Stochastic Convexity of Sums of I.I.D. Non-Negative Random Variables with Applications

dc.contributor.authorMakowski, Armand M.en_US
dc.contributor.authorPhilips, T.K.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:46:07Z
dc.date.available2007-05-23T09:46:07Z
dc.date.issued1990en_US
dc.description.abstractWe present some monotonicity and convexity properties for the sequence of partial sums associated with a sequence of non- negative independent identically distributed random variables. These results are applied to a system of parallel queues with Bernoulli routing, and are useful in establishing a performance comparison between two scheduling strategies in multi-processor systems.en_US
dc.format.extent609658 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/4999
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1990-51en_US
dc.subjectstochastic convexityen_US
dc.subjecti.i.d. non-negative random variablesen_US
dc.subjectforward recurrence timesen_US
dc.subjectmulti-processor systemsen_US
dc.subjectfork-joinen_US
dc.subjectrandom routingen_US
dc.subjectCommunication en_US
dc.subjectSignal Processing Systemsen_US
dc.titleStochastic Convexity of Sums of I.I.D. Non-Negative Random Variables with Applicationsen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_90-51.pdf
Size:
595.37 KB
Format:
Adobe Portable Document Format