INVESTIGATIONS TO UNDERSTAND THE UNDERLYING BRAIN PROCESSES WHICH ENHANCE COGNITIVE-MOTOR LEARNING AND PERFORMANCE

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2018

Citation

Abstract

The ability to effectively and efficiently process task-relevant information is a critical element to a wide range of cognitive-motor activities. Indeed, various studies have illustrated that elite performers exhibit more refined neuro-cognitive processes than novices. However, it is unclear how these neuro-cognitive information processing abilities develop as skill is acquired. In this dissertation, I provide some evidence to address this gap in the literature. Study 1, entitled “Empirical evidence for the relationship between cognitive workload and attentional reserve” (Jaquess et al., 2017), provided evidence illustrating the relationship between mental workload and attentional reserve. Study 2, entitled “Changes in mental workload and motor performance throughout multiple practice sessions under various levels of task difficulty”, builds from the knowledge gained from Study 1 and extends it to a cognitive-motor learning/practice context over the course of four days. Finally, Study 3, entitled “How engaged are you? An investigation of the neurocognitive mechanisms of self-controlled practice during cognitive-motor learning”, was built upon the knowledge gained from Study 2 to further investigate how aspects of the practice environment, specifically the aspect of control, impact cognitive load and learning outcomes. Broadly, these studies illustrate how some of the neuro-cognitive processes related to information processing in cognitive-motor skills, specifically elements of the electroencephalogram (EEG), change with learning and the acquisition of skill.

Notes

Rights