreg = F reg and φsal = F sal. Lemma 3.4.1 follows.

3.4.2 Proofs of Proposition 3.3.1 and Lemma 3.3.3

We prove only the claims about φε for ε > 0, and leave the claims about φl, φr

to the reader.

Let Lε be the Perron-Frobenius operator (3.3) associated to Tε. The first key

step is to prove that the Lε with ε sufficiently small satisfy Lasota-Yorke inequalities

with uniform constants. Let λε and Dε be the minimum expansion and distortion

of Tε, respectively. Then as ε → 0, λε → λ0 and Dε → D0. Furthermore, Tε is a

piecewise C2 uniformly expanding map that is a small C2 perturbation of T0, and

the two critical sets Cε, C0 are ε−close together. This is not sufficient to guarantee

uniform Lasota-Yorke inequalities, see for example [Kel82, §6] or [Bla92]. How-

ever, such uniform inequalities do follow with the additional assumption (I4), which

guarantees that either (a) we have λ0 > 2 or (b) T0 has no periodic critical points,
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except possibly the points in ∂I as fixed points. We assume the former case in our

presentation here, and comment on the latter case at the end of this section.

Fix λ ∈ (2, λ0). The original proof from [LY73] shows that if f ∈ BV is

real-valued,

var(Lεf) ≤ (2λ−1
ε )var(f) + Cε |f |L1 ,

where

Cε = Dε/λε + 2 max
i
|ci+1,ε − ci,ε|−1 . (3.5)

(Compare also [Liv95][§2].) Iterating, we find that for sufficiently small ε, for all

such f and n ≥ 1,

var(Lnε f) ≤ βnvar(f) + CLY |f |L1 , (3.6)

with β = 2λ−1 and CLY = 2C0/(1 − 2λ−1). Similar estimates can be made for

complex-valued f by applying (3.6) to the real and imaginary parts separately.

Since each Tε has a unique ACIM, we know from our discussion in §3.4.1 that for

sufficiently small ε > 0, 1
n

∑n−1
k=0 Lkε1

L1

−→ φε as n→∞. It follows from Lemma 3.4.1

that var(φε) and Lip(φregε ) are uniformly bounded.

Next, we prove (iii). Given η > 0, choose n large enough that λ−nCLY < η.

Using (I2), we can choose δ > 0 so small that for 0 < k ≤ n, (T k0 C0)∩ [h∗ − 2δ, h∗ +

2δ] = ∅. It follows that for ε sufficiently small, (T kε Cε) ∩ [h∗ − δ, h∗ + δ] = ∅ as well.

Using part (b) of Lemma 3.4.1 with m = n, we then see that var[h∗−δ,h∗+δ](φ
sal
ε ) < η.

Finally, to prove Lemma 3.3.3, we use Equation (3.6) with f = ψε, n chosen

so large that βn < 1/2, and ε chosen so small that ρnε > 3/4. It follows that

var(ψε) ≤ CLY/(ρ
n
ε − βn) ≤ 4CLY.
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Modifications when the minimum expansion is not bigger than two

If, in assumption (I4), the minimum expansion of T0 is λ0 ≤ 2, one derives

Lasota-Yorke estimates for L0 by first fixing N large enough so that λN0 > 2. Then

the arguments from [LY73] used above will yield a Lasota-Yorke estimate for LN0 ,

and this can be interpolated to give similar estimates for L0. One can try to obtain

uniform estimates for Lε, but the arguments used above will only work if the critical

points for TNε are in a one-to-one correspondence with and very close to those of

TN0 , compare Equation (3.5), as would be the case if C0 ∩ (∪N−1
k=1 T

kC0) = ∅.

T 2
0 TεT0 T 2

ε

Figure 3.6: Creation of small intervals of differentiability.

Unfortunately, this will never be the case in our setting, at least when b ∈ C0.

This is because the infinitesimal holes in H0 are necessarily critical points, and they

are mapped to b by T0. Because at least some of the infinitesimal holes must be

mapped across the boundary point when ε > 0, this means that necessarily T 2
ε will

have more critical points than T 2
0 , and these additional critical points will create

very short intervals on which T 2
ε is smooth; see Figure 3.6. However, this problem

can be dealt with using assumption (I4b). Specifically, in [BY93] it is shown that

because of the restriction on the periodic critical points, the growth in the number
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of the very short intervals on which T nε is smooth as n increases can be controlled,

and that uniform Lasota-Yorke estimates can still be made. Precisely, there exists

ε0 > 0 and constants β ∈ (0, 1), CLY such that for each ε ∈ [0, ε0], n ≥ 1 and

f ∈ BV ,

var(Lnε f) ≤ CLYβ
nvar(f) + CLY |f |L1 . (3.7)

The proof of this is essentially identical to the proof of Lemma 3.2 in [Bal00] (see

also her Remark 3.4, and compare the proof of Lemma 8 in [BY93]), and so we omit

it. The rest of the proofs of Proposition 3.3.1 and Lemma 3.3.3 proceed as above.
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Chapter 4

A data assimilation method for hyperbolic systems

4.1 Introduction

In data assimilation, algorithms to best combine data collected from mea-

surements with forecasts from a mathematical model are sought. See [Kal02] for an

overview of data assimilation methods. In ensemble data assimilation, we work with

a set of model state vectors, called an ensemble, that intends to describe and keep

track of position and uncertainty of the system state. See [Eve09] for an overview

of ensemble data assimilation.

Each data assimilation cycle consists of two steps: forecast and analysis steps.

In the ensemble approach, the forecast step takes as initial conditions the analysis

ensemble from the previous cycle and evolves each ensemble member separately

according to an appropriate model, generating the background ensemble. Then,

the information collected from measurements is used to produce the new analysis

ensemble, by adjusting the background ensemble toward the data observed. Since

the model state may not be measured directly, in general the analysis step uses

an observation function (also called a forward operator) that quantifies what the

measurements should be for a given model state. At this step, data is filtered

according to the algorithm, and adjustments are made along a space determined by

the ensemble members.
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An example where data assimilation is used heavily is in forecasting the

weather. This is the motivation behind the present work. Weather models are

very high dimensional, as the state of the system comprises information about the

Earth’s entire atmosphere. At the resolutions currently used, there are millions of

variables involved. The main goal is to predict the state of the system in the fu-

ture; that is, weather forecasting. Data assimilation is required because the current

state of the system is not well determined by current observations. In this context,

observations are measurements meteorological variables, such as temperature, at

various locations. A successful data assimilation procedure combines information

collected from the observations with the forecast generated by the weather model,

and produce, at each step, a good approximation to the corresponding state of the

system.

In more general terms, a problem of interest in data assimilation is to identify

a trajectory of a dynamical system that produces a given sequence of observations

(time series), whether or not the ultimate goal is predicting the future behavior of

the system.

In this paper, we investigate dynamical properties of a data assimilation algo-

rithm, an ensemble Kalman filter (EKF) studied in [HKS07], assuming the under-

lying system is uniformly hyperbolic. The Kalman filter was introduced in [Kal60].

It is optimal, in a least square sense, for the case of linear model and observations

with white noise. Extensions to the non-linear setting (Extended KF) have been

developed, see for example [RGYU99]. They involve linearizations and model-size

matrix inversions, thus making computations costly for high-dimensional systems.
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Ensemble Kalman filters were introduced in [Eve94], and further developed and

tested in [BvLE98, HM98]. They keep track of a set (ensemble) of trajectories,

and are suitable for parallel computations. More recently, methods with determin-

istic choice of ensemble elements have been developed [And01, BEM01, OHS+04,

TAB+03, WBJ04, WH02]. The algorithm studied here belongs to this class. While

we consider a particular algorithm, we believe our methods of proof can be adapted

to other deterministic EKF.

In order to track a system f : M 	, usually referred to as the truth and known

only to within some accuracy, it is necessary to be able to adjust forecasts along

all unstable directions. The number of these may be much smaller than the total

dimension of the system. In this case, we can hope to keep track of the truth by

keeping track of the evolution of an ensemble of trajectories surrounding an approx-

imation to the truth, with the number of elements in the ensemble related to the

number of unstable directions. Hyperbolic systems possess a well defined number

of unstable directions, independent of the trajectory. For this reason, they provide

a tractable setting to investigate the properties of EKF. Because the differences be-

tween ensemble members determine directions in which EKF can make adjustments,

the number of ensemble members must exceed the dimension of the unstable space

in order to be able to correct errors in all unstable directions.

A fundamental property of hyperbolic systems is shadowing. This property

ensures that for any δ > 0 there exists some ε > 0 such that every ε−pseudo-orbit

of the system is δ−shadowed by a real orbit. An ε−pseudo-orbit of f is a sequence

{xn}a<n<b ⊂M for which ‖f(xn)− xn+1‖ < ε for all a < n < b, and it is said to be
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δ−shadowed by the orbit of x if ‖xn − fn(x)‖ < δ for all a < n < b. See [KH95,

§18] for a precise statement of the shadowing lemma.

The main result of the paper, presented in Proposition 4.3.1 and generalized

in Proposition 4.4.4, ensures that for hyperbolic attractors with ku < k dimensional

unstable spaces, the shadowing property holds for a non-empty open set of initial

k-member EKF, under Takens’ genericity conditions [Tak81] for the observation

function. This property guarantees that the data assimilation procedure is reliable,

in the sense that when appropriately initialized, its trajectory provides an approx-

imation for the true trajectory to within a small error for all future time. In other

words, the data assimilation system, driven by the real system, synchronizes with it.

Consequences for the approximation of positive Lyapunov exponents of the system

are also presented.

The defining property of unstable spaces, and more precisely the existence of

invariant unstable cones in some dynamical systems, suggests a convenient way of

identifying meaningful ensemble members, by thinking of the differences between

ensemble members as vectors in the tangent space. Namely, if we intend to track

the dynamics near a particular trajectory, we may keep track of the evolution of

tangent vectors under the (tangent) dynamics. A consequence of the theorem of

Oseledec [Ose68] is that for almost every initial trajectory (with respect to an in-

variant measure for the system) almost every vector approaches the most unstable

direction for that trajectory. If we are careful to orthogonalize and normalize the

vectors at each step we can identify the other unstable spaces in the Oseledec fil-

tration as well, through the standard numerical procedure for estimating Lyapunov

85



exponents; see the Appendix of [SN79]. In [GPT+07] an alternative algorithm to

identify spaces of the Oseledec splitting is introduced.

The task we just described, including the computation of the tangent map, may

be costly, computationally or otherwise. In fact, considerable human time is devoted

to linearizing weather models, see p. 215 and Appendix B of [Kal02]. Moreover,

dealing with derivatives significantly increases, at the least, storage requirements.

As an alternative, we can evolve ensemble vectors according to f instead of Df .

This is analogous to using the secant method instead of Newton’s method as a root-

finding algorithm in calculus or numerical analysis. If the size of the ensemble vectors

is small, of order ε, the distance between the image of a point and its linearization is

of order ε2.1 We would like to show that under some circumstances, this procedure

indeed produces ensemble vectors that lie inside an unstable cone. When this is the

case, if the cones are strictly invariant, once inside the cones, the algorithm would

keep successive iterates of the ensemble inside unstable cones. On the one hand,

this would allow to adjust errors accumulated in unstable directions. On the other

hand, it would permit to iterate the procedure.

It would be of great interest to find extensions of our results to more general

underlying dynamical systems. For example, non-uniformly hyperbolic systems are

believed to provide adequate models for several phenomena in the natural sciences.

They also share some properties with the systems treated here, such as existence of

stable and unstable manifolds for Lyapunov regular points, and some of them also

1In general, it would be necessary to use the exponential map to identify tangent vectors with

points in the space.
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have complete strict (or eventually strict) invariant families of cones as described in

[BP06]. However, in general, stable and unstable spaces do not depend continuously

on the base point. Hence our proofs do not extend directly to that setting, and other

techniques would be necessary to study the problem in such generality.

The structure of the paper is as follows. In §4.2, we present the main result,

after introducing the setting and discussing the initialization of the ensemble. In

§4.3, properties of the ensemble Kalman filter are established for the case of one-

dimensionally unstable hyperbolic systems. These properties are generalized to the

case of higher dimensionally unstable hyperbolic systems in §4.4. The main reason

to separate the two cases is to present the control of nonlinear terms in §4.3, and

leave the main complications of the extension to higher dimensionally unstable cases,

which lie at the linear level, to §4.4.

4.2 Statement of results

4.2.1 Setting

We start by describing our hypotheses for the forecast model and the obser-

vation function.
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4.2.1.1 Model

Throughout the paper, let f : M 	 be a C3 diffeomorphism of a Riemannian

manifold2 of dimension N , with a uniformly hyperbolic attractor of A ⊂ M . That

is, a compact set invariant under f for which there is an open set U ⊂M such that

A ⊂ int(U) and ∩n≥0f
n(U) = A. The hyperbolicity condition means that, restricted

to A, there is an f invariant splitting of the tangent spaces TxM into unstable

(expanding) and stable (contracting) spaces, TxM = Eu
x ⊕ Es

x, and constants λ >

1 > µ such that

‖Dfv‖ > λ‖v‖ ∀v ∈ Eu and ‖Dfv‖ < µ‖v‖ ∀v ∈ Es.

A reference for hyperbolic systems is [KH95].

Remark 4.2.1. This is not the usual definition of hyperbolicity, in the sense that we

are already working with a metric adapted to f . This assumption simplifies some

calculations, but does not restrict the scope of the paper since adapted metrics

always exist. Moreover, even if a metric (e.g. Euclidean) is not adapted to a

hyperbolic system f , it will be adapted to a suitable power.

For the reminder of the paper, we also assume that for each f periodic point

x of period k ≤ 2N + 1 the eigenvalues of Dfkx are distinct. This open and dense

property in Diff(M) is needed for Takens’ embedding theorem to apply; see The-

orem 4.2.1.2 for the statement.

2To avoid technical difficulties, we assume M is a Euclidean space, a cylinder or a torus so there

is no need to make use of the exponential map to identify tangent vectors with points in the space.

88



4.2.1.2 Observation function

For f fixed, we consider generic C2 real-valued observation functions h : M →

R in the sense of the following theorem, which will be repeatedly used in this paper.

Theorem (Takens embedding theorem, [Tak81]). Let f : M 	 as in §4.2.1.1. Then,

for smooth proper3 functions h : M → R, it is a generic property that the map

x 7→
(
h(x), h(f(x)), h(f 2(x)), . . . , h(f 2N(x))

)
is an embedding, i.e. one-to-one proper immersion.

We note that this result has been (or may be) refined in a couple of ways

that may be relevant for concrete applications. On the one hand, generalizations of

Theorem 4.2.1.2, such as those in [SYC91] may be useful. In short, they allow to

reduce the number of measurements from 2N + 1 to 2 dimA + 1, where A is the

attractor of f under consideration. This would improve the estimates significantly,

as errors grow exponentially with the number of steps considered.

On the other hand, there may be multiple observations available at each step,

say l scalar measurements. To extend our results to this setting, a multidimensional

version of Takens’ theorem is needed. Such an extension may be established fol-

lowing Takens’ original proof. Therefore our proof could be adapted to, in some

appropriate sense, generic h : M → Rl, and reduce the number of forecast steps

considered by a factor of l. It is also possible to reduce to the one-dimensional case

3A function is proper if the inverse image of every compact set is compact. This is always the

case for smooth functions if the domain is a compact manifold.
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by assimilating observations sequentially, as discussed in [May79, §7.4] or [WH02,

§3]. We do not present all the details here.

4.2.2 Main result

Definition 1. A DAP with initial ensemble E is called c−reliable if the predictions

it produces eventually shadow the true trajectory within error c. We say that a

family of DAPs depending on a parameter ε, and having initial ensembles {Eε}ε>0,

is O(ε)− reliable if there is some constant c independent of ε such that for all ε > 0

sufficiently small, the DAP associated to parameter ε with initial ensemble Eε is

cε−reliable.

Consider f : M 	 as in §4.2.1.1 and h : M → R as in §4.2.1.2. The main

result of this paper concerns the reliability of a family of DAPs associated to f

and h, provided they are properly initialized. This family is called the k-member

ensemble Kalman filter (kMEKF). The iterative algorithm defining the kMEKF and

its correspondence with that of [HKS07] will be discussed in detail in §§4.4.1 and

4.4.2. Here we include the definition for the reader’s convenience.

Let ε > 0. The kMEKF corresponding to ε is constructed using the following

iterative procedure. After step n − 1, we start with an ensemble of k vectors with

mean xan−1 and displacement vectors vaj,n−1, 1 ≤ j ≤ k. The corresponding back-

ground mean at step n is denoted by xbn and the corresponding displacements by
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vbj,n, where

xbn =
1

k

k∑
j=1

f(xan−1 + vaj,n−1),

vbj,n = f(xan−1 + vaj,n−1)− xbn.

The average value of the measurements of h will be hn := 1
k

∑k
j=1 h(xbn + vbj,n). The

measurement of h from the true trajectory xn will be denoted by yn = h(xn). To

define the analysis ensemble at step n, we introduce some further notation. For

1 ≤ j ≤ k, let

qj,n :=
1

ε
(h(xbn + vbj,n)− hn), q2

n :=
1

(k − 1)

k∑
j=1

q2
j,n,

γn :=
1

q2
n

(
1− 1√

1 + q2
n

)
if qn 6= 0, γn = 0 otherwise, and

v0,n :=
1

(k − 1)

k∑
j=0

qj,nv
b
j,n.

The analysis ensemble is defined by:

xan = xbn +
(yn − hn)

1 + q2
n

v0,n

ε
, (**)

van,j = vbn,j − γnqj,nv0,n, for 1 ≤ j ≤ k.

Let f : M 	 be as in §4.2.1.1, and let A be a ku dimensionally unstable

attractor for f , i.e. dimEu = ku. Assume k > ku and x0 ∈ A. Our main result is:

Main Result. For generic observation function h there is a family {Iε}ε>0 of open

sets of initial ensembles such that whenever Eε ∈ Iε, the kMEKF with initial ensem-

bles Eε and noiseless observation of h is O(ε)−reliable. The same conclusion holds

if the measurement of h has noise, provided its size is bounded by a small multiple
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of ε, and also when the observations are generated by a pseudo-trajectory, provided

its distance to a true trajectory is sufficiently small.

Remark 4.2.2. Sets of initial ensembles for which the kMEKF is O(ε)−reliable

are described explicitly in §4.4.3.1. Roughly speaking, they consist of ensembles for

which ‖x0−xa0‖ .
√
ε and such that the corresponding perturbations are of adequate

spread and lie sufficiently close to the unstable space Eu
x0

. The last condition is

discussed and explained in §4.2.3.

This result is proved using an inductive scheme. In §4.3 it is established for the

case k = 2 (see Proposition 4.3.1 and Corollary 4.1). The general case is deferred to

§4.4 (see Proposition 4.4.4). The proofs follow a similar strategy, but the analysis at

the linear level is straightforward in the former. Hence, we concentrate in controlling

nonlinear terms in §4.3, and leave the complications at the linear level coming from

higher dimensional unstable dynamics for §4.4.

4.2.3 Initialization of the ensemble

In this section we discuss how to identify an initial ensemble of trajectories

that is appropriate for the EKF to be reliable. Proofs are left for subsequent sections.

The most desirable characteristic of an initial ensemble is to well approximate the

unstable space of the true trajectory. Even in the case of perfect model, which is

the one treated here, this is a non-trivial task, as unstable spaces depend on the

infinite future of the system.

An unstable cone at x, Ku
x , is a subset of TxM of the form Ku

x = {(vu, vs) ∈
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Eu
x ⊕ Es

x = TxM |‖vs‖ ≤ c‖vu‖} for some constant c > 0. The initialization we

propose relies on the forward invariance of unstable cones for uniformly hyperbolic

systems. This property ensures the existence of a family of cones Ku
x ⊂ Tx(M)

surrounding the unstable space Eu
x ⊂ Tx(M) that is invariant under Df . More-

over, in the uniformly hyperbolic setting, the invariance is strict, in the sense that

DfxK
u
x ⊂ intKu

f(x) ∪ {0}. Thus, an unstable cone at a point x gets mapped inside

the interior the corresponding cone at f(x) under the tangent dynamics Df . As we

do not make use of the linearization, but of the map itself in the forecast step, strict

invariance is essential to allow for the small errors associated to this difference to be

negligible. This permits to ensure that when the displacements of ensemble vectors

from the mean are small and lie inside the unstable cone, so do their corresponding

images under f .

The above justifies the existence of an open set of ensembles having the desired

property of remaining close to the unstable space under application of the dynamics.

However, there is still something to be said about how to identify them. A reasonable

approach is as follows. We may start with a cloud of points sufficiently dense

in a sphere of small radius around the point x. By forecasting according to f ,

projecting back to a small sphere around f(x), and repeating this procedure for

a few steps, we could identify finite time unstable directions, which necessarily

contain unstable cones. In fact, by performing a Gram-Schmidt orthogonalization

procedure, we may be able to estimate the dimension of the unstable space. This

estimate would dictate the number of ensemble members to keep track of during the

data assimilation procedure. It is also possible to approximate positive Lyapunov
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exponents by keeping track of the total expansion or contraction gained along the

forecast steps.

4.3 Properties of the EKF for hyperbolic systems with one-dimensional

unstable spaces

Let f : M 	 be a diffeomorphism having a one-dimensionally unstable hy-

perbolic attractor A, as in §4.2.1.1. We show that for generic C2 function h, as in

§4.2.1.2, the 2-member ensemble Kalman filter (2MEKF) is O(ε)−reliable, in the

sense of Definition 1.

4.3.1 Evolution equations

First, we write down the equations for the 2MEKF, following [HKS07]. See

also the simplification discussed in §4.4.1.

Let ε > 0. Starting from an initial ensemble of analysis vectors xan−1 ± van−1,

we obtain the new background vectors at step n by forecasting according to f . We

denote these background ensemble vectors by xbn ± vbn. Thus,

xbn =
1

2
(f(xan−1 + van−1) + f(xan−1 − van−1)),

vbn = f(xan−1 + van−1)− xbn.

The average value of the corresponding observation will be hn := 1
2
(h(xbn + vbn) +

h(xbn − vbn)). The measurement of h from the true trajectory xn will be denoted

by yn = h(xn). Let qn := 1
ε
(h(xbn + vbn) − hn). The corresponding analysis vectors,
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obtained using an ensemble square root filter, are xan ± van, with:

xan = xbn +
2qn

1 + 2q2
n

(yn − hn)
vbn
ε
, (*)

van =
1√

1 + 2q2
n

vbn.

4.3.2 Basic definitions and notation

Under Takens’ genericity conditions (see Theorem 4.2.1.2), it is ensured that

for every x ∈M , the vectors

{Oh(x), (Dfx)
TOh(f(x)), (Df 2

x)TOh(f 2(x)), . . . , (Df 2N
x )TOh(f 2N(x))}

span TxM , for all x ∈M .

Let γ̃(x) := 1
‖∇h(x)‖| cos](∇h(x),Eux )| = 1

|(vux )T∇h(x)| , where vux ∈ Eu
x is a unit length

vector. We note that γ̃(x) < ∞ whenever ∇h(x) and vux are not orthogonal. By

compactness of A, there is some constant γ̃ > 0 such that

γ̃ > sup
x∈A

min
j=0,...,2N

{γ̃(f j(x))}.

We note that γ̃ is finite by the non-degeneracy condition on h. Whenever γ̃(x) < γ̃

we will say that the angle ](∇h(x), Eu
x) is good.

Using the Taylor expansion of h around xbn, we know that for ‖vbn‖ small,

h(xbn ± vbn) = h(xbn)± Oh(xbn) · vbn +O(‖vbn‖2).

Hence, hn = h(xbn) +O(‖vbn‖2) and εqn = Oh(xbn) · vbn +O(‖vbn‖2).

We have assumed the metric is adapted, and λ > 1 > µ are strict lower and

upper bounds on the expansion, respectively contraction, along unstable and stable
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spaces. Then, whenever x and y are sufficiently close we have, ‖f(x) − f(y)‖u ≥

λ‖x − y‖u and ‖f(x) − f(y)‖s ≤ µ‖x − y‖s, where ‖‖u(s) denote distance along

unstable (stable) spaces, to be defined precisely in the sequel. Let Λ be a Lipschitz

constant for f , and L a Lipschitz constant for h.

4.3.3 Outline of inductive estimates

Here we introduce some further notation aiming to outline the ideas behind

the inductive arguments in the coming sections. The new notation in this section is

not required in subsequent sections. For any n, let

An :=
](van, E

u
xn)

ε
,

Vn :=
‖van‖
ε
,

Xn :=
‖xn − xan‖

ε
,

Sn :=
‖xn − xan‖s

ε2
.

Relevant properties of the ensemble can be expressed in terms of the above quanti-

ties. For example the shadowing property is equivalent to {Xn}n∈N being bounded.

The ensemble size is bounded provided {Vn}n∈N is bounded.

We will later show that the following inequalities hold, provided ‖xn−xan‖, ‖van‖

and ](van, E
u
xn) are sufficiently small. First,

Vn+1 ≤


γ̃√
2

if ](∇h(xn+1), Eu
xn+1

) is good,

ΛVn if ](∇h(xn+1), Eu
xn+1

) is bad.

Thus, {Vn} remains bounded if the number of consecutive bad angles is bounded

above. Next, there exist some 0 < ν < 1 and C,C ′ > 0, depending on f and h, such

96



that

An+1 ≤ νAn + CXn + C ′Vn.

There exist some 0 < µ < 1 and C,C ′ > 0, depending on f and h, such that

Sn+1 ≤ µSn + CAnVnXn + C ′V2
n.

In general, for Xn we only have

Xn+1 ≤ Λ(1 + CVn)Xn.

These estimates provide some insight on the evolution of the quantities An, Vn,

Sn, Xn with respect to n. However, showing that Xn is bounded requires some further

considerations. It is in fact fruitful to study the quantities Qn := ‖xn−xan‖
‖van‖

instead

of Xn. For appropriate choices of the initial ensemble, the size of the perturbation

elements in the Kalman filter somehow keeps track of the the distance to the truth.

Indeed, when good angles ](Eu
xn+1

,∇h(xn+1)) occur, Qn+1 ≤ 1 + Qn√
1+2

C2
1
γ̃2

provided

the smallness assumptions above. In fact, contraction by a factor arbitrarily close

to 1√
1+2

C2
1
γ̃2

occurs provided Qn is not too small. When bad angles occur, there may

be exponential growth of the quotient Qn+1

Qn , but if the number of consecutive bad

angles is bounded above, this growth rate can be controlled in such a way that the

expansion is compensated by the contraction gained by the occurrence of a good

angle. These arguments are enough to show that {Qn} is bounded, and furthermore,

that it is eventually of order one. The same conclusion holds for {An} and {Sn}.

In the next section, we present an inductive scheme making the above estimates

rigorous. It is valid for ‖va0‖ = O(ε), and the quantities ‖x0−xa0‖ and ](va0 , E
u(x0))
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sufficiently small. As we will see in Proposition 4.3.1, in this setting, the shadowing

property is guaranteed.

4.3.4 Inductive scheme

We will now establish the fundamental properties of the 2MEKF generated by

f : M 	 using an inductive scheme. In short, the 2MEKF will be O(ε)−reliable

provided the ensemble has been initialized in such a way that the displacement

vector v0 lies in a sufficiently narrow unstable cone and that the distance from the

ensemble mean to the true trajectory is sufficiently small.

Proposition 4.3.1 (Properties of 2-member ensemble Kalman filter).

Let x0 ∈ A. Then, the following holds.

• For generic observation function h, there is a family {Iε}ε>0 of open sets of ini-

tial ensembles such that whenever Eε ∈ Iε, the 2MEKF with initial ensembles

{Eε}ε>0 and noiseless observation of h is O(ε)−reliable. More precisely, this is

the case for all 2MEKF initialized in such a way that the inductive hypothesis

from §4.3.4.1 holds for suitable choice of constants C1, . . . , C5. Moreover, the

ensemble spread remains proportional to ε.

• The same conclusion holds if the measurement of h has noise, provided its

size is bounded by a small multiple of ε, and also when the observations are

generated by a pseudo-trajectory, provided its distance to a true trajectory is

sufficiently small.

The proof of these results occupies the remainder of this subsection.
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4.3.4.1 Inductive hypothesis IH(C1, C2, C3, C4, C5, ε)

Definition 2. Let ε > 0. We say that the ensemble with mean xan and pertur-

bations van (or concisely, the ensemble at time n) satisfies the inductive hypothesis

IHn(C1, C2, C3, C4, C5, ε) if the following holds:

(i)n Lower bound on spread of ensemble.

C1ε ≤ ‖van‖.

(ii)n Unstable cone.

](van, E
u
xn) ≤ C2ε.

(iii)n Upper bound on spread of ensemble.

‖van‖ ≤ C3ε.

(iv)n Shadowing.

‖xn − xan‖ ≤ C4ε.

(v)n Bound on distance along stable direction.4

‖xn − xan‖s ≤ C5ε
2.

4.3.4.2 Inductive step

In this section we show that if ε > 0 is sufficiently small and

IH0(C1, C2, C3Λ
−2N

, C4, C5, ε) is valid at the initial time, then

4‖xn − xan‖s is a shorthand for sup v∈Eu⊥
xn

,‖v‖=1 |(xn − xan) · v|
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IHn(C1, C2, C3, C4, C5, ε) will remain valid at all times n ≥ 0, provided ε is suf-

ficiently small and some relations between the constants C1, . . . , C5 are satisfied. As

for each value of ε the set of ensembles for which these conditions are valid contains

a non-empty open set, this is enough to prove Proposition 4.3.1.

The letters C,C ′ will denote positive constants independent of ε and C1, . . . , C5,

but may depend on f and h, and are allowed to change from one appearance to the

next. The letter ν will denote a constant between 0 and 1 with the same properties

as C. The notation O∗ is similar to the asymptotic O notation, but the constants

involved are allowed to depend on C1, . . . , C5 as well.

For the rest of this section we suposse the standing assumption

IH0(C1, C2, C3Λ
−2N

, C4, C5, ε) and IHm(C1, C2, C3, C4, C5, ε) for all m ≤ n (IH)

is valid for some n ≥ 0, and some (yet to be determined) constants C1, . . . , C5. We

will show that IHn+1(C1, C2, C3, C4, C5, ε) holds. The proof proceeds by induction

provided C1, . . . , C5 are chosen appropiately.

Proof of (iii)n+1. For any m ≥ 0 we have

‖vam+1‖ ≤ ‖vbm+1‖ ≤ Λ‖vam‖.

Hence, by the standing assumption (IH), for all 0 ≤ n < 2N we have that (iii)n+1 of

IHn+1(C1, C2, C3, C4, C5, ε) holds.

For n ≥ 2N , we observe that when the angle ](Eu
xm ,∇h(xm)) is good and is

ε sufficiently small, if (iv)m−1 holds, then we have

‖vam‖ =
1√

1 + 2q2
m

‖vbm‖ ≤
γ̃ε√

2
.
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By the genericity condition on h a good angle will occur within any 2N + 1 consec-

utive steps, so we can choose m between n− 2N + 1 and n+ 1. Then, choosing

C3 ≥ Λ
2N
γ̃√

2
(4.1)

together with the standing assumption (IH) imply that (iii)n+1 holds for ε sufficiently

small.

Proof of (i)n+1. Recall that λ > 1 is a strict lower bound on the expansion of f

along Eu and L is a Lipschitz constant for h. Then, qn+1 ≤ L‖vbn+1‖. Moreover, if

‖van‖ ≥ C1ε, and ε is sufficiently small we have

‖van+1‖ ≥
ε√

ε2 + 2L2‖vbn+1‖2
‖vbn+1‖ ≥

ε√
1

λ2C2
1

+ 2L2
.

Then, (i)n+1 is guaranteed by choosing C1 such that

C1 ≤ 1√
2L

√
1− 1

λ2 . (4.2)

Proof of (ii)n+1. Let us assume C2ε is sufficiently small. Then,

](van+1, E
u
xn+1

) = ](vbn+1, E
u
xn+1

)

≤ ](vbn+1, Dfxanv
a
n) + ](Dfxanv

a
n, Dfxnv

a
n) + ](Dfxnv

a
n, E

u
xn+1

)

≤ CC4ε+ C2νε+O∗(ε2).

Hence, (ii)n+1 holds, for ε sufficiently small, as long as

C4

C2
< 1−ν

C
. (4.3)
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Proof of (v)n+1. For the background ensemble, we have

‖xn+1 − xbn+1‖s ≤ ‖xn+1 − f(xan)‖s + ‖f(xan)− xbn+1‖ ≤ C5µε
2 + CC2

3ε
2 +O∗(ε3).

Therefore,

‖xn+1 − xan+1‖s ≤ ‖xn+1 − xbn+1‖s + ‖xbn+1 − xan+1‖s

≤ C5µε
2 + CC2

3ε
2 + ‖(yn+1 − hn+1)

2qn+1

1 + 2q2
n+1

vbn+1

ε
‖s +O∗(ε3)

≤ C5µε
2 + CC2

3ε
2 +

C ′

ε
‖xn − xan‖‖van‖C2ε+O∗(ε3)

≤ C5ε
2(
CC2

3 + C ′C2C3C4

C5

+ µ) +O∗(ε3).

Hence, (v)n+1 holds, for ε sufficiently small, as long as

CC2
3+C′C2C3C4

C5
< 1− µ . (4.4)

Proof of (iv)n+1. Let τ(n) be the number of iterates after the last good angle, minus

one. We will show

Lemma 4.3.2. There exist some constants σ and Ĉ4 such that

‖xn − xan‖ ≤ Ĉ4σ
τ(n)‖van‖.

Remark 4.3.3. Lemma 4.3.2 and the already established property (iii)n+1 com-

bined with the fact that good angles occur at least once in every 2N consecutive

iterates guarantee the shadowing property

‖xn − xan‖ ≤ C3Ĉ4σ
2Nε =: C4ε.
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Proof of Lemma 4.3.2. Applying the triangle inequality to Evolution Equations (*)

gives

‖xn+1 − xan+1‖ ≤ Λ‖xn − xan‖(1 +
C‖vbn‖
ε

)

≤ Λ(1 + CC3)‖xn − xan‖.

We consider two cases. Let us fix K < C1

Λ(1+CC3)
.

Case I ‖xn − xan‖ ≤ Kε.

Then ‖xn+1−xbn+1‖ ≤ ΛKε, and therefore ‖xn+1−xan+1‖ ≤ Λ(1 +CC3)Kε <

C1ε ≤ ‖van+1‖. The only restriction on Ĉ4 imposed by this case is Ĉ4 ≥ 1.

Case II ‖xn − xan‖ > Kε.

In this case, (v)n implies that ](xn − xan, Eu
xn) = O∗(ε). In view of (ii)n, we

also have ](xn−xan, van) = O∗(ε). Let βn = ‖Dfxnvu(xn)‖, where vu(xn) ∈ Eu
xn

is a unit length vector. Then,

‖vbn+1‖ = βn‖van‖+O∗(ε2),

‖van+1‖ =
βn√

1 +
2q2
n+1

ε2

‖van‖+O∗(ε2),

‖xn+1 − xbn+1‖ = βn‖xn − xan‖+O∗(ε2).

To estimate ‖xn+1 − xan+1‖, we consider two further subcases.

Case IIa | cos](xn+1 − xan+1,∇h(xn+1))| ≥ κ, where κ > 0 is a small constant,
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depending on f, h, C1 and C3, to be specified later. Then,

‖xn+1 − xan+1‖ =
βn

1 + 2q2
n+1

‖xn − xan‖

+ βn‖xn − xan‖(1−
cos](xn+1 − xan+1,∇h(xn+1))

cos](van+1,∇h(xn+1))
) +O∗(ε2)

=
βn

1 + 2q2
n+1

‖xn − xan‖+O∗(ε2) ≤ Ĉ4σ
τ(n)√

1 + 2q2
n+1

‖van+1‖+O∗(ε2).

In particular, in this case ‖xn+1 − xan+1‖ ≤ Ĉ4σ
τ(n)‖van+1‖ + O∗(ε2).

Furthermore, ‖xn+1 − xan+1‖ ≤ Ĉ4στ(n)√
1+2

C2
1
γ̃2

‖van+1‖ + O∗(ε2) when the angle

](Eu
xn+1

,∇h(xn+1)) is good.

Case IIb | cos](xn+1 − xan+1,∇h(xn+1))| < κ. Then,

‖xn+1 − xan+1‖ ≤ βn‖xn − xan‖(1 +
Cκ‖vbn+1‖

ε
) ≤ βn(1 + CC3κ)‖xn − xan‖

≤
√

1 + 2C2
3‖∇h‖2

∞κ
2(1 + CC3κ)Ĉ4σ

τ(n)‖van+1‖+O∗(ε2).

Choosing κ < 1
γ̃‖∇h‖∞ , ensures that Case IIb implies a bad angle ](Eu

xn+1
,∇h(xn+1)).

Requiring also that

(√
1 + 2C2

3‖∇h‖2
∞κ

2(1 + CC3κ)
)4N

< 1 + 2
C2

1

γ̃2
,

ensures that (iv)n+1 holds with σ ≥
√

1 + 2C2
3‖∇h‖2

∞κ
2(1 + CC3κ), provided ε is

sufficiently small and Ĉ4 ≥ 1.

The last restriction on the constants C1, . . . , C5 sufficient for the induction to

move forward is therefore

C4 ≥ C3σ
2N . (4.5)

Hence, the induction can be carried on by choosing, in that order, constants
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C1, C3, C4, C2 and C5, satisfying the boxed inequalities. The result holds for suffi-

ciently small ε.

Finally, we extend the proof to the case of noisy observation. We remark that

this case also covers the situation when the measurements do not come from a true

trajectory, but from a pseudo-trajectory, provided its distance to a true trajectory

is sufficiently small. Let us assume that the noise in the measurement of h from

the true trajectory is bounded by Bε. The analysis above remains applicable with

minor changes, provided B is sufficiently small. A further subdivision of Case IIa

is necessary, depending on whether |∇h(xn+1)| ≥ H or |∇h(xn+1)| < H, for some

constant H. (Optimizing the choices of κ and H, to in turn maximize the noise size,

B, is possible from the inequalities below.) The restrictions on the size of B and

constants C1, . . . , C5 can be made explicit by adapting the previous computations

to this case, obtaining:

CC2
3 + C ′C2C3C4

C5

+
BC2C3√

2C5

< 1− µ,

max{2BC3,
B

κH
} ≤ C1,(√

1 + 2C2
3‖∇h‖2

∞κ
2(1 + CC3κ) +

C3B

C1

)4N

< 1 + 2
C2

1

γ̃2
,(√

1 + 2C2
3H

2(1 + CC3H) +
C3B

C1

)4N

< 1 + 2
C2

1

γ̃2
.

4.3.5 Achieving the inductive hypothesis

The induction presented in §4.3.4.2 motivates the following definition.

Definition 3. Given ε, C1, . . . , C5 > 0, we say that an initial ensemble E is attracted
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to IH(C1, C2, C3, C4, C5, ε) if for some n, the n-th iterate of E under the 2MEKF sat-

isfies

IHn(C1, C2, C3Λ
−2N

, C4, C5, ε). We say that the initial ensembles {Eε}ε>0 are at-

tracted to IH(C1, C2, C3, C4, C5, ε) if there exists n such that for all ε sufficiently

small, the n-th iterate of Eε under the 2MEKF satisfies IHn(C1, C2, C3Λ
−2N

, C4, C5, ε).

Remark 4.3.4. When ε > 0 is sufficiently small and C1, . . . , C5 satisfy the boxed

inequalities, the inducive arguments from §4.3.4.2 imply that if an ensemble E is

attracted to IH(C1, C2, C3, C4, C5, ε), then IHn(C1, C2, C3, C4, C5, ε) holds for all

sufficiently large n.

Let C1, . . . , C5 be constants for which the induction in §4.3.4.2 is valid, with

all boxed inequalities in the proof of Proposition 4.3.1 strict. Then, we have the

following.

Proposition 4.3.5. Consider initial ensembles {Ẽε}ε>0 satisfying

IH(C̃1, C̃2, C̃3Λ
−2N

, C̃4, C̃5, ε) for constants that also satisfy the boxed inequalities.

Then, for generic h, the ensembles {Ẽε}ε>0 are attracted to IH(C1, C2, C3, C4, C5, ε).

Proof. The proof generalizes that of Proposition 4.3.1. We observe that if ε > 0 is

sufficiently small, condition (iii) of the inductive hypotesis is attracting in the sense

that if a good angle occurs at step n (this happens at least once within any 2N+1 con-

secutive steps for generic h), then condition (iii) of IHn(C1, C2, C3Λ
−2N

, C4, C5, ε) is

satisfied, as the proof of Proposition 4.3.1 shows. The rest of the inductive argument

remains applicable.
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Conditions (i), (ii), (iv) and (v) are also attracting in some sense, but not as

simply as (iii). The constants C̃1, C̃4, C̃2 and C̃5, in that order, can be improved

until conditions (i), (iv), (ii) and (v) of IHn(C1, C2, C3Λ
−2N

, C4, C5, ε) are achieved,

and they are maintained thereafter. Here, we explain how to reach (iv) in detail,

as is the most involved, and omit the details of the proofs for the other constants,

which use similar ideas.

We go back to the cases presented to establish (iv) in the proof of Proposi-

tion 4.3.1. We observe that if the ensemble is in Case I, condition (iv) is valid at the

next step. In Case IIb, the quotient
‖xn+1−xan+1‖
‖van+1‖

deteriorates with respect to the same

quotient at time n by a fixed multiplicative factor that can be controlled by the choice

of κ, up to higher order terms in ε. In Case IIa, this quotient gets reduced by a factor

independent of κ, up to higher order terms in ε. Again using the non-degeneracy con-

dition on h, and choosing a sufficiently small value for κ, we can ensure exponentially

fast decrease of the quotient
‖xn+1−xan+1‖
‖van+1‖

, until it gets to order 1. (The exponential

decrease occurs along times of good angles. In between, this quotient may dete-

riorate, but this deterioration is controlled by κ). In particular, condition (iv) of

IHn(C1, C2, C3Λ
−2N

, C4, C5, ε) is achieved.

The upper bound on ε for which this argument applies is determined by higher

order terms ignored in the above estimates. It depends on f, h and the values of

C̃1, . . . , C̃5.

Remark 4.3.6. In fact, when the quantities ‖x0 − xa0‖ and ](van, E
u
xn) are small,

but much larger than ε, the 2MEKF algorithm is still useful. Indeed, the induc-
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tive procedure from §4.3.4.2 remains applicable when IH(C1, C2, C3, C4, C5, ε) is

replaced by IH(C1, C2, C3, C4, C5, ε, δ) with ε ≤ δ ≤ c
√
ε, for some c > 0, where

IH(C1, C2, C3, C4, C5, ε, δ) defined as follows.

Definition 4. Let ε, δ > 0. We say that the ensemble satisfies the inductive hy-

pothesis IHn(C1, C2, C3, C4, C5, ε, δ) at time n if the following holds:

(i)δn Lower bound on spread of ensemble: C1ε ≤ ‖van‖.

(ii)δn Unstable cone: ](van, E
u
xn) ≤ C2δ.

(iii)δn Upper bound on spread of ensemble: ‖van‖ ≤ C3δ.

(iv)δn Shadowing: ‖xn − xan‖ ≤ C4δ.

(v)δn Bound on distance along stable direction: ‖xn − xan‖s ≤ C5δ
2.

In this case, the proof of Proposition 4.3.5 remains applicable and yields the

following.

Corollary 4.1. Let ε > 0 be sufficiently small. Assume that

IH0(C1, C2, C3Λ
−2N

, C4, C5, ε, δ) holds for some initial ensembles {Ẽε}ε>0, with con-

stants C1, . . . , C5 satisfying the boxed inequalities in §4.3.4.2. Then, there exists

some c > 0 independent of ε such that whenever ε ≤ δ ≤ c
√
ε, the forward evolution

of Ẽε under the 2MEKF satisfies IHn(C1, C2, C3, C4, C5, ε, δ) for all n ≥ 0. Moreover,

Ẽε is attracted to IH(C1, C2, C3, C4, C5, ε). In other words, the 2MEKF with initial

ensembles {Ẽε}ε>0 is O(ε)−reliable.
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4.3.6 Lyapunov exponent

A consequence of the properties of 2MEKF presented above is that the posi-

tive Lyapunov exponent of the true trajectory can be well approximated using the

ensemble.

Let x0 be any initial condition. Let xj denote its trajectory, and zj := xaj , z̃j :=

zj + vaj , with xaj , v
a
j are as in Equations (*). Let vu be the unstable direction of

x0, χn = 1
n

log ‖Dfnx0
vu‖ be the n-th step approximation to the positive Lyapunov

exponent of x0, and χ = limn→∞ χn the corresponding Lyapunov exponent.

Proposition 4.3.7. Let χ̃n := 1
n

∑n−1
j=0 log

‖f(zj)−f(z̃j)‖
‖zj−z̃j‖ . Assume that the initial

ensemble satisfies IH0(C1, C2, C3Λ
−2N

, C4, C5, ε), for constants C1, . . . , C5 satisfying

the boxed inequalities (4.1)-(4.5). Then, for generic h, we have

‖χ̃n − χn‖ = O∗(ε)

uniformly on n. In particular, ‖ limn→∞ χ̃n − χ‖ = O∗(ε).

Proof. This follows from the shadowing property of 2MEKF (iv), invariance of

unstable cones (ii), and the boundedness of 2MEKF (iii), showed in Proposi-

tion 4.3.1.

Remark 4.3.8. In fact, any data assimilation algorithm for which the mean of

analysis members shadows the true trajectory, and the displacement vectors have

uniformly bounded spread and lie close to the unstable direction also gives a good

approximation of the positive Lyapunov exponent of the true trajectory.
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4.4 Properties of the EKF with higher dimensional unstable spaces

In this section we generalize the properties of the 2MEKF presented in §4.3

to systems with higher dimensional unstable spaces. For the rest of the section, we

let f : M 	 be a diffeomorphism having a ku dimensionally unstable hyperbolic

attractor A, as in §4.2.1.1 and h : M → R be generic in the sense of §4.2.1.2. In

this case, we consider an ensemble Kalman filter with k > ku members, which is

denoted kMEKF.

4.4.1 Simplification in analysis step

Here we show a simplification of the analysis step presented in [HKS07] in the

case of scalar observation function. This allows to reduce the computational com-

plexity of the algorithm to quadratic order in k, instead of cubic. The simplification

is a consequence of the following simple lemmas, whose content can be traced back,

at least, to Potter’s work in 1964 [May79, Bie77].

Lemma 4.4.1. Let Q be a k−dimensional row vector, and let q2 = QQT . Then,

the symmetric square root of (I +QTQ)−1 is given by

(I +QTQ)−
1
2 = I − γ(Q)QTQ, where γ(Q) =

1

q2

(
1± 1√

1 + q2

)
.5

Proof. We drop the Q dependence of γ(Q) for brevity. Now, we verify the claim

directly. First, we note that I−γQTQ is symmetric. We let M = QTQ, and observe

5For Q = 0, γ(Q) := 0. To ensure that I − γ(Q)QTQ is positive definite, the minus sign must

be chosen in the definition of γ(Q).
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that M2 = q2M . Thus,

(I − γQTQ)2(I +QTQ) = (I − 2γM + γ2M2) + (M − 2γM2 + γ2M3)

= I + (−2γ + q2γ2 + 1− 2q2γ + q4γ2)M.

The choice of γ ensures that the second term vanishes.

Lemma 4.4.2. The matrixW = I−γQTQ has an orthonormal basis of eigenvectors,

with 1√
1+q2

as a simple eigenvalue of corresponding eigenvector QT and 1 as an

eigenvalue with multiplicity k − 1.

Proof. The first claim follows from symmetry of W . The second claim can be

checked directly. The last claim follows from the fact that for every v ∈ Rk such

that vTQT = 0, γQTQv = 0 and thus Wv = v.

4.4.2 Evolution equations

Let ε > 0. The evolution equations of the kMEKF are as follows. At time

n− 1 we start with an initial ensemble of vectors with mean xan−1 and displacement

vectors vaj,n−1, 1 ≤ j ≤ k. To obtain the corresponding background vectors at step

n, we forecast according to f . Let us denote the mean of these background ensemble

vectors by xbn and the corresponding displacements by vbj,n. Thus,

xbn =
1

k

k∑
j=1

f(xan−1 + vaj,n−1),

vbj,n = f(xan−1 + vaj,n−1)− xbn.

The average value of the corresponding observation will be hn := 1
k

∑k
j=1 h(xbn+vbj,n).

The measurement of h from the true trajectory xn will be denoted by yn = h(xn).

111



For 1 ≤ j ≤ k, let qj,n := 1
ε
(h(xbn + vbj,n)−hn). To be consistent with the nota-

tion used in [HKS07], we let Xb
n be the matrix whose columns are the displacement

vectors vbj,n and Y b
n the row vector with entries εqj,n. To make use of the simplification

presented in §4.4.1, we let Qn = 1√
k−1ε

Y b
n and q2

n = 1
(k−1)

∑k
j=1 q

2
j,n = QnQ

T
n . The

corresponding mean and displacement analysis vectors, obtained using an ensemble

square root filter, are given by:

xan = xbn +Xb
n

(
(k − 1)ε2I + (Y b

n )TY b
n

)−1
(Y b

n )T (yn − hn)

= xbn +Xb
n

(
I − 1

1 + q2
n

(Qn)TQn

)
(Y b

n )T (yn − hn)

= xbn +
1

(k − 1)ε2
(yn − hn)

1 + q2
n

Xb
n(Y b

n )T ,

Xa
n = Xb

n(I +QT
nQn)−

1
2 = Xb

n(I − γ(Qn)QT
nQn) =: Xb

nWn,

with γ(Qn) = 1
q2
n

(
1− 1√

1+q2
n

)
for Qn 6= 0 and γ(0) = 0, as in Lemma 4.4.1. Let

v0,n :=
1

(k − 1)ε
Xb
n(Y b

n )T =
1

(k − 1)

k∑
j=0

qj,nv
b
j,n.

Then, the equations above simplify to: 6

xan = xbn +
(yn − hn)

1 + q2
n

v0,n

ε
, (**)

van,j = vbn,j − γ(Qn)qj,nv0,n, for 1 ≤ j ≤ k.

In words, the coordinates of the displacements of analysis ensemble members from

the mean in the ordered basis formed by the background ensemble, i.e. the columns

of Xb
n, are given by the columns of Wn, and the transformation from background

6When k = 2, q1,n = −q2,n and therefore q2n = 2q21,n. Moreover v0,n = 2q1,nv1,n. This yields

Equations (*).
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to analysis ensemble is a contraction by a factor of
(
1 + q2

n

)− 1
2 in the direction

determined by Qn (equivalently, by Y b
n ); in model space, this contraction is achieved

by a displacement in the direction of v0,n.

4.4.3 Inductive scheme

We now generalize the proof of reliability of the 2MEKF to higher dimensions.

The main differences between the two cases arise at the linear level. While for

systems with one-dimensional unstable spaces the linear analysis is straightforward,

the lack of conformality in the forecast step and the fact that at each analysis step

there is contraction along (at most) one direction make the inductive step somewhat

more challenging in the higher dimensional case.

Adopting a strategy similar to that of §4.3.4 and relying on Takens’ embed-

ding theorem proves to be fruitful. In fact, properties (iii) and (v), generalize rather

directly. Maintaining a lower bound on the spread of the ensemble in all unstable

directions, corresponding to (i), and establishing the shadowing property, corre-

sponding to (iv), require some further work. Property (ii) would remain valid in

the setting of k = ku + 1 ensemble members. Here, it is slightly modified to allow

for larger ensemble, k > ku + 1.

The main result of the one-dimensional unstable setting, Proposition 4.3.1, is

extended to the case of ku ≥ 1 unstable directions and k > ku ensemble members

in Proposition 4.4.4.
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4.4.3.1 Inductive hypothesis IH+(C1, C2, C3, C4, C5, ε, δ)

Definition 5. Given ε, δ > 0, we say that the ensemble satisfies the inductive

hypothesis IH+
n (C1, C2, C3, C4, C5, ε, δ) at time n if the following holds:

(i+) Lower bound on spread of ensemble:

C2
1ε

2 ≤
k∑
j=1

(v · vaj,n)2 ∀ v ∈ Es⊥
xn with ‖v‖ = 1.

(ii+) Closeness of ensemble perturbations to unstable directions:

k∑
j=1

(v · vaj,n)2 ≤ C2
2δ

4 ∀ v ∈ Eu⊥
xn with ‖v‖ = 1.

(iii+) Upper bound on spread of ensemble:

‖vaj,n‖ ≤ C3δ, ∀ 1 ≤ j ≤ k.

(iv+) Shadowing:

‖xn − xan‖ ≤ C4δ.

(v+) Bound on distance along stable directions:

|(xn − xan) · v| ≤ C5δ
2 ∀ v ∈ Eu⊥

xn with ‖v‖ = 1.

Remark 4.4.3. For k = 2, the existence of a constant C1 satisfying (i+) implies

the existence of a (possibly different) constant satisfying (i) of §4.3.4.1. Also, (i+)
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and (ii+) combined yield (ii) of §4.3.4.1. See Remark 4.4.14 for another implication

of (i+).

4.4.3.2 Inductive step

Now, we will extend the main result of §4.3, Proposition 4.3.1, to this setting.

Assuming the genericity conditions on f and h stated in the beginning of the section,

we have the following.

Proposition 4.4.4 (Properties of k-member ensemble Kalman filter). Let x0 ∈ A.

Then, there is a family {Iε}ε>0 of open sets of initial ensembles such that whenever

Eε ∈ Iε for all ε > 0, the kMEKF with initial ensembles {Eε}ε>0 and noiseless

observations of h is O(ε)−reliable.

The same conclusion holds if the measurement of h has sufficiently small noise

of order ε, and also when the observations are generated by a pseudo-trajectory,

provided its distance to a true trajectory is sufficiently small.

Strategy of the proof. As in §4.3.4.2, the proof of Proposition 4.4 follows from an

inductive procedure. We will show that there exist constants C1, . . . , C5, c > 0 such

that whenever ε > 0 is sufficiently small, ε ≤ δ ≤ c
√
ε and

IH+
0 (C1, C2, C3Λ

−2N
, C4, C5, ε, δ) holds for some ensembles {Eε}ε>0, then, the for-

ward evolution of Eε under the kMEKF with noiseless measurements of h satisfies

IH+
n (C1, C2, C3, C4, C5, ε, δ) for all n ≥ 0. The O(ε) reliability of kMEKF follows as

in the case of 2MEKF. We restrict ourselves to the noiseless case, as the extension

to the noisy setting is also similar to that of the 2MEKF. To this end, we divide
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the proof of Proposition 4.4.4 in several paragraphs, that give the conditions on the

constants c, C1, . . . , C5 for the induction to follow.

Remark 4.4.5. Constants C3 and C1 are independent of the other ones and may

be made explicit from our arguments. The remaining relations among constants

C1, . . . , C5 in this setting are similar to those obtained in §4.3.4.2. In the coming

paragraphs we show how to perform the inductive step without obtaining these

relations explicitly.

Standing assumption and notation. For the rest of this section we suppose the

standing assumption

IH+
0 (C1, C2, C3Λ

−2N
, C4, C5, ε, δ) and IH+

m(C1, C2, C3, C4, C5, ε, δ) for all m ≤ n

(IH+)

is valid for some n ≥ 0, and some (yet to be determined) constants C1, . . . , C5. We

will show that IH+
n+1(C1, C2, C3, C4, C5, ε, δ) holds. The proof proceeds by induction

provided ε is sufficiently small, some relation between ε and δ holds, and C1, . . . , C5

are chosen appropriately.

Before presenting the proof of the inductive step, we introduce some notation

and useful remarks.

Definition 6. For each x ∈ A, let

Γ(x) := max
‖w‖=1

min
n′∈{0,...,2N}

1

|wT (Df−n′x )T∇h(f−n′(x))|
, and

Γ := sup
x∈A

Γ(x).
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Remark 4.4.6. We note that for generic h, it happens that Γ(x) < ∞ for all

x ∈ M , because the set {w : ‖w‖ = 1} is compact and by Takens’ theorem,

{(Df−n′x )T∇h(f−n
′
(x))}0≤n′≤2N span TxM . Moreover, Γ < ∞ because Γ(x) is con-

tinuous in x and A is compact.

Definition 7. We say that h makes a good angle with Eu
x at time n′ if

max
‖w‖=1, w∈Eux

1

|wT (Df−n′x )T∇h(f−n′(x))|
≤ Γ.

Remark 4.4.7. Since dimEu
x = ku, the definition of Γ combined with elemen-

tary orthogonality considerations implies that for any x, there exists a subset of ku

numbers,

{g1(x) < · · · < gku(x)} ⊂ {0, . . . , 2N}

such that for each 1 ≤ i ≤ ku, h makes a good angle with Eu
x at time gi(x).

Remark 4.4.8. Recall that f is a diffeomorphism and for all n ∈ Z, DfnxE
u
x =

Eu
fn(x). Because the norm of Dfnx is uniformly bounded for x ∈ A and |n| ≤ 2N ,

there is some Γ̃ > 0 independent of x ∈ A such that whenever h makes a good angle

with Eu
x at time 0 ≤ n′ ≤ 2N , we have that

max
‖w‖=1, w∈Eu

f−n′ (x)

1

|wT∇h(f−n′(x))|
≤ Γ̃.

Definition 8. We say that the angle ](Eu
x ,∇h(x)) is good if

max
‖w‖=1, w∈Eux

1

|wT∇h(x)|
≤ Γ̃.

(Note that using the standard definition of angle between a vector v ∈ RN and a

linear subspace E ⊂ RN to be ](E, v) := minw∈E\{0}](w, v), we have that the

angle ](Eu
x ,∇h(x)) is good exactly when 1

‖∇h(x)‖| cos](Eux ,∇h(x))| ≤ Γ̃. )
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Remark 4.4.9. By Remarks (4.4.7) and (4.4.8), in each sequence of 2N+1 consecu-

tive iterates f−2N(x), . . . , f−1(x), x there are at least ku good angles, say at times 0 ≤

g1(x) < · · · < gku(x) ≤ 2N . Moreover, the vectors {(Df−gi(x)
x )T∇h(f−gi(x)(x))}1≤i≤ku

may be chosen to be linearly independent.

Proof of (iii+)n+1. Specifically, we prove the following.

Proposition 4.4.10 (Bounded ensemble). Let C3 ≥ Γk2, where k is the number

of ensemble members and Γ is given by Definition 6. Then, whenever c and ε are

sufficiently small, independently of n, and ε ≤ δ < c
√
ε, then ‖vaj,n+1‖ ≤ C3δ for all

1 ≤ j ≤ k, i.e. (iii+)n+1 holds.

The proof of the Proposition 4.4.10 relies on the following lemma.

Lemma 4.4.11. Let ε be sufficiently small, and m ≤ n. Then, there exists c > 0

independent of m and n such that whenever ε ≤ δ < c
√
ε and ‖vaj,m−2N‖ ≤ C3δ for

some m ≥ 0 and all 1 ≤ j ≤ k, we have the following. For all m− 2N ≤ n′ ≤ m, 7

(I) ‖(Xa
n′)

T∇hn′‖ <
√
kε,

(II) ‖(Df 2NXb
m−2NWm−2N . . .Wn′)

T (Dfn
′−m)T∇hn′

‖(Dfn′−m)T∇hn′‖
‖ < kε

‖(Dfn′−m)T∇hn′‖
,

where ∇hn′ is a shorthand for ∇h(fn
′
(x)). Furthermore,

(III) For any m− 2N ≤ n′ ≤ m,

‖(Xa
m)T

(Dfn
′−m)T∇hn′

‖(Dfn′−m)T∇hn′‖
‖ ≤ kε

‖(Dfn′−m)T∇hn′‖
7If n′ < 0 the content of (I)-(IV) is meaningless.
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(IV)

‖(Xa
m)T‖ ≤ Γk2ε.

Proof of Lemma 4.4.11. Assume c > 0 sufficiently small, ε ≤ δ < c
√
ε and ‖vj,m−2N‖ ≤

C3δ for some m ≤ n and all 1 ≤ j ≤ k.

• Proof of (I). Let m− 2N ≤ n′ ≤ m. Then,

‖(Xa
n′)

T∇hn′‖ = ‖
(
(Xb

n′)
T − γ(Qn′)Q

T
n′Qn′(X

b
n′)

T
)
∇hn′‖

= ‖(I − γ(Qn′)Q
T
n′Qn′)Y

T
n′ ‖+O( max

1≤j≤k
‖vbj,n′‖2)

=
ε
√
k − 1√

1 + q2
n′

‖QT
n′‖+O( max

1≤j≤k
‖vbj,n′‖2) <

√
kε,

where the last inequality is valid for sufficiently small c > 0.

• Proof of (II). Let m− 2N ≤ n′ ≤ m. Recall that

Xb
n′ = Dfn′−1X

a
n′−1 +O( max

1≤j≤k
‖vbj,n′‖2), and Xa

n′ = Xb
n′Wn′ ,

where Dfn′ is the linearization of f at the point xan′ and Wn′ was introduced

in §4.4.2. Then, in view of the standing assumption (IH+),

Xa
n′ = Dfn

′−m−2N
m−2N Xb

m−2NWm−2N . . .Wn′ +O( max
1≤j≤k

‖vbj,n′‖2).

Then, if c > 0 is sufficiently small, the following holds for all sufficiently small

ε > 0.

‖(Xa
n′)

T∇hn′‖ <
√
kε ⇒

‖(Dfn′−m−2NXb
m−2NWm−2N . . .Wn′)

T∇hn′‖ < kε ⇒

‖(Df 2NXb
m−2NWm−2N . . .Wn′)

T (Dfn
′−m)T∇hn′‖ < kε ⇒

‖(Df 2NXb
m−2NWm−2N . . .Wn′)

T (Dfn
′−m)T∇hn′

‖(Dfn′−m)T∇hn′‖
‖ < kε

‖(Dfn′−m)T∇hn′‖
.
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• Proof of (III). Since Wn′ is a (non-strict) contraction for every n′, we have that

‖(Xa
m)T

(Dfn
′−m)T∇hn′

‖(Dfn′−m)T∇hn′‖
‖

≤ ‖(Df 2NXb
m−2NWm−2N . . .Wn′)

T (Dfn
′−m)T∇hn′

‖(Dfn′−m)T∇hn′‖
‖+O( max

1≤j≤k
‖vbj,n′‖2).

Hence, if c > 0 is sufficiently small, for all sufficiently small ε > 0 and all

m− 2N < n′ < m we have that

‖(Xa
m)T

(Dfn
′−m)T∇hn′

‖(Dfn′−m)T∇hn′‖
‖ ≤ kε

‖(Dfn′−m)T∇hn′‖
.

• Proof of (IV). First, note that for all v, w ∈ RN such that wTv 6= 0 we have

that ‖v‖ =
|vT w
‖w‖ |

| cos](v,w)| . Using (III) and the definition of Γ we have,

‖(Xa
m)T‖ ≤ k max

0≤j≤k
‖vaj,m‖

≤ k max
0≤j≤k

min
m−2N≤n′≤m

‖(Xa
m)T

(Dfn
′−m)T∇hn′

‖(Dfn′−m)T∇hn′‖
‖

| cos](vaj,m, (Df
n′−m)T∇hn′)|

≤ max
‖w‖=1

min
m−2N≤n′≤m

k2ε

‖(Dfn′−m)T∇hn′‖| cos](w, (Dfn′−m)T∇hn′)|

= max
‖w‖=1

min
m−2N≤n′≤m

k2ε

|wT (Dfn′−m)T∇hn′|
≤ Γk2ε.

Proof of Proposition 4.4.10. Let C3 ≥ Γk2, and assume ε, c > 0 are sufficiently

small. By the standing assumption (IH+), ‖vaj,0‖ ≤ C3Λ
−2N

δ for all 1 ≤ j ≤ k, then

‖vaj,n‖ ≤ C3δ for all 1 ≤ j ≤ k and 0 ≤ n ≤ 2N .

Furthermore, it follows from Lemma 4.4.11 and the choice of C3 that whenever

‖vaj,m−2N‖ ≤ C3δ for some m and all 1 ≤ j ≤ k, then ‖vaj,m‖ ≤ C3ε, for all 1 ≤ j ≤ k.

Hence, when n ≥ 2N , using the standing assumption (IH+) we have that ‖vaj,n+1‖ ≤

C3ε ≤ C3δ for all 1 ≤ j ≤ k.
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Proof of (i+)n+1. Before presenting the main result of this part, we introduce some

notation. For each m ≥ 0 and ψ ∈ T ∗
xbm
M , the dual space of TxbmM , let

φam(ψ) =

∑k
j=1 ψ(vaj,m)2

‖ψ‖∗2
,

where ‖ψ‖∗ := sup‖v‖=1 |ψ(v)|. Given a basis {w1, . . . , wN} of TxbmM for which

wj ∈ Eu for 1 ≤ j ≤ ku = dimEu and wj ∈ Es for ku ≤ j ≤ N , we con-

sider the dual basis {w′1, . . . , w′N} of T ∗
xbm
M , defined by w′i(wj) = δij. The spaces

Eu′ = 〈w′1, . . . , w′ku〉, Es′ = 〈w′k, . . . , w′N〉, are independent of the particular choice of

the vectors w1, . . . , wN . In fact, the one-to-one correspondence between T ∗M and

TM induced by the Riemannian metric on M defines a one-to-one correspondence

between Eu′ and Es⊥.

We let

zam = inf
ψ∈Eu′

xbm
\{0}

φam(ψ) = min
ψ∈Eu′

xbm
‖ψ‖∗=1

φam(ψ) = min
v∈Es⊥

xbm
‖v‖=1

k∑
j=1

(v · vaj,m)2.

Let φbm(ψ) and zbm be defined analogously.

The main result of this part is the following.

Proposition 4.4.12 (Spread of ensemble). Let C1 ≤ min{
(
λ2−1
M̃

)3
, 3

L̃(1+kΛ
2
)C2

3

},

where where λ > 1 is a strict lower bound on the expansion along unstable di-

rections, Λ is a Lipschitz constant for f , k is the number of ensemble members and

the constants L̃ and M̃ are defined in the course of the proof. Then, whenever c and

ε are sufficiently small, independently of n, and ε ≤ δ < c
√
ε, then, zan+1 ≥ C2

1ε
2, i.e.

(i+)n+1 holds.

Before the proof, we show two auxiliary estimates.
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Lemma 4.4.13. For every m > 0,

(1) zbm ≥ λ2zam−1.

(2) For all ψ ∈ T ∗xM , φam(ψ) ≥ 1
1+q2

m
φbm(ψ).

Proof of (1). For any ψ ∈ T ∗
xbm
M , linear approximation yields

ψ(vbm,j) = Df ∗ψ(vam−1,j) +O∗(δ2),

where Df ∗ : T ∗M 	 is defined by Df ∗ψ(v) = ψ(Dfv), for ψ ∈ T ∗f(x)M, v ∈ TxM .

Therefore, when ψ 6= 0,

φbm(ψ) =
‖Df ∗ψ‖∗2

‖ψ‖∗2
φam−1(Df ∗ψ) +O∗(δ3).

Let D′f = (Df ∗)−1, the so-called the co-differential of f . The spaces Eu′ and Es′

are invariant under D′f , by the corresponding invariance of Eu and Es under Df .

Moreover, for ψ ∈ Eu′
x , we have that

‖D′fψ‖∗ = sup
w∈Eu

f(x)
\{0}

|D′fψ(w)|
‖w‖

= sup
v∈Eux\{0}

|D′fψ(Dfv)|
‖Dfv‖

= sup
v∈Eux\{0}

|ψ(v)|
‖Dfv‖

< λ−1 sup
v∈Eux\{0}

|ψ(v)|
‖v‖

= λ−1‖ψ‖∗.

Thus,

φbm(D′fψ) =
‖ψ‖∗2

‖D′fψ‖∗2
φam−1(ψ) +O∗(δ3) > λ2φam−1(ψ) +O∗(δ3).

Thus, if δ is sufficiently small, zbm > λ2zam−1.

Proof of (2). We work at step m, and to simplify the notation, we drop the explicit

dependence on m. Let ψ ∈ T ∗xM , and let w ∈ TxM be the vector such that
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ψ(v) = v · w. Using Cauchy-Schwartz inequality,

(v0 · w)2 =
1

(k − 1)2
(
k∑
j=1

qjv
b
j · w)2

≤ 1

(k − 1)2
(
k∑
j=1

q2
j )(

k∑
j=1

(vbj · w)2).

Then, γ(v0 · w)2 ≤ 1
(k−1)

(1− 1√
1+q2

)
∑k

j=1(vbj · w)2.

Equations (**) yield

k∑
j=1

(vaj · w)2 =
k∑
j=1

(vbj · w)2 + γ2

k∑
j=1

(qjv0 · w)2 − 2γ
k∑
j=1

(vbj · w)(qjv0 · w)

=
k∑
j=1

(vbj · w)2 + γ2

k∑
j=1

(qjv0 · w)2 − 2γ(k − 1)(v0 · w)2

=
k∑
j=1

(vbj · w)2 + (k − 1)γ(v0 · w)2(γq2 − 2)

=
k∑
j=1

(vbj · w)2 − (k − 1)γ(v0 · w)2(1 +
1√

1 + q2
) ≥ 1

1 + q2

k∑
j=1

(vbj · w)2,

where the last inequality follows from the calculation above. Thus,

φa(ψ) ≥ 1

1 + q2
φb(ψ).

Letting w = ∇h, it is straightforward to get the following.

Corollary 4.2.
k∑
j=1

(vaj · ∇h)2 =
1

1 + q2

k∑
j=1

(vbj · ∇h)2. (4.6)

Proof of Proposition 4.4.12. Let ψ ∈ Eu′

xbn+1
M , such that ‖ψ‖∗ = 1. We think of

ψ as a horizontal vector, so ψ(v) = ψv for all v ∈ Txbn+1
M ; thus ψψT = 1. Let
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Dh = Dhu +Dhs with Dhu ∈ Eu′ and Dhs ∈ Es′ . Let us decompose ψ = ψh + ψ0,

where ψh ∈ 〈Dhu〉, and ψ0 such that ψ0X
b
n+1(Xb

n+1)T (Dhu)T = 0. Then,

ψXb
n+1(Xb

n+1)TψT = ψhX
b
n+1(Xb

n+1)TψTh + ψ0X
b
n+1(Xb

n+1)TψT0 .

Also, by Lemma 4.4.13(2),

ψXa
n+1(Xa

n+1)TψT ≥ 1

1 + q2
n+1

ψhX
b
n+1(Xb

n+1)TψTh + ψ0X
b
n+1(Xb

n+1)TψT0 +O∗(δ3).

Fix K ≥ 1 to be determined later.

Case I ψ0ψ
T
0 ≤ Kψhψ

T
h .

Then,

φan+1(ψ) ≥
φbn+1(ψ)

1 + q2
n+1

=
φbn+1(ψ)

1 + Dh(Dh)T

(k−1)ε2
φbn+1(ψh)

+O∗(δ)

≥
φbn+1(ψ)

1 + Dh(Dh)T

(k−1)ε2
φbn+1(ψ)

ψhψ
T
h

+O∗(δ)

≥
φbn+1(ψ)

1 + Dh(Dh)T

(k−1)ε2
2(1 +K)φbn+1(ψ)

+O∗(δ)

≥
φbn+1(ψ)

1 + Dh(Dh)T

(k−1)ε2
4Kφbn+1(ψ)

+O∗(δ).

Let L̃ = 4L2λ2

(k−1)
. Then, Lemma 4.4.13(1) yields φan+1(ψ) ≥ λ2zan

1+ L̃
ε2
K(zan)

, for δ

sufficiently small.

Case II ψ0ψ
T
0 > Kψhψ

T
h .

By Cauchy-Schwartz inequality,

2ψ0ψ
T
h ≤

1√
K
ψ0ψ

T
0 +
√
Kψhψ

T
h ≤

2√
K
ψ0ψ

T
0 .

Hence,

1 = ψψT < (1 +
1√
K

)2ψ0ψ
T
0 .
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Then,

φan+1(ψ) ≥ ψ0ψ
T
0 φ

b
n+1(ψ0) +O∗(δ3)

≥ 1(
1 + 1√

K

)2φ
b
n+1(ψ0) +O∗(δ3) ≥

φbn+1(ψ0)

1 + 3√
K

+O∗(δ3).

Hence, for δ sufficiently small, Lemma 4.4.13(1) yields φan+1(ψ) ≥ λ2zan
1+ 3√

K

.

Choosing K =
(

3ε2

L̃zan

) 2
3 and M̃ = (9L̃)

1
3 yields φan+1(ψ) ≥ λ2zan

1+M̃(
zan
ε2

)
1
3

whenever K ≥ 1.

When K < 1, 3ε2

L̃zan−1

< 1 and therefore zan+1 ≥ 1
1+q2

n+1
zan ≥ 3ε2

L̃(1+kΛ
2
)C2

3

.

Thus, zan ≥ min{z0,
(
λ2−1
M̃

)3
ε2, 3ε2

L̃(1+kΛ
2
)C2

3

}. By the standing assumption (IH+)

and the choice of C1, the proof is complete.

Remark 4.4.14. Condition (i+)n implies that there is a constant C̃ > 0 such that

when the angle ](∇hxn , Eu
xn) is good and δ is sufficiently small, qn ≥ C̃.

Proof. Let Dhxn = Dhuxn + Dhsxn with Dhuxn ∈ E
u′
xn and Dhsxn ∈ E

s′
xn . Dhuxn = 0 if

and only if ∇hxn⊥Eu
xn . By Definition 8 of good angle, there exists some C > 0 such

that when the angle ](∇hxn , Eu
xn) is good, ‖Dhuxn‖

∗ > C. In this case,

q2
n =

1

ε2(k − 1)

k∑
j=1

Dhuxn(vbj,n)2 +O∗(δ)

=
1

ε2(k − 1)
‖Dhuxn‖

∗2φbn(Dhuxn) +O∗(δ)

>
1

ε2(k − 1)
C2C2

1ε
2 +O∗(δ).

Letting C̃ =
C2C2

1

k−1
yields the claim, for δ sufficiently small.
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Proof of (ii+)n+1. The proof of (ii+) follows similarly to that of Proposition 4.4.12.

For each m ≥ 0, we let

ẑam = sup
ψ∈Es′

xbm
\{0}

φam(ψ) = max
ψ∈Es′

xbm
‖ψ‖∗=1

φam(ψ) = max
v∈Eu⊥

xbm
‖v‖=1

k∑
j=1

(v · vaj,m)2.

We define ẑbm analogously.

Then, we have the following.

Proposition 4.4.15 (Closeness to unstable directions). There exists some C2 > 0

independent of n such that whenever c and ε are sufficiently small, independently

of n, and ε ≤ δ < c
√
ε, then ẑan+1 ≤ C2

2δ
4, i.e. (ii+)n+1 holds.

As above, the proof relies on two auxiliary estimates.

Lemma 4.4.16. For all m > 0,

(1) ẑbm ≤ µ2ẑam−1 +O(C2
3δ

4).

(2) For all ψ ∈ T ∗xM , φam(ψ) ≤ φbm(ψ).

Proof. The proof of (1) is analogous to that of Lemma 4.4.13(1), we note that the

constant in front of the O(C2
3δ

4) error term depends on f and h only. Part (2)

follows directly from the proof of Lemma 4.4.13(2).

Proof of Proposition 4.4.15. Follows directly from Lemma 4.4.16, by choosing C2

sufficiently large compared to C3.

Proof of (v+)n+1. The proof of (v+) is entirely analogous to that of (v).
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Proof of (iv+)n+1. To shorten notation, for each m ≥ 0, we let d
a(b)
m = xm − xa(b)

m

be the displacement of the analysis (background) ensemble mean to the truth.

The goal of this part is to show the following.

Proposition 4.4.17 (Shadowing). There is a constant C4 depending on f, h, C1

and C3 and independent of n such that whenever c and ε are sufficiently small,

independently of n, and ε ≤ δ < c
√
ε, then ‖dan+1‖ ≤ C4δ, i.e. (iv+)n+1 holds.

Before presenting the proof we establish some properties of d
a(b)
m . We will write

d
a(b)
m in coordinates with respect to the ensemble displacements v

a(b)
m,j , up to small

error terms. Thus, let e
a(b)
m be such that d

a(b)
m = X

a(b)
m e

a(b)
m + O∗(δ2). (Note that

e = O∗( δε ).)

From §4.4.2, we know that Xb
m+1 = DfxmX

a
m +O∗(δ2) and dbm+1 = Dfxmd

a
m +

O∗(δ2). Then, we get

dbm+1 = DfxmX
a
me

a
m +O∗(δ2) = Xb

m+1e
a
m +O∗(

δ3

ε
).

For the analysis step, from equations (**) we get

dam+1 = dbm+1 +
(ym+1 − hm+1)

1 + q2
m+1

v0,m+1

ε
.

For convenience of notation, we now drop the m+ 1 indices for the reminder of this

paragraph, writing indices only when necessary. Recall that y−h = ∇h·db+O∗(δ2) =

Dhdb +O∗(δ2) and v0 = 1
(k−1)ε

Xb(Y b)T = 1
(k−1)ε

Xb(Xb)TDhT +O∗( δ
3

ε
). Then,

da = db − 1

1 + q2

1

(k − 1)ε2
Xb(Xb)TDhTDhdb +O∗(

δ4

ε2
)

= Xb(I − 1

1 + q2

1

(k − 1)ε2
(Xb)TDhTDhXb)eb +O∗(

δ4

ε2
)

= XaW−1(I − 1

1 + q2

1

(k − 1)ε2
(Xb)TDhTDhXb)eb +O∗(

δ4

ε2
).
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Since Y = DhXb +O∗(δ2) and Q = 1√
k−1ε

Y b, we can write

da = XaW−1(I − 1

1 + q2
(Q)TQ+O∗(

δ3

ε2
))eb +O∗(

δ4

ε2
).

We can simplify the last expression by recalling that W = I − γ(Q)QTQ. Straight-

forward algebra shows that

da = Xa(I − 1

q2
(1− 1√

1 + q2
)QTQ)eb +O∗(

δ4

ε2
).

Since q2 = QQT , up to an error proportional to δ4

ε2
≤ c4, eam+1 is obtained from eam by

contracting in the direction of QT by a factor of 1√
1+q2

, and leaving all orthogonally

complementary directions unchanged. From Corollary 4.2, we know that in model

space, the analysis step contracts the total projection onto ∇h by a factor of 1√
1+q2

by means of adjusting in the direction of Xb(Y b)T (equivalently, v0).

The argument above shows that, in the linear approximation, the map eam 7→

eam+1 is a (non-strict) contraction. Furthermore, using Remark 4.4.14, we have that

each time a good angle ](∇hxm , Eu
xm) occurs, the contraction is by a factor

νm ≤ (1 + C̃)−
1
2 := ν.

By Remark 4.4.9, we know that the composition of the 2N + 1 consecutive contrac-

tions eam 7→ eam+2N+1, includes at least ku = dimEu contractions by at least ν in

linearly independent directions. This implies that the composition is a contraction

on Eu, though the contraction factor may be close to 1 if the contraction direc-

tions are close to being linearly dependent. But for generic h, we can bound the

contraction factor away from 1 by compactness, as in Remark 4.4.6.
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Proof of Proposition 4.4.17. Let Cn+1 be a space spanned by ku linearly independent

directions of contraction of strength at least ν = (1 + C̃)−
1
2 . The existence of such

a space is guaranteed by the previous paragraph. Furthermore, the choice can be

made in such a way that there exists a (sufficiently large) K independent of x and

n for which, up to higher order terms, all vectors inside a cone

Kn+1 := {v = vCn+1 + vC⊥n+1
|vCn+1 ∈ Cn+1, vC⊥n+1

∈ C⊥n+1,
‖vC⊥n+1

‖
‖vCn+1‖

≤ K}

are contracted by at least
(
1− 1−ν2

1+K2

) 1
2 . In particular, that is the case for all v ∈ Cn+1.

When ε, δ are sufficiently small, we may incorporate higher order terms to

get that the orthogonal projections of ean+1 to Cn+1 are uniformly bounded, say by

C∗ independent of n. In Proposition 4.4.10 we proved that the columns of the

matrix Xa
n+1 are bounded by C3δ. Therefore, the orthogonal projections of dan+1 to

Xa
n+1Cn+1 are bounded by C̃∗δ, with C̃∗ independent of n.

By the choice of Cn+1, ](Xa
n+1Cn+1, E

u
n+1) = O∗( δ

4

ε2
), and the multiplicative

constant is controlled by the choice of c. Hence, if c > 0 is sufficiently small,

](Xa
n+1C⊥n+1, E

u
n+1) is bounded away from zero independently of n. Combining this

with the already established property (v+) yields an upper bound on ‖dan+1‖ pro-

portional to δ and depending on f, h, C1, C3 and smallness of ε and c.

4.4.3.3 Improvement to O(ε) reliability

Let us assume that IH+
0 (C̃1, C̃2, C̃3Λ

−2N
, C̃4, C̃5, ε, δ) holds for some sufficiently

small c and ε with ε ≤ δ < c
√
ε, and suitable constants C̃1, . . . , C̃5. In §4.4.3.2, we

have just proved that IH+
n (C̃1, C̃2, C̃3, C̃4, C̃5, ε, δ) remains valid for all n ≥ 0.
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As in the case of one-dimensionally unstable direction, we can improve this

result to the following.

Corollary 4.3. Let C ′1, . . . , C
′
5 be any constants for which the induction of §4.4.3.2

applies. Then, there exist (C1, . . . , C5) arbitrarily close to (C ′1, . . . , C
′
5) such that if

ε is sufficiently small, IH+
n (C1, C2, C3, C4, C5, ε, ε) holds for all sufficiently large n,

i.e. IH+
n (C1, C2, C3, C4, C5, ε, ε) is attracting.

Proof. It follows from the induction of §4.4.3.2 and the proof of Proposition 4.4.10

that, for all n ≥ 2N + 1, ‖vaj,n‖ ≤ C3ε for all 1 ≤ j ≤ k, so that (iii+) of

IH+
0 (C1, C2, C3Λ

−2N
, C4, C5, ε, ε) is attracting.

For (i+), we refer to the proof of Proposition 4.4.12. Since the fixed point

z∗ := (λ
2−1
M̃

)3
ε2 of F (z) := λ2z

1+M̃( z
ε2

)
1
3

is a global attractor, we can also conclude that

(i+) is attracting.

The remaining properties may be established in a similar manner; see also the

proof of Proposition 4.3.5.

4.4.4 Lyapunov exponents

The kMEKF also allows to approximate the maximal Lyapunov exponent of

f |A, as in §4.3.6. For an initial ensemble with mean xa0 ∈ A and perturbations Xa
0

satisfying the standing assumption (IH+), with constants C1, . . . , C5 for which the

inductive procedure of §4.4.3.2 holds, we have the following.

Proposition 4.4.18.

χmax := lim
n→∞

1

n
log ‖Dfnx0

‖ = limn→∞
1

n
log ‖Xa

n(W0 . . .Wn)−1‖+O(ε).
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Moreover, when k = ku + 1 we have

χmax = limn→∞
1

n
log ‖

(
Πn
j=0Wj

)−1‖+O(ε).

Proof. Let us consider matrices D̃fj such that for large j, D̃fj is O(ε) close to Dfxj

and

Xa
n =

(
Πn
j=0D̃fj

)
Xa

0W0 . . .Wn.

The shadowing condition (iv) of §4.4.3.1 yields

χmax = limn→∞
1

n
log ‖Πn

j=0D̃fj‖+O(ε).

Moreover, since

Πn
j=0D̃fjX

a
0 = Xa

n(W0 . . .Wn)−1,

and the span of the columns of Xa
0 contains a ku dimensional space inside an unstable

cone around Eu
x0

,

limn→∞
1

n
log ‖Πn

j=0D̃fj‖ = limn→∞
1

n
log ‖Xa

n(W0 . . .Wn)−1‖.

For the second part, let us assume k = ku+ 1. We observe that the upper and lower

bounds on the ensemble spread (i) and (iii) of §4.4.3.1 yield

Cε‖(W0 . . .Wn)−1‖ ≤ ‖Xa
n(W0 . . .Wn)−1‖ ≤

√
kC3ε‖(W0 . . .Wn)−1‖.

(The upper bound is straightforward. For the lower bound, we use that for each

l, (1) Wl has an orthonormal set of eigenvectors, and all but one of them have

eigenvalue 1. The remaining one is QT
l , whose corresponding eigenvalue is smaller,

(2) (1, . . . , 1)QT
l = 0, and (3) Zero is a singular value of Xa

l of multiplicity one,
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corresponding to the fact that
∑k

j=1 v
a
j,l = 0; the other ku singular values of Xa

l

are greater than or equal to Cε, for some constant C independent of l, due to

Proposition 4.4.12.)

Hence,

limn→∞
1

n
log ‖Πn

j=0D̃fj‖ = limn→∞
1

n
log ‖(W0 . . .Wn)−1‖.

Combining, we obtain the result,

χmax = limn→∞
1

n
log ‖(W0 . . .Wn)−1‖+O(ε).

Remark 4.4.19. In §4.3.6 we gave a simpler approximation to χmax based on the

expansion of the ensemble during the forecast steps being essentially a scalar process.

The approximation above is based instead on accounting for the contraction of the

ensemble during the analysis steps. For a multidimensionally unstable system, the

latter approach is computationally simpler, making use of the already computed

Wj’s.
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[AT05] V. Araújo and A. Tahzibi. Stochastic stability at the boundary of ex-
panding maps. Nonlinearity, 18(3):939–958, 2005.

[Bal00] V. Baladi. Positive transfer operators and decay of correlations, vol-
ume 16 of Advanced Series in Nonlinear Dynamics. World Scientific
Publishing Co. Inc., River Edge, NJ, 2000.

[Bal07] V. Baladi. On the susceptibility function of piecewise expanding interval
maps. Comm. Math. Phys., 275(3):839–859, 2007.

[BEM01] C.H. Bishop, B.J. Etherton, and S.J. Majumdar. Adaptive Sampling
with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects.
Mon. Wea. Rev., (129):420–436, 2001.

[Bie77] G.J. Bierman. Factorization Methods for Discrete Sequential Estimation,
volume 128 of Mathematics in Science and Engineering. Academic Press,
1977.

[Bla92] M. L. Blank. Chaotic mappings and stochastic Markov chains. In Math-
ematical physics, X (Leipzig, 1991), pages 341–345. Springer, Berlin,
1992.

[Bow70] R. Bowen. Markov partitions for Axiom A diffeomorphisms. Amer. J.
Math., 92:725–747, 1970.

[Bow75] R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeo-
morphisms. Lecture Notes in Mathematics, Vol. 470. Springer-Verlag,
Berlin, 1975.

[BP06] L. Barreira and Y. Pesin. Smooth ergodic theory and nonuniformly
hyperbolic dynamics. In Handbook of dynamical systems. Vol. 1B, pages
57–263. Elsevier B. V., Amsterdam, 2006. With an appendix by Omri
Sarig.

133



[BS08] V. Baladi and D. Smania. Linear response formula for piecewise expand-
ing unimodal maps. Nonlinearity, 21(4):677–711, 2008.

[BvLE98] G. Burgers, P.J. van Leeuwen, and G. Evensen. Analysis Scheme in the
Ensemble Kalman Filter. Monthly Weather Review, 126(6):1719–1724,
1998.

[BY93] V. Baladi and L.-S. Young. On the spectra of randomly perturbed ex-
panding maps. Comm. Math. Phys., 156(2):355–385, 1993.

[BY08] L. Bunimovich and A. Yurchenko. Where to place a hole to achieve a
maximal escape rate. Preprint arXiv:0811.4438 [math.DS], 2008.

[Che02] N. Chernov. Invariant measures for hyperbolic dynamical systems, vol-
ume 1A, pages 321–407. North-Holland, 2002. A. Katok and B. Hassel-
blatt, eds.

[CM06] N. Chernov and R. Markarian. Chaotic billiards, volume 127 of Mathe-
matical Surveys and Monographs. American Mathematical Society, Prov-
idence, RI, 2006.

[Dol04] D. Dolgopyat. Limit theorems for partially hyperbolic systems. Trans.
Amer. Math. Soc., 356(4):1637–1689, 2004.

[DY06] M. Demers and L.S. Young. Escape rates and conditionally invariant
measures. Nonlinearity, 19(2):377–397, 2006.

[Eve94] G. Evensen. Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error statistics.
J. Geophys. Res, 99:10143–10162, 1994.

[Eve09] G. Evensen. Data assimilation. Springer-Verlag, Berlin, second edition,
2009. The ensemble Kalman filter.

[FP08] G. Froyland and K. Padberg. Almost-invariant sets and invariant man-
ifolds – connecting probabilistic and geometric descriptions of coherent
structures in flows. Preprint, 2008.

[FPET07] G. Froyland, K. Padberg, M.H. England, and A.M. Treguier. Detection
of coherent oceanic structures via transfer operators. Phys. Rev. Lett.,
98:224503, 2007.

[GPT+07] F. Ginelli, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A. Politi. Charac-
terizing Dynamics with Covariant Lyapunov Vectors. Phys. Rev. Lett.,
99(13):130601, Sep 2007.
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elling in molecular dynamics: biomolecular conformations as metastable
states, chapter Computer Simulations in Condensed Matter: From Ma-
terials to Chemical Biology. Volume I, pages 475–497. Number 703 in
Lecture Notes in Physics. Springer, 2006.
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19:179–210, 1968.

[PW97] Y. Pesin and H. Weiss. A multifractal analysis of equilibrium measures
for conformal expanding maps and Moran-like geometric constructions.
Journal of Statistical Physics, 86(1-2):233–275, 1997.

[RGYU99] K. Reif, S. Gunther, E. Yaz, and R. Unbehauen. Stochastic stability
of the discrete-time extended Kalman filter . Automatic Control, IEEE
Transactions on, 44(4):714 –728, apr 1999.

[Rue98] D. Ruelle. General linear response formula in statistical mechanics, and
the fluctuation-dissipation theorem far from equilibrium. Phys. Lett. A,
245(3-4):220–224, 1998.

[Sin68] Ya. G. Sinai. Markov partitions and C-diffeomorphisms. Funct. Anal.
Appl., 2(1):61–82, 1968.

[SN79] I. Shimada and T. Nagashima. A Numerical Approach to Ergodic Prob-
lem of Dissipative Dynamical Systems. Progress of Theoretical Physics,
61:1605–1616, June 1979.

[SYC91] T. Sauer, J. A. Yorke, and M. Casdagli. Embedology. Journal of Statis-
tical Physics, 65:579–616, November 1991.

136



[TAB+03] M.K. Tippett, J.L. Anderson, C.H. Bishop, T.M. Hamill, and J.S.
Whitaker. Ensemble Square Root Filters. Monthly Weather Review,
131(7):1485–1490, 2003.

[Tak81] F. Takens. Detecting strange attractors in turbulence. In Dynamical
systems and turbulence, Warwick 1980 (Coventry, 1979/1980), volume
898 of Lecture Notes in Math., pages 366–381. Springer, Berlin, 1981.

[Vás07] C.H. Vásquez. Statistical stability for diffeomorphisms with dominated
splitting. Ergodic Theory Dynam. Systems, 27(1):253–283, 2007.

[VHO+96] S. C. Venkataramani, B. R. Hunt, E. Ott, D. J. Gauthier, and J. C.
Bienfang. Transitions to bubbling of chaotic systems. Phys. Rev. Lett.,
77(27):5361–5364, Dec 1996.

[Via97] M. Viana. Stochastic dynamics of deterministic systems. Lecture Notes
XXI Bras. Math. Colloq. IMPA, Rio de Janeiro, 1997.

[WBJ04] X. Wang, C.H. Bishop, and S.J. Julier. Which Is Better, an Ensemble
of Positive-Negative Pairs or a Centered Spherical Simplex Ensemble?
Monthly Weather Review, 132(7):1590–1605, 2004.

[WH02] J.S. Whitaker and T.M. Hamill. Ensemble Data Assimilation without
Perturbed Observations. Mon. Wea. Rev., 130:1913–1924, 2002.

[YH99] G. Yuan and B. R. Hunt. Optimal orbits of hyperbolic systems. Non-
linearity, 12(4):1207–1224, 1999.

[ZHO03] A. V. Zimin, B. R. Hunt, and E. Ott. Bifurcation scenarios for bubbling
transition. Phys. Rev. E, 67(1):016204, Jan 2003.

137


	List of Figures
	Introduction
	Scaling laws for bubbling bifurcations
	Introduction
	Statement of results
	The model
	Main results
	Generalizations

	Invariant manifold: dynamics and bifurcation
	Dynamics on the invariant manifold
	Bifurcation of the invariant manifold

	Proof of main results
	Average bursting time in the linear regime
	Proof of scaling laws

	Random mismatch for symmetric systems

	Approximating invariant densities of metastable systems
	Introduction
	Statement of results
	The initial system and its perturbations
	Main results
	Examples
	Generalizations

	Proofs of the main theorems
	Properties of the invariant densities
	Proofs

	Proofs of the properties of the densities
	Properties of an invariant density for a single piecewise expanding map
	Proofs of Proposition 3.3.1 and Lemma 3.3.3


	A data assimilation method for hyperbolic systems
	Introduction
	Statement of results
	Setting
	Main result
	Initialization of the ensemble

	Properties of the EKF for hyperbolic systems with one-dimensional unstable spaces
	Evolution equations
	Basic definitions and notation
	Outline of inductive estimates
	Inductive scheme
	Achieving the inductive hypothesis
	Lyapunov exponent

	Properties of the EKF with higher dimensional unstable spaces
	Simplification in analysis step
	Evolution equations
	Inductive scheme
	Lyapunov exponents


	Bibliography

