A STUDY OF THE FIRE DYNAMICS SIMULATOR (FDS)- CREATING LIFE-LIKE MOVIES AND STUDYING THE ACCURACY OF THE LAGRANGIAN PARTICLE MODEL

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2022

Citation

Abstract

Fire Dynamic Simulator (FDS) is a computational fluid dynamics (CFD) model of firedrivenfluid flow. It was first released publicly in February 2000. Using SmokeView or Pyrosim to view the results of FDS simulations provides a powerful non-immersive virtual reality experience. It can be used in fire engineering, fire safety training, and fire investigation. By providing a more engaging and interactive user experience, nonimmersive VR can help improve understanding and develop effective fire safety and prevention strategies. On the other hand, FDS is a powerful tool for modeling the physics of fire behavior in buildings and other structures. It has been shown to produce accurate descriptions of fire behavior under a variety of different conditions. This study touches on very divergent, yet very critical, aspects of the applications of FDS. First, generating life-like simulations of fire and smoke characterized by different growth rates and surroundings (a non-immersive virtual reality application). Human behaviour experiments at Morgan State University will use the simulation videos to assess the accuracy of human estimates of fire growth rates and understand how situational factors impact human response. The second part of the study focuses on the Lagrangian particle representation of water droplets in FDS simulations of fire suppression. This study id is going to look at the fire suppression model in which fire suppression is defined by surface wetting or the mass of water falling in the fire surface. The Lagrangian liquid water droplets tracked by FDS represent a larger number of actual droplets. The number of ‘super drops’ can affect the accuracy of the simulations. The particle insertion rate has a default value and controls the mass of the 'super drop'. FDS allows altering the particle insertion rate and hence the mass of the 'super drop. The goal is to find out how changing particle injection rate and mesh grid size impacts the accuracy of the simulation of water sprays.

Notes

Rights