Integral Geometry in Hyperbolic Spaces and Electrical Impedance Tomography

dc.contributor.authorBerenstein, Carlos A.en_US
dc.contributor.authorTarabusi, E. Casadioen_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:57:05Z
dc.date.available2007-05-23T09:57:05Z
dc.date.issued1994en_US
dc.description.abstractWe study the relation between convolution operators and the totally geodesic Radon transform on hyperbolic spaces. as an application we show that the linearized inverse conductivity problem in the disk can be interpreted exactly in terms of the X- ray transform with respect to the Poincare metric and of a simple convolution operator.en_US
dc.format.extent549825 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/5540
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1994-67en_US
dc.subjectalgorithmsen_US
dc.subjectIntelligent Control Systemsen_US
dc.titleIntegral Geometry in Hyperbolic Spaces and Electrical Impedance Tomographyen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_94-67.pdf
Size:
536.94 KB
Format:
Adobe Portable Document Format