INFORMATION THEORETIC SECRET KEY GENERATION: STRUCTURED CODES AND TREE PACKING
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
This dissertation deals with a multiterminal source model for
secret key generation by multiple network terminals with prior and
privileged access to a set of correlated signals complemented by
public discussion among themselves. Emphasis is placed on a
characterization of secret key capacity, i.e., the largest rate of
an achievable secret key, and on algorithms for key construction.
Various information theoretic security requirements of increasing
stringency: weak, strong and perfect secrecy, as well as different
types of sources: finite-valued and continuous, are studied.
Specifically, three different models are investigated.
First, we consider strong secrecy generation for a
discrete multiterminal source model. We discover a
connection between secret key capacity and a new
source coding concept of ``minimum information rate for signal dissemination,''
that is of independent interest in multiterminal data compression.
Our main contribution is to show for this discrete model
that structured linear codes suffice to generate a
strong secret key of the best rate.
Second, strong secrecy generation is considered for models with
continuous observations, in particular jointly Gaussian signals.
In the absence of suitable analogs of source coding notions for
the previous discrete model, new techniques are required for a
characterization of secret key capacity as well as for the design
of algorithms for secret key generation. Our proof of the secret
key capacity result, in particular the converse proof, as well as
our capacity-achieving algorithms for secret key construction
based on structured codes and quantization for a model with two
terminals, constitute the two main contributions for this second
model.
Last, we turn our attention to perfect secrecy generation for
fixed signal observation lengths as well as for their asymptotic
limits. In contrast with the analysis of the previous two models
that relies on probabilistic techniques, perfect secret key
generation bears the essence of ``zero-error information theory,''
and accordingly, we rely on mathematical techniques of a
combinatorial nature. The model under consideration is the
``Pairwise Independent Network'' (PIN) model in which every pair
of terminals share a random binary string, with the strings shared
by distinct pairs of terminals being mutually independent. This
model, which is motivated by practical aspects of a wireless
communication network in which terminals communicate on the same
frequency, results in three main contributions. First, the
concept of perfect omniscience in data compression leads to a
single-letter formula for the perfect secret key capacity of the
PIN model; moreover, this capacity is shown to be achieved by
linear noninteractive public communication, and coincides with
strong secret key capacity. Second, taking advantage of a
multigraph representation of the PIN model, we put forth an
efficient algorithm for perfect secret key generation based on a
combinatorial concept of maximal packing of Steiner trees of the
multigraph. When all the terminals seek to share perfect secrecy,
the algorithm is shown to achieve capacity. When only a subset of
terminals wish to share perfect secrecy, the algorithm is shown to
achieve at least half of it. Additionally, we obtain nonasymptotic
and asymptotic bounds on the size and rate of the best perfect
secret key generated by the algorithm. These bounds are of
independent interest from a purely graph theoretic viewpoint as
they constitute new estimates for the maximum size and rate of
Steiner tree packing of a given multigraph. Third, a particular
configuration of the PIN model arises when a lone ``helper''
terminal aids all the other ``user'' terminals generate perfect
secrecy. This model has special features that enable us to obtain
necessary and sufficient conditions for Steiner tree packing to
achieve perfect secret key capacity.