Minimum Chi-Square vs Least Squares in Grouped Data

dc.contributor.authorKedem, Benjaminen_US
dc.contributor.authorWu, Y.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T10:04:01Z
dc.date.available2007-05-23T10:04:01Z
dc.date.issued1997en_US
dc.description.abstractEstimation of parameters from grouped data is considered using a least squares estimator popular in sceintific applications. The method minimizes the square distance between the empirical and hypothesized cumulative distribution functions, and is reminiscent of a discrete version of the Cramer-von Mises statistic. The resulting least squares estimator, is related to the minimum chi-square estimator, and likewise is asymptotically normal. The two methods are compared briefly for categorized mixed lognormal data with a jump at zero.en_US
dc.format.extent266380 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/5865
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1997-37en_US
dc.subjectestimationen_US
dc.subjectmaximum likelihooden_US
dc.subjectasymptotic normalityen_US
dc.subjectrelative efficiencyen_US
dc.subjectmixed lognormalen_US
dc.subjectIntelligent Signal Processing en_US
dc.subjectCommunications Systemsen_US
dc.titleMinimum Chi-Square vs Least Squares in Grouped Dataen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
TR_97-37.pdf
Size:
260.14 KB
Format:
Adobe Portable Document Format