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Abstract

Estimation of parameters from grouped data is considered using a least
squares estimator popular in scientific applications. The method minimizes the
square distance between the empirical and hypothesized cumulative distribution
functions, and is reminiscent of a discrete version of the Cramér-von Mises statis-
tic. The resulting least squares estimator, is related to the minimum chi-square
estimator, and likewise is asymptotically normal. The two methods are compared
briefly for categorized mixed lognormal data with a jump at zero.

Key Words: Maximum likelihood, asymptotic normality, relative efficiency, mixed
lognormal.



1 Introduction

In scientific applications data are often grouped or categorized due to instrument
limitations, such as the inability to measure very large or very small quantities,
and the inability to produce precise measurements. In such cases, suitable es-
timation methods are used in the estimation of the parameters of the parent
distribution of the ungrouped from grouped data. Meneghini and Jones (1993),
encountering attenuation problems with a spaceborne precipitation radar, sug-
gested the use of a least squares method, related to minimum chi-square, that
minimizes the squared distance between the empirical and hypothesized cumula-
tive distribution functions at a few “thresholds”. This amounts to minimizing a
parametric discrete version of the W? statistic of Anderson and Darling (1952).
The apparent similarity between the least squares and minimum chi-square meth-
ods has prompted a limited empirical comparison between them using real data
in Kedem et al. (1997), however no theoretical study of the least squares method
has been attempted there. The present work is motivated by the need to as-
sess the variability of the least squares estimator, an adopted algorithm for the
Tropical Rainfall Measuring Mission (TRMM) of the National Aeronautics and
Space Administration to measure rainfall from space via a radar and several other
instruments. See Simpson et al. (1996) for a comprehensive overview of TRMM.

The least squares method is described in section 2, and in section 3 we study
the asymptotic distribution of the least squares estimator. A brief comparison
with minimum chi-square is carried out in section 4 assuming the parent distri-
bution is mixed lognormal with a jump at 0.

2 Estimation in Grouped Data

Let {A;};_, be a partition of the support of a random variable X with cumulative
distribution function (cdf) F(z,8), and let X3, ..., X,, be a random sample from
X. Define n; as the number of X;’s that fall in cell 7, and put 7; = 7,;(8) =
P(X € Aj), j =1,...,r. The count data follow the “parametric” multinomial
model

n! ny .
P([6) = — "l (6)-+ 7 (6) (1)
with r cells, cell counts n = (ny, ..., n,)’, and cell probabilities 77*(8), ..., 77" (8),
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depending on a vector parameter 8 = (y,...,0,)', such that 37", n; = n and
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T mi(0) =1.
7=1 "3 .
There are several methods to estimate 8 from the “grouped” or count data

modeled as (1) including:
(a) Maximum likelihood (ML) whereby the log-likelihood

log L(8) = constant + » _ n;logm;(0)

i=1

is maximized with respect to 6.
(b) Minimum chi-square (MCS) whereby the discrepancy between the observed
counts and their expectation is minimized with respect to @ using the quadratic

form
2y = 1y — 0, (0))?
x“(0) = Z nt;(6)

J=1

(c) Modified minimum chi-square (MMCS) where x2(8) is replaced by

Xf(o) — Zr: [nj — ij(e)]Z
j=1 j
where n, is replaced by 1 if it vanishes.
Several additional methods that minimize the discrepancy between observed and
expected counts such as Kullback-Leibler distance are described in Rao (1973),
p. 352, and a general approach is reviewed in Hsiao (1985).

It is well known, under fairly general conditions, the asymptotic distribution
of the ML estimator @ is normal,

A

V(8 - 8) 3 N(0,171(8))

where I(8) is Fisher information “per observation” corresponding to (1),

L1
1(8) = ——Vm;(8)V'n;(0
0)= % g V07 0)
and V denotes the column gradient operator,
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and that the three methods ML, MCS, and MMCS are asymptotically equivalent,
all producing best asymptotically normal estimates (Sen and Singer 1993, Sec.
6.3). Thus, for sufficiently large n, the MCS estimator is normal with mean 8
and m X m covariance matrix I71(8)/n.

There is yet another closely related “grouped data” estimator that mini-
mizes the squared distance between the empirical and hypothesized cdf’s. De-
note the empirical cdf by F,(z), and barring the two ends of the support, let
Rr(1),...,Rr(k), k =r — 1, be the cell boundaries. Consider a discrete version
of the Cramér-von Mises statistic,

k

5(6) = 3 _[Fu(Br (7)) — F(Rx(i), 0) (2)

=1

Meneghini and Jones (1993) estimate @ by minimizing S(8) with respect to 6,
and in Kedem et al. (1997) it is found empirically the resulting estimate—from
now on “least squares” (LS) estimate—is close to the MCS estimate in a special
case.

The LS estimator that minimizes (2) belongs to the family of minimum-
distance estimators, that minimize a certain distance §(F,(z), F(z,8)), and its
asymptotic distribution can be found by appealing to the general theory of such
estimators. General approaches are studied in Bolthausen (1977) and Parr and
Schucany (1981). However, the asymptotic distribution of the LS estimator can
be obtained by much simpler means.

The purpose of this paper is to derive the asymptotic distribution of the
LS estimator in general, and then compute its efficiency relative to the MCS
estimator, with the same class boundaries, in a special case when estimating the
mean of a mixed lognormal distribution with a jump at 0, the case considered in

Meneghini and Jones (1993) and Kedem et al. (1997).



3 Distribution of the LS Estimator

With & = r—1, I, the kxk identity matrix, 1rk/2 = ﬂ,lc/Q(G) = (7r}/2(0), ...,w,i/2(9))’,

and Z; = (n; — nwj(0))/\/nm;(0),  =1,...,k, a fact to be used below is that
as n — oo (e.g. Sen and Singer 1993, p. 251),

Z 5 N (0,1, — m/*(m/?Y) (3)

Observe 325_, 71/%(9) < 1.

=174
The LS estimator can be studied more conveniently by noticing that,

5(9)=;[%Zn1—2%(9)1 = %;[émﬂlé%‘(g)}
= %Zf; Mi_i’l%(e)]2
1Z;
= ;Z:Y;- (4)

where M; = Si_, ny, gi(0) = Siey m(8), and Yi = [M; — ng(O)]/, i =
1,...k. Let Y = (Yi,...,Y%), and define a £ x k matrix G G(8),

mn*®@) o0 0 - .- 0

mn/%0) =) 0 - - - 0
_ : .

R0) O - - )

It follows that Y = GZ, or from (3)

Lemma 3.1 Asn — oo,

Y BN (0,G(I, - m/*(m)) &)



Define next a £ x m matrix B by
B=(Vq(8),.., Vg (8))
and denote the LS estimator by 6*.

Theorem 3.1 Assumek =r — 1 and
(i) B'B has full rank.

. 0¢:(8) 0%qi(8) . - )
(i1) 50 and 50,00, i=1,...,k, j,l =1,...,m, are continuous.
Then
Vn(0* —68) B2 N(0,%)
where

S = (B'B)"'B'G{L, — =,”*(8)(r,*(6))} G'B(B'B) ™’

Proof: The method of proof follows that of ML. Define

H(O) = 5 3 (M, = e (O))

Then 8* maximizes H(8). Let ||lu]| < K, 0 < K < o0, u € R*, and consider
the Taylor expansion,

1 1 ~
-1/24) — Rl L '
H(O +n%) = H(8) + —w'VH(®) + 5 w'VV'H(B)u

where @ lies on the line segment connecting 8 and  + u/,/n. Introduce the
function of u,

AMu) = H(O +n~Y) — H(B) = Vl_gu’VH(O) + %u’VV'H(é)u

and put,
U =VH(), V=VV'H(), W=VV'H@)—VV'H(H)

so that ] { !
A - ! - IV o /
(u) \/ﬁuU-I—Qnu u+2nuWu
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Now observe that,
()
1 A
\/—— Z [M; — nqi(0)] Vgi(6) = B'Y

Therefore by Lemma (3.1), as n — 00,

1 D
\—/—EU B N (0,B'G(I, — m,/*(m/*))G'B) (5)

(i1) By the law of large numbers, as n — oo,

1 1 & , 1
=V = =Y [-nVa(0)V'e(8)] +

k
n =

2 - nqz ] Vv,qz(a)

1

S
3 |

=1 %
1 k
= BB+~ > [M; - ng;(0)] VV'q:i(8) & —B'B
i=1
(ii) By the assumed continuity of the derivatives, as n — oo,

1

~“W 30

n
Consequently for sufficiently large n, A(u) is quadratic,

1 1
Au) = %u’U - §u'B'Bu + 0,(1)
with maximum at {
0= \/—E(B'B)‘IU + 0,(1)
This implies the maximum of H (@) occurs at
. 1, 1 -
6 =480 + \/—ﬁu =6 + E(BIB) 1.U- -+ Op(l)

and this together with (5) gives,

JA(6" = 0) = —(B'B)"'U+0,(1) 3N(0,T) O

N

From the proof of Theorem (3.1), k may be less than the case of interest r—1,
however, the efficiency of the LS estimate deteriorates rapidly for an excessively
small k.



4 Relative Efficiency

Since the MCS and ML estimators are asymptotically equivalent for grouped
data, the MCS is denoted here by 6 as well. The preceding discussion concerns
then the MCS and LS estimators 6 and 6*, respectively. One way to compare 6
and 6%, is to compare the asymptotic variances of g(8) and g(8”), where g(8) is

a sufficiently smooth real valued function of 8. Let v = Vg(8). Then the delta
method (e.g. Sen and Singer 1993, pp. 131-133) gives for the MCS estimator,

V(9(8) — 9(8)) 3 N (0,7T71(8)7)

and for the LS estimator

V(g(67) — 9(8)) % N (0,4'Z)
A relative efficiency is defined by the ratio
71
Eff(6) = YT (0)y (6)
¥'Ey

4.1 The Mixed Lognormal Case

Consider now the special case, the one that triggered the present investigation,
of mixed lognormal with m = 3 parameters p, 1, o

F(z,0) = (1-p)+pA(z;0,0), >0

and F(z,0) = 0 otherwise, where 0 < p < 1, A(z;p,0) is the lognormal cdf
with parameters p, o, and 8 = (p,p,0)’. The function of 8 of interest is the
mean of the mixed lognormal distribution,

1
9(8) = pexp(n + 50%)
with !
v = Vg(0) = exp(p + 502)(1,17, po)

Calculation of the relative efficiency (6) with I(8), given explicitly in Kedem et
al. (1997) and X as in Theorem 3.1, is shown in Figure 1 for various choices
of p,u, o corresponding to some real data situations described in Kedem et al.
(1997). Evidently the two methods, MCS and LS produce very similar results.
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Figure 1: Relative efliciency of (6) for mixed lognormal with fixed p, u and
variable o. r = 11,k = 10
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