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I. INTRODUCTION

Let {Xi, k¥ = 1,2,...} be a sequence of non-negative independent and identically
distributed (i.i.d.) random variables (rvs) with probability distribution function B. We
define the partial sums {Sx, K =1,2,...} by

K
Sk :=ZX;; K =1,2,...(11)
k=1

with the usual convention Sy = 0. With any Borel mapping ¢ : IR, — IR which is locally
integrable, we associate the mapping ® : IRy — IR by setting

(t) = /0 $(r)dr, t>0. (1.2)

In this paper, we discuss, among other things, the monotonicity and convexity properties
of the sequences {# E[¢(Sk)], K =1,2,...} and {$E[®(Sk)], K = 1,2,...} for various
choices of the mapping ¢, specifically ¢ increasing and ¢ convex.

These properties, which we develop in Sections II and III, have probabilistic interpre-
tations and prove crucial in [3] when establishing a performance comparison between two

scheduling strategies in multi—processor systems. We discuss this issue in some detail in

Section IV.

The remainder of this paper is organized as follows. In Section II we prove certain
convexity properties of the sequence of partial sums {Sx, K = 1,2,...}. In Section IlI
we prove some related results for the sequence of forward recurrence times (or residual
lifetimes) {Sk, K = 1,2,...} of the partial sums {Skx, K =1,2,...}. In Section IV, we
present an application of these results to queues with Bernoulli routing and some related
results on the comparison of the Fork-Join queue and a system of queues with Bernoulli
routing. Finally, in Section V we draw conclusions and present some open problems.
Appendix A contains sufficient material on stochastic convexity to make the paper self
contained.

Our notation follows that used in {1,5-7]; in particular, we denote the set of real (resp.
non-negative real) numbers by IR (resp. JR;). We assume the reader to be familiar with
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notions of stochastic orderings; the main references are the monographs by Ross [4] and
Stoyan [8] which contain additional information and properties on the orderings <,;, <.,

and ..<_icz .

II. MONOTONICITY AND CONVEXITY OF {Skx, K=1,2,...}
For every Borel mapping ¢ : IRy — IR, we set
$(K) := E[¢(Sk)] K=1,2,..(21)

provided the expectation exists. Note that &(K) is always well defined, though possibly
infinite with $(K) > —oo, either if ¢ is increasing or if ¢ is convex and the ii.d rvs
{Xi, k£ = 1,2,...} are integrable. The monotonicity and convexity properties for the

sequence of partial sums {Sk, K = 1,2,...} are contained in the next proposition.

Theorem 1. The following facts hold true for the partial sums {Sk, K = 1,2,...}: If
the mapping ¢ : IR, — IR 1s

1. increasing, then K — ¢(K) is increasing;

2. convez, then K — ¢(K) is integer convez;

3. convez with ¢(0) =0, then K — —;;&(K) 18 sncreasing.

Claims 1 and 2 are well known [4, Lemma 8.6.7, p. 278], and are given here for the
sake of completeness, so that only Claim 3 needs to be established. Before doing so, we
present in probabilistic terms some simple consequences of Theorem 1. To that end, let

{bs, k=1,2,...} be a sequence of {0,1}-valued rvs such that

Plby=1)= - =1-Plby =0]. k=1,2,...(2.2)

1

k

Theorem 2. Assume the sequences {X;, k = 1,2,...} and {bs, k =1,2,...} to be mu-

tually independent. The following facts hold true for the partial sums {Sk, K =1,2,...}:
1. The collection of rvs {Sk, K =1,2,...} ts SICX, in fact SICX(sp); and

2. The sequence {bx Sk, K = 1,2,...} is increasing in the sense of the ordenng
:SCZ; i'e'}

b Sk <er bk4+1SK+1- K=12...(23)
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Proof. Claim 1 follows readily by combining Claims 1 and 2 of Theorem 1; we refer the
reader to recent work by Shaked and Shanthikumar [5,6] for a more complete description
of the property SICX(sp).

Finally, for every convex mapping ¢ : IRy — IR, we get

E[3(bxSx)] = 2 EI8(Sk)] + (1 = )4(0)

= 2 El8u(5K)] + 6(0) K=12,...(24)

where the mapping ¢o : IRy — IR : z — ¢(z) — ¢(0) is also convex with ¢¢(0) = 0. From
Claim 3 of Theorem 1, we conclude that the mapping K — E|[¢(bx Sk )] is increasing, thus
establishing Claim 2.

0

The next two lemmas prove useful in the proof of Theorem 1. The first lemma is
a well-known property of convex functions; its proof is elementary and is omitted in the

interest of brevity.
Lemma 3. For any convezr mapping ¢ : IRy — IR, with ¢(0) = 0, the snequalities

K K
Y d(zi)< ¢ (Z :ck> K=12,...(25)

k=1 k=1

hold true for arbitrary z, 20,1 <k < K.

Lemma 4. For any conver mapping ¢ : IRy — IR with ¢(0) = 0, the snequality

1 . .
E[¢(XK)] < }{—E[¢(Sx)] K=12,...(2.6)
holds true, whence
Xk Secz bk Sk. K=12,...(27)
Proof. Since the non-negative rvs {Xi, k = 1,2,...} are ii.d.,, we observe that

KE[$(Xk)] = E[L), ¢(X4)] for all K =1,2,..., and the inequality (2.6) follows imme-
diately from Lemma 3. Finally, in view of (2.4), we see that (2.7) holds true provided

El6(Xx)] € % EI8(SK))+ (1 - 2)60) K=12...(28)
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for every convex mapping ¢ : IRy — IR. The proof is now completed by observing that
this last inequality is simply (2.6) applied to the convex mapping ¢o : IR, — IR: z —
#(z) — ¢(0) (for which ¢o(0) = 0).

O

Proof of Theorem 1. As pointed out earlier, only Claim 3 needs to be established,
namely that for any convex mapping ¢ : IRy — IR with ¢(0) = 0, the inequalities

1
K+1

= El6(5K)] € 7o E[6(Sk41)] K=12...(29)

hold true. This is now shown by induction on K.

e The basis step: For K =1, (2.9) reduces to the inequality

El¢(X1)] < 5 E[¢(S2)] (2.10)

N =

which is exactly (2.6) (with K =1 since X; =, X3).

e The induction step: Assuming now that (2.9) indeed holds for some K > 1, we
want to show that (2.9) also holds for K + 1. With this in mind, we define the mapping
¢k : IRy — IRy by

¢k(z) := E[¢(Sk-1+12)], 20 (211)
Clearly the mapping ¢ is convex whenever ¢ is convex.

Under our assumptions, the rv Sk _; is independent of the rv Xx + X k41, so that

E[¢(Sk+1)) = E[¢x (XK + XKk41))]
= 6x(0) + Elox(Xx + Xx+1) — x(0)]. (2.12)

From the basis step (2.10), we then conclude that

E[¢(Sk+1)]) 2 ¢x(0) + 2E[¢x(XK+1) — ¢x(0)]
= 2E[¢x(X k)] — ¢x(0)
= 2E[¢(Sk)] — E[¢(Sk-1))- (2.13)
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where the first equality follows from the fact that Xx =, Xk+41. Therefore, (2.9) will
hold for K + 1 provided we can show that

K1+ 7 (2E[¢(SK)] — Elé(Sk-1)]) - (2.14)

= El8(5x0)] <

By simple arithmetic we see that (2.14) is equivalent to (2.9) (for K) and this establishes

the induction step.
O

Before closing this section, it is worth pointing out several facts concerning the results
of this section: First, Claim 3 of Theorem 1 appears to be the best result possible under
the enforced assumptions on ¢. For instance, the condition ¢(0) = 0 cannot be dispensed
with. Indeed, for the convex mapping ¢ : z — z + 1, the mapping K — %q@(h’) is in
fact decreasing (assuming of course that the 1.i.d. rvs {Xi, k = 1,2,...} are integrable).
Moreover, the convexity of K — 7](-¢A>(K ) should not be expected from the convexity of ¢
alone. To see this, take Xy = 1for all k = 1,2,..., and ¢(z) = z(log:t)+ forallz >0
(with ¢(0) = 0). It is plain that while ¢ is convex, K — —lﬁc;AS(K) = log(K) is not integer
convex; it is , in fact, integer concave. Finally, the inequalities (2.3) and (2.7) cannot hold
in the sense of the ordering <,; (except in degenerate cases) since all involved rvs have the

same mean yet different probability distrbutions [8, p. 5].

III. MONOTONICITY AND CONVEXITY OF {§x, K=1,2,...}.

In this section, we assume the i.i.d. JRy-valued rvs {Xi, k = 1,2,...} to be integrable,
with common mean m. For each K = 1,2,..., we define the IR, -valued rv Sk as the

forward recurrence time associated with Sk [2]; its probability distribution is given by

. e d
P[SK>t]=f‘ Pk >rldr 5, K=12...(31)
Km
Also, for every mapping ¢ : IRy — IR, we define
#(K) := E[¢(Sk)] K=12,...(32)
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provided the expectation exists. We readily see that $(K) is always well defined, though
possibly infinite with ¢(K) > —oo, either if ¢ is increasing or if ¢ is convex and the i.i.d
rvs {Xi, k = 1,2,...} have finite second moments (in which case the forward recurrence
times {Sx, K = 1,2,...} all have first finite moments [2, p. 173].

We are now in position to state monotonicity and convexity results for the sequence
{8k, K =1,2,...} which parallel those obtained for the partial sums {Sx, K =1,2,...}

in Theorem 1.

Theorem 5. The following facts hold true for the sequence {S’K, K =1,2,...}: If the
mapping ¢ : IRy — IR 1s
1. sncreasing, then K — J(K) is tncreasing;

2. convez, then K — qE(K) 18 snleger convez.

On combining Claims 1 and 2 of Theorem 5, we already get the following property.
Sorollary 6. The collection of rvs {Sx, K =1,2,...} is SICX.

The proof of Theorem 5 will be given in two steps. To prepare for it, consider a Borel
mapping ¢ : IRy — IR which is locally integrable so that the corresponding mapping ¢
given by (1.2) is indeed well defined; note that any convex or increasing mapping ¢ is

locally integrable. Clearly, we have
- _ * P[Sk > 1]
Bl = [ o7t
1 [
=— t]dt K=12...(33
2 [ e PISk > (33)

where ' denotes differentiation. Integrating (3.3) by parts and using the fact that (0) =0,

we see that
E[$(Sk))

=12,...(34
Km , K ey (3 )

E[$(Sk)] =

with both expectations in (3.4) either finite or infinite simultaneously. With our earlier

notation, we can write (3.4) as

$(K)=%{(%). K=1,2,...(35)
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In addition to being useful in the discussion, the expressions (3.4)-(3.5) also show in what
sense Claim 2 of Theorem 5 is an improvement to Claim 3 of Theorem 1. Although
K — %&(K ) 1s not necessarily convex if ¢ is a convex mapping with ¢(0) = 0, this will

however be the case if ¢ is the anti~derivative ¢ of a convex function.
Proof of Claim 1. If the mapping ¢ : IRy — IR is increasing, then the corresponding

mapping ¢ is convex (with (0) = 0). Therefore Claim 1 follows immediately from Claim
3 of Theorem 1 and the relations (3.4)~(3.5).

O

The proof of Claim 2 of Theorem 5 is much more involved. The next lemma identifies

the crucial property that underlies its proof.

Lemma 7. For every conver mapping ¢ : IRy — IR, the inequalities

Sk 41 Sk 42
/ 8(t)dt / 6(1)dt
Sk S

K+1

2F <E +FE

/ o ¢(t)dt} K=1,2,...(36)

Sk-1

hold true.
Proof. For any convex mapping ¢ : IRy — IR, set
Sk 41
Ad(K) = / é(t)dt, K =0,1,...(3.7)

Sk

and observe that (3.6) is equivalent to
E[A®(K)] —~ E[A®(K —1)] < E[A®(K +1)] - E[A%(K)). K=1,2...(38)

To proceed, we fix K = 1,2,... and introduce the mutually independent IR —valued
rvs S, U, V and W such that

S =t SK-—] and U =, V= W=, Xl- (39)

Under the enforced assumptions on the rvs { Xy, k£ =1,2,...}, we see that

S+V4+W+U

AD(K +1) =t / (t)dt (3.10)

S+V+W
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S+V4U S+W+U
88Ky = [ b0t = [ s (3.13)

S+V S+wW

and

S+V
AB(K —1) =01 / 6(t)dt. (3.12)
s
Consequently, using (3.10)-(3.12), we get

S+V4+W4U
E|A®(K +1)] - E[A®(K)] =E [ /5 0L

S+V4+U
_E [ [ W]

U
=E [/ (¢(5+V+W+T)—¢(S+V+T))d‘r:'
(3.13)

where the last equality follows by a simple change of variables. Similarly, from (3.11)-(3.12)

S+U
[ e
s

[ U
=FE / (H(S+W+T)—¢(S+7)) dr} . (314
0

we obtain

[ S+W4U
E[A®(K)] - E[A®(KN -1)] =E /s+w ¢(t)dt} - FE

b

To conclude, we need only notice that the convexity of ¢ implies
HSH+WH+T)—d(S+7)<HS+WH+V+1)—¢(S+V+71), 720 (3.15)

and (3.6) follows upon combining (3.13)—(3.15).
O

Proof of Claim 2. Let ¢ : IR, — IR be a convex mapping. Using the fact that
®(Sk+1) = ®(Sk) + AP(K), we readily obtain the relation

m (é(K +1) - $(K)) = KE[A‘I’I((}({I){] ;ﬁ[‘p(s"” K =1,2,...(3.16)

9



so that the asserted integer convexity of K — ¢(K), i.e., ¢(K)—d(K-1) < &(K+l)—$(K)
for all K = 2,3..., is equivalent to

(K - 1)E[A®(K —1)] - E[#(Sk-1)] _ KE[AS(K)] — E[$(Sk)]
K(K —1) = K(K +1)

K=23,...(3.17)
Upon writing ®(Sr) = ®(Skx-1) + AP(K) and rearranging terms, we see after some
algebra that (3.17) holds provided

(K*+ K - 2)E[A®(K —1)] < 2E[®(Sk-1)] + K(K —1)E[A®(K)).

K =23,...(3.18)

To show (3.18) we proceed by induction on K.

o The basis step: For K = 2, (3.18) reduces to the inequality

Sa

2F é(t)dt| < E

0

S
¢(t)dt] +E

Ss
qS(t)dt] (3.19)

S] Sl

which is exactly (3.6) for K = 1.

e The induction step: Assuming now that (3.18) indeed holds for some K > 2, we
want to show that (3.18) also holds for K + 1, namely

(K% 4 3K)E[A®(K)] < 2E[®(Sk)] + K(K + 1)E[A®(K +1)). (3.20)

Since ®(Sk) = ®(Sk-1) + AP(K — 1), we get
2E[&(Sk)] + K(K + 1)E[AS(K + 1))
= 2E[®(Sk-1)] + 2E[A®(K - 1))+ K(K + 1)E[A®(K +1)] (3.21)
> K(K + 1)E[A®(K — 1)] - K(K — 1)E[A®(K)] + K(K + 1)E[A®(K +1)).
(3.22)
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This last inequality is obtained by (lower) bounding 2E[®(Sk-1)] in (3.21) through a
straightforward application of the induction hypothesis (3.18). Therefore, (3.20) holds

true if we can show that
K(K 4+ 1)E[A®(K —1)]-K(K —1)E[A®(K)] + K(K + 1)E[A®(K + 1)]
> K(K + 3)E[A®(K)). (3.23)

This last inequality is readily seen to be equivalent to (3.8) (thus to (3.6) of Lemma 7)
and the induction step is established.

.
IV. APPLICATIONS

In & companion paper [3], the monotonicity and convexity properties discussed ear-
lier were crucial in establishing a performance comparison between two multi-processor
queueing structures, namely the Fork Join queue and a system of paralle]l queues with
Bernoulli routing. Both systems have K (> 2) identical servers operating in parallel with
infinite waiting rooms. Jobs that arrive to these systems are assumed to consist of exactly
K tasks, the service requirements of the tasks being i.i.d. Upon arrival into the Fork-Join
system, & job is instantaneously decomposed into its K constituent tasks and the k** task
is routed to the k** queue where it is served in FCFS order. As soon as a task completes
service, it is put into a synchronization buffer, and a job leaves the system when all of its
constituent tasks have completed service. In the system of parallel queues with Bernoulli
routing, an arriving job is routed to the k'* queue with probability %, 1<k <K, with
the routing decision being independent of any other event, past, present or future. In each
queue, jobs are processed in a FCFS manner.

Forn =0,1,..., let T and SU denote the response times of the n*® job in the
Fork-Join queue system with K processors and in the system of K parallel queues with
Bernoulli routing, respectively. In [3], we sought to compare T{) and S (or their
steady-state versions) in the sense of the stochastic ordering <;cs by using the stochastic

monotonicity and convexity/concavity (in K) of the sequences of response times. More

specifically, we first showed that the sequence of response times {T,(.K), K=1,2..}is
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SICV(st). Therefore, since T,(,K) =, S.(,K) for K = 1, the stochastic montonicity and
convexity of {SS,K), K = 1,2,...} would then imply that the desired comparison can
reverse its direction only once. In fact, if it could be shown that the comparison T.SK) iex

S %) holds for K = 2, then the convexity /concavity properties would imply the comparison
for all K > 2; the reader is referred to [3] for additional details.

In the remaining part of this section, we show how the results of Sections II and III
can be used to obtain the desired monotonicty and convexity properties of the sequence
of response times {SS,K), K = 1,2,...}. To do this, we first point out, as in [3], that
the system of parallel queues with Bernoulli routing can be adequately studied through a
single server equivalent — sometimes referred to as GI/GI/1 queues with Bernoulli loading
— which we now describe. For each K = 1,2,..., we postulate JRy-valued rvs {Tn41, 1 =

0,1,...} and {0}, k=1,2,...; n=0,1,...}, and {0,1}-valued rvs {ﬂﬁK), n=0,1,...}.

We assume these three sequences of rvs to be mutually independent sequences of i.i.d. rvs

with common probability distribution A, B and

1

P|BK) = 1] = z=1- P[BE) = 0], n=0,1,...(41)

respectively. We also introduce the sequence of i.i.d. rvs {af,K), n=0,1,...} by setting

K
ol =3 "ok n=0,1,...(4.2)
k=1

Next we consider the IR, ~valued rvs {U,(.K), n = 0,1,...} which are generated through

the Lindley recursion

+

Ui Uik 4 ﬂ,(,K)Us.K) =~ Tn+1|

i n=0,1,...(4.3)

U(SK) = 0.
These rvs are the successive customer waiting times in & GI/GI/1 queue with interarrival
times {Tp41, n = 0,1,...} and service times {ﬂ,(;K)as.K), n=0,1,...}. It is easy to see
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that
SUO =, U 4 K0, n=0,1,...(4.4)

From Claim 2 of Theorem 2 we conclude for all K = 1,2,..., that
BUOGUD <. pURHD) (14) n=0.1,..(45)

since a comparison in the ordering <., implies & similar comparison in the ordering <;,,,
whence

U'(lK) Sicz U'SK+1) n= 0,1,.--(4.6)

by making use of [4, Thm. 8.6.2, p. 274]. That the sequence {.S'S,K), K =12..}
is increasing in the ordering <. then follows from (4.4) and (4.6) upon observing that

oK) < oK+,

It is worth pointing out that it does not seem possible to strengthen this result to
hold in the ordering <,; if only the basic monotonicity result {4, Thm. 8.6.2, p. 274] is
used for the Lindley recursion (4.3). This follows from the fact that for each n = 0,1,...,

the rvs { gLK) US,K), K =1,2,...} have the same mean, and therefore cannot be increasing

(in K) in the sense of the ordering <,; [8, p. 5]. As a result, the sequence of waiting times

{U,(.K), K = 1,2,...} cannot be expected either to be SICX(st) or SICX(sp) for each
n = 1,2,...; similar comments apply for the response times. However, in the important

special case when the arrival process is Poisson, i.e.,
Plray1>tl=e", t>0 n=0,1,...(4.7

for some A > 0, we have been able to show that the steady-state waiting and response

times are indeed SICX (in K).

Before developing this result, we note that the single server equivalents determined

by the Lindley recursion (4.3) are all stable if and only if
p:=AE[B] <1 (4.8)

with E[B] denoting the mean of the service time distribution B (which we assume finite).

In particular, under (4.8), for every K = 1,2,..., there exists an IR,~valued rv U¥)
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such that as n goes to infinity, the convergence in distribution U = UL takes
place. Moreover, it is readily verified [2] that U coincides with the steady-state waiting
time in 8 M/GI/1 queue with interarrival times {K7,41, n = 0,1,...} and service times
{aS.K), n = 0,1,...}. This M/GI/1 system is characterized by the arrival rate % and
the service time distribution B*(¥), the K—fold convolution of B with itself; the server
utilization is still p as given by (4.8).

We are now in a position to take advantage of a representation result for the steady-
state waiting time in M/GI/1 queues [2, p. 201]: Fix K = 1,2,..., and let {55,}(), n =
1,2,...} be a sequence of i.i.d. rvs, each one distributed as the forward recurrence time

associated with B*(¥), It is a simple matter to see from (3.1) that

Pl > 1] = KI;[B] /: (1 - B*(K)(T)) dr, t>0. n=12...(4.9)

Let v(p) be a {0,1,...}-valued rv which is geometrically distributed with parameter p,
le.

k]

Plv(p)=n]=(1-p)p", n=0,1,...(4.10)
and which is independent of the sequence {&S,K), n=1,2,...}. We also define the partial
sums {S‘,(,K), n=12 ...} by

SK) =\ 5K) n=12...(411)
50

with the usual convention = 0. Since Uc(,oK) can be viewed as the equilibrium waiting

time of an M/GI/1 queue with arrival rate 7'\? and service time distribution B*(¥)  we

readily conclude from [2, Eqn. (5.111), p. 201] that the rv ) has the representation
Ul =, 5. (4.12)

To obtain the desired convexity result, we proceed as follows: By Corollary 6, for
each n = 0,1,..., the collection of rvs {6,(.K), K =1,2,...} is SICX. Under the enforced

independence assumptions, we can invoke the closure property of SICX under convolution
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[7, Thm. 5.6] to conclude that the collection of rvs {5, K = 1,2,.. .} is also SICX:
in other words, for every increasing (resp. increasing convex) mapping ¢ : IRy — IR, the
mapping K — ¢(§,(,K) ) is increasing (resp. increasing integer—convex) foreachn = 1,2,.. .,
We now conclude that the collection of rvs {U&K), K =1,2,...} is SICX as an immediate

consequence of these remarks and of the relation

E[¢(UL)]) = Z(l p)p"E[¢(S{K)] (4.13)

n=0
implied by the representation (4.12).

Under the stability condition (4.8), we also get from (4.4) that S = Uy 4 o0
where 0(K) is an IR, —valued rv which is independent of UYL and distributed according to
B*(®)_ Using the closure property given in Theorem 5.6 of [7], we then see that { SH K=

2,...} 1s SICX since this property holds for the collections {Uc(,oK), K =1,2,...} (as just
shown) and {¢(¥), K =1,2,...} (as implied by Theorem 2).
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APPENDIX A
STOCHASTIC CONVEXITY

In this appendix, we briefly recall several notions of stochastic convexity which have
been recently introduced by Shaked and Shantikumar [5,6]: Throughout, © is a convex
subset of IR and {X(6), 6 € ©} is a collection of IR-valued rvs. For any Borel mapping
¢ : IR — IR, we define the mapping ¢ : © — IR by

4(6) := E[¢(X(6))), 6€© (A.1)

whenever these expectations exist. The collection of rvs {X(6), 6 € ©} is then said to be

1. stochastically increasing (resp. decreasing) convex in the usual stochastic ordering
— in short SICX(st) (resp. SDCX(st)) — ¢ is increasing (resp. decreasing) convex whenever
¢ 1s Increasing;

2. stochastically increasing (resp. decreasing) convex — in short SICX (resp. SDCX)

— if ¢ is increasing (resp. decreasing) whenever ¢ is increasing (resp. decreasing) and if ¢

is increasing (resp. decreasing) convex whenever ¢ is increasing convex;

3. stochastically increasing convex in the sample path sense - in short SICX(sp) - if
for any four points 6;,¢ =1,...,4,in ©, such that §; < 6, < 6; <6, and 0, + 0, = 6, +6;,
there exist four rvs X;, ¢ = 1,...,4, defined on a common probability space such that

X.‘ =t X(a,‘), 1= 1,...,4, and

~

X;<Xe §=1,2,3 and X+ X3 <X, + X, a.s. (A.2)

A few words on these definitions: When the rvs {X(6), 6 € O} are non—negative rvs,
we note in the definition of SICX(st) and SICX that we need only consider IR ;—valued

mappings ¢, in which case ¢ is always well defined. Moreover, when © is a subset of

{0,1,...}, convexity is understood as integer convexity.
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The following implications were discussed in (Shaked and Shantikumar [11,12)):
SICX(st) == SICX(sp) == SICX. (A4.3)

In general, the implications SICX(sp) => SICX(st) and SICX == SICX(sp) are not true

as can be seen on simple counterexamples.
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