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INTEGRAL GEOMETRY IN HYPERBOLIC SPACES
AND ELECTRICAL IMPEDANCE TOMOGRAPHY

CarLos A. BERENSTEIN AND ENRIcO CASADIO TARABUSI

ABSTRACT. We study the relation between convolution operators and the totally
geodesic Radon transform on hyperbolic spaces. As an application we show that
the linearized inverse conductivity problem in the disk can be interpreted exactly in
terms of the X-ray transform with respect to the Poincaré metric and of a simple
convolution operator.

0. INTRODUCTION

Electrical impedance tomography (EIT) has been proposed by D. H. Barber
and B. H. Brown [BB1], [BB2] to image lungs, blood flow, and other features of
the human body where conventional tomography might not be so successful. Its
mathematical model is a two-dimensional inverse conductivity problem that has
attracted considerable interest in recent years, especially because it is equivalent
to other important inverse problems, such as inverse scattering and seismology (cf.
[SU], [N]): namely, the problem on the unit disk D given by

div(Bgradu) =0 in D,
(0.1) 9u _ on 8D,
on
u=¢ on 0D,

where the input 1, the boundary current to be applied (typically a dipole at a
boundary point w), is such that |, sp¥ = 0, and the measured output is the bound-
ary potential ¢ (unique up to an additive constant). The goal is the recovery of
the conductivity 8, which is a strictly positive function on D. Due to the nonlinear
nature of this inverse problem it is standard to try to solve it approximately by
linearization, performed here around the constant solution. In essence, this is what
Barber and Brown did, as explained by F. Santosa and M. Vogelius [SV], though in
fact all of them work with a further approximation of the linearized problem. As
announced in [BC4| we have succeeded in representing the exact linearized problem
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as an equation in the hyperbolic plane involving the X-ray transform and a simple-
looking convolution operator. This will be a consequence of our work below on
the relation between the totally geodesic Radon transform R in the real hyperbolic
space H™ and convolution operators.

1. PRELIMINARIES

Let us recall the definitions and notation for the totally geodesic Radon transform
in H” as given in [H2]. We shall use the ‘conformal disk’ model for H”?, viz., the
open unit ball of R™ with the metric

d32 _ 4da;2 4 Z =1 d.’l?
=M=l ~ (0= Tps 3 2’
where || - || denotes the Euclidean norm in R”®. Such metric is in fact conformal to

the Euclidean one dz? and has constant curvature —1 (in some chapters of [H2] the
curvature is —4). The induced distance between z € H™ and the origin o is related
to the Euclidean norm of z by

(L1) el = tanh 422

The geodesics and the totally geodesic hypersurfaces of H” are arcs of circle, re-
spectively spherical caps, which intersect the Euclidean unit sphere S®~! perpen-
dicularly.

In geodesic polar coordinates write ¢ € H” as ¢ = (w,r), where r = d(z,0) and
w € S™1, The hyperbolic metric is then expressed by

ds® = dr? + sinh® r dw?,

where dw? is the usual metric in $*~!. Correspondingly, the (n — 1) dimensional
area of a geodesic sphere of radius r is

7n/2
An(r) = Q,sinh™ 1 r, where Q,, =7 ( 72 is the Euclidean area of S™1.

The Laplace-Beltrami operator on H” is

A=z < 9 [ zwmji]
Ap=— vt (SRl DA

=1

which specializes to Ay = (1 — |2|?)20%/020z (with z = z; + iz;) in the case of
n = 2. In polar coordinates

A & + (n — 1) coth 2—+sinh'2rA
H= or a2 n—ijcotnr or S,

where Ag is the Laplace-Beltrami operator on S*~1,
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The space D(H") denotes as usual the space of all C* functions with compact
support in H", i.e., it coincides with the space of C*® functions f on R" whose
support is in the open unit ball. In this paper all operators will act on the space
D, even though they can clearly be extended to larger spaces of functions on H"
by continuity.

The space I' = 'y, n—1 of totally geodesic hypersurfaces ((n — 1)-geodesics for
short) of H" is a homogeneous space under an action of the group SO(1,n) of
isometries of H". As a ‘distance’ on I' we will use the continuous function « on
I' x T given by
coshd(v,€) if yN¢E is empty,

k(7,€) = {

-~
cos ¢ otherwise,

where ;E is the nonobtuse dihedral angle between v, {. Each 4 € T’ carries the
(n — 1)-dimensional area element do., induced by the volume element dv in H".
Hence the totally geodesic (n — 1)-dimensional Radon transform R is defined on
the space S(H") by

Rf(y) = / f(z)do(z) forall yeT.

The family I'; of elements of I’ passing through a fixed point z is a homogeneous
space for the isotropy group SO(1,n), of z, which is isomorphic to SO(n). Hence
I'; carries a normalized measure dm, which is invariant under SO(1,n),, and is
‘independent’ of z in an obvious sense. For a continuous function ¢ on I" we can
define the backprojection operator R* by

12) R = [ dndmin= [ oy Yh o)A forall o € HY

where g is a fixed element of SO(1,n) such that ¢ - 0 = z, while h runs in SO(n)
and dh is the normalized invariant measure in SO(n). One of the uses of the
backprojection operator is to find an inversion formula for the Radon transform.
This is based on the fact that, denoting by d@ the area element on the geodesic
sphere S(z,r) of center z and radius r, we have

R*Rf(z) = /H f@)R((=,v)) do(y)

- [T=o [ W) an(y)) ar,

for a function R on [0, +00) (cf. [H2, Theorem 1.4.5]): interpreting R as a radial
function on H™ through R(z) = R(d(z,0)) (the same abuse of notation will be
extended to all radial functions), we write this integral as (R od) * f(z)—note that
the inner integral is not normalized—: in fact both R and f can be pulled back
as functions on the group SO(1,n), convolved there, and the result, pushed to H”
again, coincides with the middle term of (1.2).
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The function R turns out to be [H1]
I(n/2)
VAT((n —1)/2)sinhr’

In [BC1] it is shown that if S is the operator of convolution associated with the
radial function §(r) = cothr, then for an explicit polynomial p of degree k one has

p(AH)SR*R=1

R(r) =

(where I is the identity operator), a filtered backprojection inversion formula. For
instance if n = 2 this formula reduces to ~(47)"*SR*R = I: the kernel S can be
replaced by cothr — 1 to obtain an integrable kernel. Other inversion formulas,
which do not factor through R*R, can be found in [H3]. An extension of the
inversion formulas to more general Riesz transforms, and a characterization of the
range of R, were obtained in [BC2], [BC3].

An (n—1)-geodesic v € T' is determined by the pair of polar coordinates (w’,r') €
[0, +00) x S™~1, where r' = d(v, 0) is the distance from o to 7, achieved at a unique
point z, € v, and w' is the Euclidean unit vector z,/ ||z,||. The volume measures
on H”, ' are then expressed by

(1.3) dv(w,r) = sinh" ™ r dr dw,
(1.4) dm(w',r') = cosh™ v’ dr' du’,

respectively (cf. [BC3]).

We shall also need different parametrizations (‘cylindrical coordinates’) of H”,
I' and the expressions of the invariant measures in such coordinates. Fix an (n —
1)-geodesic v and parametrize H™ identifying a point y with (z,,u), where u is
the signed distance from y to 7 (consistent with the choice of an exterior normal
to v) and z, is the closest point of 4 to y. The analogous coordinatization of I’
is somewhat more complicated. We first partition I' into three subsets I't,I'®, ',
placing v € T" according to the sign of x(v,£&) — 1. Observe that I't,I'~ are open;
on the other hand, we shall not need to parametrize T'?, since its measure is zero.
(In the Euclidean case, the I't part is not open either, and has measure zero.) The
coordinates of £ € I'" are z¢,r, where r = d(£,7) (signed distance) and z¢ is the
closest point of 7 to £. Let A be the set of (n — 2)-geodesics of 4: in I~ identify ¢
with (A, p), where A = yN € € A, and p is the angle %Z or its complementary—the
choice of p can be made locally in A, in a continuous fashion.

Lemma 1.1. In these coordinates the invariant measures are

(1.5) dv(zy,u) = cosh™ ! udu do(z,) in H",
(1.6) dm(zg,r) = sinh™ ™ |r| dr do(z¢) in T,
(1.7) dm(\, p) = sin™ ! pdm.(A) dp in T,

where dm., is the measure on A.,.

Proof. The map y — (zy,u) is a diffeomorphism of H” with 4 x R. Furthermore,
(zy,u) is a system of orthogonal coordinates, and u is the arc length parameter of
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the geodesic {z, = constant}. To compute the Jacobian of (zy,u) — y we first
assume that n = 2: up to automorphisms, we can suppose that v is the real interval
(—1,1) and z, = o in the conformal disk model—consequently y = i tanhu/2. The
one-parameter group of automorphisms

_ z+tanht/2
94%) = T tanht/2

fixes v, therefore the absolute value of the Jacobian at (xy,u) equals the ratio of
hyperbolic lengths of the vectors (dg:/dt)(i tanhu/2) and (dg:/dt)(0), which an
elementary computations shows to be coshu. Formula (1.5) for general n follows
by orthogonality.

Assume again that o € 4, n = 2, and v = (=1,1). Given £ € I'*, let (w’,r'),
(z¢,r) be its polar, respectively cylindrical coordinates with respect to «v; identify w'
with the corresponding angle with the positive imaginary half-axis. Letting y,,y~ be
respectively the closest points of £ to o,~, the angle at o of the geodesic quadrilateral
(lying in a 2-geodesic) of vertices 0,Yy,,y~,%¢ is w' (or its complementary), and
the other three are right angles. We can apply hyperbolic trigonometry (cf. [M,
Theorem 32.21]) to obtain

sinhr' = sinhr cosht,

cotw’ = tanhr sinht,

where t = d(z¢,0) (with sign). The Jacobian of r',w' with respect to r,t equals
sinhr / coshr’. We conclude with (1.6) as before.

If n=2and o € v, for £ € '™ consider the geodesic triangle of vertices o, y,, A:
the angles at o, A are respectively w’, p (or complementaries). Again by hyperbolic
trigonometry ([M, Corollary 32.13]) we have

sinhr' = sin p sinh¢,

tanw’ = tan p cosht.

The Jacobian of r',w' with respect to A, p is therefore sin p / coshr'. Formula (1.7)
follows. O

2. CONVOLUTION OPERATORS

Let A, C be functions on 1, +00), and B a function on [0, +o0) (sufficient smooth-
ness and decay will be assumed throughout). Let A be the convolution operator
on H" given by Af = (A ocoshd) * f (see Section 1), for f a function on H".
Similarly, using the ‘distance’ function « define a convolution operator B on I' by
B¢ = (Bok)* ¢, with ¢ a function on I Finally consider a mixed situation:
let C be the operator Cf = (C o coshd) * f, where f is a function on H", but
the value Cf is a function on I' (in this case d is the distance between points and
(n — 1)-geodesics); notice that for every g € Aut(H") we have C(gf)(g7) = Cf(»),
where ¢gf(z) = f(¢7'z). The purpose of this section is to establish the relations
among the kernels A, B, C for which RA = C = BR.
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Theorem 2.1. The identities

(2.1) RA=C,
(2.2) BR=C

are respectively equivalent to the Abel integral equations

23)  CU) = Q,_ U™ /U T _UnO-2ATY AT for U > 1,
(24) CU)=Q, U™ /0 U(U2 —TH=32B(TYdT  for U > 1.
These are tnverted: fo.r oddn=2m+ 3 by

_ (_ﬂ.)—m—l d dm

el 2m+1
A = E e fr T2
a4 47 2mi1 )
for even n =2m 4+ 2 by
ATy = (-mymmir [Tl
T U2 -T2
2_d_ am 2m .
(U +U dU) d(U2)'"[U C(U)|dU forT >1,

B(T) —w*m-lT/T L 4 _d"
- o VTZ-UZ dU d(U?)™

In both ezpressions of B, the function C is eztended to [0,1) arbitrarily.

[U*™C(U)]dU  for T > 0.

Note that the restriction of B to 1, 00) does or does not depend on such extension

of C according if n is even or odd.

Proof. Applying both sides of (2.1) to a function f on H"®, then evaluating at y € T

gives

[ [ Acoshd(z,0)f(v) do(w) des(a) = [ Cleoshd(y, 1) (w) doly).
v JHn H"

Exchanging the order of integration in the left-hand side and letting f vary in

D(H™) we obtain the identity

C(coshd(y,v)) = /.A(cosh d(z,y)) doy(z) forally € H", v € T
v

Taking cylindrical coordinates y = (zy,u) in H"™ with respect to -, and setting

t = d(z,z,), by hyperbolic trigonometry [M, Corollary 32.13] we have

cosh d(z,y) = cosht coshy;
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parametrizing v in polar coordinates z = (w,t) around o = z, we then obtain

(cf. (1.3))
C(coshu) = Q,—y / A(cosht coshu)sinh® 2¢dt  for every u € R.
0

The change of variables U = coshu and T = U cosht yields (2.3).
As to (2.2), its left-hand side applied to f and evaluated at « is

©9) [+ ] [re oo aoanc

(recall that I'° has measure zero). In I't take cylindrical coordinates ¢ = (z¢,r),
and parametrize £ in polar coordinates y = (6, s) around o = y., (the closest point
of { to 7). Using (1.6), (1.3) and identifying with S®~2 the intersection of S™~1
with the tangent space of { at y., the first summand of (2.5) is

+o0 (o)
/ / / / B(coshr)f(y)sinh™ " |r| sinh™ 2 s ds df dr do(z¢).
vyJ—o0 n-2Jo

Parametrize H” in cylindrical coordinates y = (z,,u) with respect to 4: the ge-
odesic quadrilateral (lying in a 2-geodesic) of vertices y, zy, z¢, . has right angles
except at y, so by [M, Theorem 32.21]

sinh v = sinhr cosh s,

which allows us to replace the parameter s with u, and (observing that the Jacobian
of this change of one coordinate reduces to |0u/ds|) to obtain

[y/_-:o /n_2 [:I: /ri“] B(coshr)f(y)sinh|r|

cosh? u — cosh? r)(*3)/2 cosh vy du df dr do (=
Y\ L

(the sign in the rightmost integral is that of r). Now replace z; with z,, which
can be written as g(z¢) with an automorphism g of H" that only depends on the
other coordinates and on y—thus contributing a factor 1 in the Jacobian of this
change of coordinates, which is therefore 1 as a whole. Exchanging the order of
integration, applying (1.5) again, and using the evenness in r in order to dispose of
the sign, we then have

|u|
Qn_1 / [ B(cosh r)(cosh? u — cosh? 7)(*=3/2 sinh r dr | f(y) cosh?™™ u dm(y).
H"® LJO

In '™ also take cylindrical coordinates £ = (A, p), and parametrize ¢ itself in
cylindrical coordinates y = (zy,s) around A (so z, is the closest point of A to y).
By (1.7), (1.5) the second summand of (2.5) is

/ / / / B(cos p) f(y)sin™ 1 p cosh™ 2 5 ds doa(zy) dp dm~(N).
Ay JO AJ—0
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The geodesic triangle of vertices y, zy, 2z, is right at z,, so, again by [M, Corol-
lary 32.13],

sinhu = sinp sinhs :

proceeding as before, first replace s with u and obtain

/A [ [ [ seosppswsing

(cosh? u — cos? p)(*=3/2 coshu du doy(z,) dp dm(N);

subsequently replace z, with z,, then A with 8§ € S™~2 (the direction from z, to
zy)—both Jacobians are 1—and rearrange the order of integration to get

w/2
Q-1 / {/ B(cos p)(cosh® u — cos?® p)(" /2 sin pdp| f(y) cosh® ™ u dm(y).
H» LJo

Putting together the two summands of (2.5) thus rewritten, we can apply (2.2) to
every f € D(H") to dispose of the integral over H™: with the changes of variables
U = coshu, and T' = coshr or T = cos p, the summands equal the integral of (2.4)
on the intervals [1, U], [0, 1] respectively.

The inversion formulas for n = 2m + 3 are obtained by differentiating m times
the integral in (2.3), (2.4) respectively, with respect to U2, then once with respect
to U. For n = 2m + 2, the same m-fold differentiations yield the equations

o .A(T) _ (_,R.)—m am o
/U T2 _ T2 T = 2 d({U?)m [vme)l,

v BE) i
o VUZ=T2 =~ 2 dU*»™

both equivalent to the standard Abel integral equation, and solved by the inversion
formulas in the statement. O

Corollary 2.2. Ifn =2 and C(U) =U"? for Rea > 1, then

e,

I'((a+1)/2)

AD = Tam)F

T

Proof. With the variable V = U/T, use [GR, 3.251.3, 8.384.1]. O

3. ELECTRICAL IMPEDANCE TOMOGRAPHY
Setting § = 1+ 68, with corresponding decomposition u = U 46U, and assuming
that 63 vanishes on 0D, the linearization of problem (0.1) is
{ Ag(6U) = —(grad 68,gradU) in D,

a(ijl =0 , on OD:
on :
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here (-, -), Ag are the Euclidean scalar product, respectively Laplacian, and U is
the solution to the unperturbed problem

{ AgU=0 in D,
oUu 08,
—67 = —7['—6—;'-— on BD,

where 3/07 is the counterclockwise tangential derivative, and §,, is the Dirac delta
function at the dipole location w € dD.

Up to a rotation we can assume w = i. Take a new complex variable ( = £ +inp =
(1—iz)/(z—1): the Cayley transformation % : z — ¢ maps D holomorphically (hence
conformally) onto the upper half plane II = {n > 0} of C, taking 0D \ w to the
real line. As shown in [SV], [BC4] (although, for convenience, the above change of
coordinates is slightly different), we get the equation

dg, v 1 [ [(E-w/P=1, . ddn
1) au' )_47’/11([(€—u)/77]2+1)2b(<) o

where ¢, b are the perturbations, in such coordinates, of the boundary potential and
of the internal conductivity, respectively. The pullback via 1~ of the hyperbolic
metric on D is ds? = |(|*/n?, which therefore makes II into another conformal
model of H?; the isometry v takes the geodesics through w to the vertical half lines
y(w,u) = {¢ = u and n > 0}, for u € R, geodesics in II. The distance of { from
v(w,u), i.e., from its closest point u + 7 |{| (the generic geodesics of II are arcs of
circles centered on the real line) is easily computed, for example via ¥ and (1.1),
and satisfies

sinh diy (¢, 7(w0,)) = [€ - ul/n:
thus the right-hand side of (3.1) equals, with the notation of Section 2,

U-?—2U*

Cb(y(w,u)), where C(U) = ym ,

whereas the left-hand side can be written as x(y(w,u)), for a function x on I’ which
is assumed known (from the data), and is a posteriori independent of the orientation
of the geodesic. Using now Corollary 2.2 we have thus proved:

Proposition 3.1. The function b satisfies the equation

T-? — 37+

R[(A o coshd) x b] = x, where A(T) = -

a

(The discrepancy of a factor —2 from the formula in [BC4, Proposition 3.1] is
due to the abovementioned difference in the coordinate change.)

In trying to explain Barber and Brown’s approximate solution, Santosa and
Vogelius used in [SV] the method of the Beylkin generalized Radon transform [B].
Their approach consisted in approximating the right-hand side of (3.1) with a one-
variable convolution operator composed with a transform that integrates along
the geodesics of D after multiplication by an exponential factor: the integral is
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performed against the Euclidean arc length along vertical geodesics in the half plane
model II (while the convolution is in the variable v). This transform distinguishes
the orientation of the geodesics, whereas physical considerations indicate that it
is not the case. Barber and Brown’s approximate inversion is obtained by simply
applying the dual X-ray transform R* (see Section 1) to the data x, thus getting

(3.2) R*y = R*RAb.

The product R*R is a radial convolution operator, so it commutes with A. If
Zocoshd = (1/47)Au(1 — cothT) is the convolution inverse of R*R, we have

Z(TY~ A(T) for T — oc;

yet, Z is singular at T' = 1 while A is not. The Barber-Brown procedure R*x =~ b
can be understood by replacing 4 with Z in (3.2). Setting I'(a£b) = I'(a+b) I'(a—
b), recalling that Ag()\) = —\2 —1/4 (with respect to Helgason’s spherical Fourier
transform [H2]), and using [GR, 7.132.7], the symbol of A turns out to be

AN =2n / ~ A(T) Pix—12(T) dT

- 32) (i)

1 & 3 )
= ———AH(/\)I‘(Z:EE),

where P, is the associated Legendre function. We have not succeeded in finding
the convolution inverse of A.

REFERENCES

[BB1] D. C. Barber, B. H. Brown, Applied potential tomography, J. Phys. E 17 (1984), 723-733.

[BB2] , Progress in electrical impedance tomography, Inverse problems in partial differen-
tial equations (D. Colton, R. Ewing, W. Rundell, eds.), 1989 Arcata Conference Proceed-
ings, SIAM, Philadelphia, 1990, pp. 151-164.

[BC1] C. A. Berenstein, E. Casadio Tarabusi, Inversion formulas for the k-dimensional Radon
transform in real hyperbolic spaces, Duke Math. J. 62 (1991), 613-631.

, On the Radon and Riesz transforms in real hyperbolic spaces, Contemp. Math.

140 (1992), 1-21.

, Range of the k-dimensional Radon transform in real hyperbolic spaces, Forum

Math. 5 (1993), 603-616.

, The inverse conductivity problem and the hyperbolic X-ray transform, 75 years of
Radon transform (S. G. Gindikin, P. Michor, eds.), International Press, Hong Kong, 1994,
pp. 31-36.

[B] G. Beylkin, The inversion problem and applications of the generalized Radon transform,
Comm. Pure Appl. Math. 37 (1984), 579-599.

[GR] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, corrected and
enlarged edition, Academic Press, Orlando, 1980.

[H1] S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239-
299,

[BC2)

[BC3]

[BC4]

(H2]

, Groups and geometric analysis: integral geometry, invariant differential operators,
and spherical functions, Pure and Appl. Math., vol. 113, Academic Press, Orlando, 1984.




[H3]
M]
(N]
[SV]

[SU]

INTEGRAL GEOMETRY AND ELECTRICAL IMPEDANCE TOMOGRAPHY 11

, The totally-geodesic Radon transform on constant curvalure spaces, Contemp.
Math. 113 (1990), 141-149.

G. E. Martin, The foundations of geometry and the non-Euclidean plane, Undergrad. Texts
Math., Springer, New York, 1975.

A. Nachman, Reconstructions from boundary measurements, Annals of Math. 128 (1988),
531-587.

F. Santosa, M. Vogelius, A backprojection algorithm for electrical impedance imaging,
SIAM J. Appl. Math. 50 (1990), 216-243.

J. Sylvester, G. Uhlmann, The Dirichlet to Neumann map and applications, Inverse prob-
lems in partial differential equations (D. Colton, R. Ewing, W. Rundell, eds.), 1989 Arcata
Conference Proceedings, SIAM, Philadelphia, 1990, pp. 101-139.

DEPARTMENT OF MATHEMATICS AND INSTITUTE FOR SYSTEMS RESEARCH, UNIVERSITY OF
MARYLAND, COLLEGE PARK, MARYLAND 20742, U.S.A.
FE-mail address: cab@math.umd.edu, carlos@src.umd.edu

DIPARTIMENTO DI MATEMATICA “G. CASTELNUOVO”, UNIVERSITA DI ROMA “LA SAPIENZA”,
PI1AZZALE A. MORO 2, 00185 RoMA, ITALY
E-mail address: casadio@itnvax.science.unitn.it, casadio@itncisca.bitnet



