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This dissertation deals with a multiterminal source model for secret key gen-
eration by multiple network terminals with prior and privileged access to a set of
correlated signals complemented by public discussion among themselves. Emphasis
is placed on a characterization of secret key capacity, i.e., the largest rate of an
achievable secret key, and on algorithms for key construction. Various information
theoretic security requirements of increasing stringency: weak, strong and perfect se-
crecy, as well as different types of sources: finite-valued and continuous, are studied.
Specifically, three different models are investigated.

First, we consider strong secrecy generation for a discrete multiterminal source



model. We discover a connection between secret key capacity and a new source
coding concept of “minimum information rate for signal dissemination,” that is of
independent interest in multiterminal data compression. Our main contribution is
to show for this discrete model that structured linear codes suffice to generate a
strong secret key of the best rate.

Second, strong secrecy generation is considered for models with continuous ob-
servations, in particular jointly Gaussian signals. In the absence of suitable analogs
of source coding notions for the previous discrete model, new techniques are required
for a characterization of secret key capacity as well as for the design of algorithms for
secret key generation. Our proof of the secret key capacity result, in particular the
converse proof, as well as our capacity-achieving algorithms for secret key construc-
tion based on structured codes and quantization for a model with two terminals,
constitute the two main contributions for this second model.

Last, we turn our attention to perfect secrecy generation for fixed signal ob-
servation lengths as well as for their asymptotic limits. In contrast with the analysis
of the previous two models that relies on probabilistic techniques, perfect secret key
generation bears the essence of “zero-error information theory,” and accordingly,
we rely on mathematical techniques of a combinatorial nature. The model under
consideration is the “Pairwise Independent Network” (PIN) model in which every
pair of terminals share a random binary string, with the strings shared by distinct
pairs of terminals being mutually independent. This model, which is motivated by
practical aspects of a wireless communication network in which terminals communi-

cate on the same frequency, results in three main contributions. First, the concept



of perfect omniscience in data compression leads to a single-letter formula for the
perfect secret key capacity of the PIN model; moreover, this capacity is shown to be
achieved by linear noninteractive public communication, and coincides with strong
secret key capacity. Second, taking advantage of a multigraph representation of
the PIN model, we put forth an efficient algorithm for perfect secret key genera-
tion based on a combinatorial concept of maximal packing of Steiner trees of the
multigraph. When all the terminals seek to share perfect secrecy, the algorithm is
shown to achieve capacity. When only a subset of terminals wish to share perfect
secrecy, the algorithm is shown to achieve at least half of it. Additionally, we ob-
tain nonasymptotic and asymptotic bounds on the size and rate of the best perfect
secret key generated by the algorithm. These bounds are of independent interest
from a purely graph theoretic viewpoint as they constitute new estimates for the
maximum size and rate of Steiner tree packing of a given multigraph. Third, a par-
ticular configuration of the PIN model arises when a lone “helper” terminal aids all
the other “user” terminals generate perfect secrecy. This model has special features
that enable us to obtain necessary and sufficient conditions for Steiner tree packing

to achieve perfect secret key capacity.
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Chapter 1
Introduction: Information Theoretic Secret Key Generation

1.1 Overview of Prior Work

Information security is a crucial requirement in current and emerging commu-
nication networks, and issues of secure communication have thrust themselves to
the forefront of network operation, and of research in information theory. These
developments emphasize the need for the study of network or multiterminal models
of information security, which are of significantly greater scope and complexity than
their point-to-point predecessors.

The security of all currently used cryptosystems is reliant on the difficulty cur-
rently faced in solving an underlying computational problem, e.g., factoring large
numbers into prime numbers or computing discrete logarithms. Such a notion of
computational security can offer guarantees only under assumptions of restricted
computational power available to an adversary. Thus, it is desirable — from both a
theoretical as well as a practical standpoint — to design cryptosystems that are based
on a rigorously provable notion of security which does not assume any restrictions
on an adversary’s computational power. The notion of information theoretic secrecy
or unconditional security meets this requirement. It affords the guarantee that a
secret key and, thereby, a legitimate plaintext message are, in effect, statistically

independent of the observations of an adversary with eavesdropping and wiretap-



ping capabilities, and not limited in terms of computational resources. The first
information theoretic study of a secret key cryptosystem was Shannon’s classical
work [47].

An important and popular class of models in the study of information theoretic
security, that fall in the category of “keyless” cryptosystems, involve reliable and
secure message transmission over insecure channels. Wyner’s pioneering wiretap
channel [51] has one input and two outputs; a legitimate transmitter controls the
input, while a legitimate receiver and a wiretapper have access to each output. The
wiretapper’s channel output is a degraded version of that of the legitimate terminal.
Subsequently, Csiszar and Korner [12] generalized Wyner’s result for a model in
which the eavesdropper’s channel output need only be more noisy than that of the
legitimate channel. These initial works have inspired numerous important extensions
in several new directions in recent years; a survey can be found in [33].

This dissertation deals with secret key generation for a multiple source model
by multiple network terminals based on prior and privileged access to a set of cor-
related signals followed by public discussion among themselves. Separate terminals
that observe the outputs of distinct albeit correlated sources can generate a secret
key (SK) by means of public communication. Specifically, these terminals are able to
generate “common randomness” (CR) regarding which an eavesdropper, with access
to the public communication, can glean only a negligibly small amount of mutual
information. Typical applications arise in sensor networks and satellite-terrestrial
networks. This phenomenon, first observed by Bennett et al [4] and Maurer [39],
followed by Ahlswede and Csiszar [1], for a model with two terminals, has been
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investigated later by many researchers. A model which includes a helper terminal,
observing the output of another source and assisting in generating SK, was investi-
gated by Ahlswede and Csiszar [1], and by Csiszar and Narayan [14]. These works
were followed by that of Csiszar and Narayan [15, 16] in which SK generation was
studied for models with arbitrary numbers of terminals and arbitrary number of
helpers. These models of SK generation are broadly referred to as “multiterminal
source models.”

Another class of SK generation models namely “multiterminal channel models”
are considered in [39, 1] for models with two terminals, and in [16, 17] for models
with arbitrary numbers of terminals and arbitrary numbers of helpers. In a channel
model, a set of terminals can transmit information over a secure multi-input multi-
output channel to another set of terminals. Additionally, all the terminals are
allowed to communicate over a public noiseless channel of unlimited capacity, which

is observed by an eavesdropper.

1.2 The Multiterminal Source Model

Our focus is on the multiterminal source model introduced in [15]. In this
model, each of the terminals observes a distinct component of a memoryless multiple
source; we consider sources with discrete as well as continuous alphabets. A set of
the terminals then wish to generate a SK with the cooperation of the remaining
terminals. To this end, the terminals are allowed to communicate publicly with

each other, possibly interactively in many rounds. No rate constraint is imposed on



the public communication. Randomization may be permitted at each terminal.

We assume that an eavesdropper has full access to the public interterminal
communication, but that it is passive, i.e., it cannot tamper with the public commu-
nication. No restrictions are assumed on the eavesdropper’s computational power.

The SK capacity—the largest rate at which a SK can be generated—for a
model with a discrete memoryless multiple source (DMMS) is determined in [15].
This capacity result holds in a strong sense: the mutual information of the SK
and the public communication vanishes exponentially in the observation length. A
concept of strong SK capacity was introduced in [40] in which the mentioned mutual
information is only required to go to 0, and the stronger version we use here was
first considered in [11, 14, 15].

The SK capacity for a model with a DMMS derived in [15] reveals an innate
connection between SK generation and lossless distributed data compression without
any secrecy constraints. In particular, consider m terminals each observing inde-
pendent and identically distributed (i.i.d.) repetitions of discrete random variables
(rvs) Xi,..., X, respectively. A set of terminals A C {1,...,m} seek a SK with
the help of the remaining terminals. The SK capacity for this model can be com-
puted by subtracting from the total joint entropy H(Xj, ..., X,,) the smallest rate
of communication which enables each terminal in A to reconstruct near-losslessly all
the m components of the DMMS, i.e., for the terminals in A to become omniscient.
The problem of determining the latter smallest rate is one of multiterminal data
compression and does not involve any secrecy constraints.

The mentioned connection also suggests a means of generating a SK of op-
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timum rate for such a model with a DMMS by decomposing the problem of SK
generation into two parts. First, the terminals publicly communicate at the most
parsimonious rate to enable all the terminals in A to become omniscient. Second,
each terminal in A generates a SK by extracting from this omniscience part that is
nearly independent of the public communication. It is also shown in [15, 16] that
the SK capacity can be achieved, based on the decomposition, by noninteractive

communication and without randomization.

1.3 Motivation

Algorithms for SK generation for multiterminal source models constitute a
largely unexplored domain; preliminary results are available for models consisting
of two terminals and for special cases with multiple terminals [53, 56]. For example,
for a source model, can a SK of optimum rate be generated using structured codes,
e.g., linear codes?

Next, turning to a multiterminal source model in which the multiple source
observed by the terminals is continuous-valued, e.g., a memoryless jointly Gaus-
sian multiple source, the SK capacity is not immediate, in general, since there is
no meaningful analog of the concept of minimum communication for omniscience.
However, from the discussion above, we can expect an inherent connection between
the problems of SK generation and lossy data compression. What are the char-
acterizations of SK capacities for source models with memoryless jointly Gaussian

multiple sources? Can a SK of optimum rate be generated using structured codes,



e.g., lattice and linear codes?

SK generation for a special incarnation of the source model has an intriguing
connection with combinatorial problems, in theoretical computer science, of tree
packing in multigraphs. This connection is seen in SK generation for a “pairwise
independent network” (PIN) source model. The PIN model is motivated by practical
aspects of a wireless communication channel in which the transmitters and receivers
operate on the same frequency in a multipath environment. The SK capacity for the
PIN model will be seen to depend on the joint distribution of the underlying rvs only
through the best rates of pairwise SKs. First, this fact suggests that a (globally)
optimum secret key for the terminals in A can be built from locally generated keys for
pairs of terminals. Second, it hints at the possibility of a connection to algorithms
for tree packing in order to propagate optimum pairwise keys to form a globally
optimum key. Can tree packing algorithms be used, in general, to generate global
keys for a set of terminals from locally generated keys? Under what conditions
are such global keys of optimum rate? Furthermore, can information theoretic SK
generation provide tools for investigating problems of tree packing in multigraphs?

This dissertation strives to answer the questions raised above.

1.4 Outline and Summary of Contributions

We begin in Section 2.1 with a description of a general multiterminal source
model for information theoretic secrecy generation by multiple terminals based on

privileged and correlated observations of signals at the terminals, followed by public



interterminal communication. Various information theoretic security requirements
of increasing stringency: weak, strong and perfect secrecy, are discussed followed by
the operational definitions of the corresponding notions of SK capacity.

Section 2.2 deals with secrecy generation for the discrete multiterminal source
model. Specifically, in Section 2.2.1, we present an existing and motivating result on
a connection between SK capacity and a source coding concept of “minimum rate
of communication for omniscience.” Section 2.2.2 describes our contribution on a
new connection between SK capacity and a new source coding concept of “minimum
information rate for signal dissemination.” Section 2.2.3 contains our results on the
structural properties of optimal codes for secrecy generation; specifically, we show
that linear codes suffice to generate a strong SK of the best rate.

Chapter 3 investigates secrecy generation for models with continuous obser-
vations focusing on jointly Gaussian signals. In the absence of analogs to source
coding notions for the discrete model of Chapter 2, new techniques are required for
the characterization of SK capacity as well as for the design of algorithms for SK
generation. The proof of the SK capacity result in Section 3.2, in particular the
converse proof, as well as the design of capacity-achieving algorithms for SK gener-
ation based on structured codes and quantization, for a model with two terminals
in Section 3.3, constitute the two main contributions of this chapter.

In Chapter 4, we turn our attention to perfect SK generation for fixed sig-
nal observation lengths as well as for their asymptotic limits. In contrast with the
substance of Chapters 2 and 3 that relies on probabilistic techniques, Chapter 4

bears the essence of “zero-error information theory,” and accordingly, we rely on
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mathematical techniques of a combinatorial nature. The model under consideration
in this chapter is the “Pairwise Independent Network (PIN)” model in which every
pair of terminals share a random binary string, with the strings shared by distinct
pairs of terminals being mutually independent. Chapter 4 offers three main contri-
butions. First, the concept of perfect omniscience leads to a single-letter formula
for the perfect SK capacity of the PIN model; moreover, this capacity is shown to
be achieved by linear noninteractive communication, and coincides with the strong
SK capacity. Second, taking advantage of a multigraph representation of the PIN
model, we put forth an efficient algorithm for perfect SK generation based on a com-
binatorial concept of a maximal packing of Steiner trees of the multigraph. When
all the terminals seek to share perfect secrecy, the algorithm is shown to achieve
perfect SK capacity. However, when only a subset of terminals wish to share perfect
secrecy, the algorithm can fall short of achieving capacity; nonetheless, it is shown
to achieve at least half of it. Additionally, we obtain nonasymptotic and asymptotic
bounds on the size and rate of the best perfect SK generated by the algorithm.
These bounds are of independent interest from a purely graph theoretic viewpoint
as they constitute new estimates for the maximum size and rate of Steiner tree
packing of a given multigraph. Third, a particular configuration of the PIN model
arises when a lone “helper” terminal aids all the other “user” terminals generate
perfect secrecy. This model has special features that enable us to obtain necessary
and sufficient conditions for Steiner tree packing to achieve perfect SK capacity, as
also a further sufficient condition that posits a “weak” role for the helper terminal.

In the concluding Chapter 5, we first compile in Section 5.1 specific open



problems emerging from our work in Chapters 3 and 4 that are yet to be resolved.
Finally, in Section 5.2 we point out broader research directions that are motivated

by this dissertation.

1.5 Apropos Group Secret Key Cryptosystems

There exists a rich body of work on group secret key distribution based on
the approach of computational theoretic security, on which existing cryptosystems
are based (cf. e.g., [6, 29, 36, 35, 37]). It is our hope that our work on information

theoretic group secret key generation will serve as a useful complementary step.



Chapter 2

The General Multiterminal Source Model

This dissertation deals with models for secrecy generation by multiple ter-
minals based on privileged and correlated observations of signals at the terminals,
followed by public interterminal communication. Typical applications arise in sen-
sor networks and satellite-terrestrial networks. For example, in a sensor network,
multiple sensor nodes are deployed to measure a parameter of the environment; the
distinct measurements at the various sensor nodes usually exhibit certain correlation
structures depending on their locations. In a satellite-terrestrial network, various
ground stations can observe different noisy versions of a common broadcast signal.
In this setting, if the terminals are afforded a means to publicly exchange messages,
then it transpires that the terminals can devise a secret key (SK) [39, 1]. In other
words, these terminals are able to generate common randomness regarding which an
eavesdropper with access to the public communication can glean only a negligibly

small amount of mutual information.

2.1 Description and Secret Key (SK) Capacity

We begin with a description of the “multiterminal source model” for SK gen-
eration. Our model builds on the discrete model introduced in [15, 16]. Termi-

nals 1,...,m represent legitimate parties that cooperate in SK generation. Let
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Xiq,...,X,, be discrete or R-valued rvs with alphabets denoted by AXi,...,4&,,,
and with (known) joint probability distribution. Let M = {1,...,m}. Terminal
i € M observes n independent identically distributed (i.i.d.) repetitions of the rv X,
namely X,; = Xgn) = X! = (Xj1,...,Xin). Weuse the notation X = (X1,..., Xpn)
and X = (Xi,...,X,,). Following these observations, the terminals are allowed
to communicate over a public noiseless channel, possibly interactively in multiple
rounds. We assume without loss of generality that the public communication, which
may be interactive, takes place in consecutive time slots in r rounds. Specifically,
following the formulation in [15], it is depicted by the mappings fi,. .., fur with f,
corresponding to the transmission in slot v by terminal ¢ = v mod m; we allow f,
to yield any function of the source sequence (X; = x;) observed at terminal ¢ and of
all previous communication fp,—1 = (f1,..., fu—1). The corresponding rvs repre-
senting the communication are denoted by Fi, ..., Fy,,, with F, = f, (X, F1p—1))-
We denote the communication collectively by F = F]y . The goal is for a set of
terminals A C M to generate secret common randomness with the cooperation of
the remaining terminals in M\ A, which is concealed from an eavesdropper with
access to the public communication F. This is formalized next.

Following [15], given € > 0, a rv L will be said to be e-recoverable from a rv Z
if there exists a function f(Z) so that Pr{L # f(Z)} < e. If such a function exists
so that Pr{L # f(Z)} =0, then L is said to be perfectly recoverable from Z.

A function L of X is e-common randomness (e-CR) for a set of terminals
A C M, achievable with communication F, if L is e-recoverable from (X;, F), for

each i € A.
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A function K of X, with values in a finite set I constitutes an e-secret key
(e-SK) for a set of terminals A C M, achievable with communication F, if K is

e-CR for A and, in addition, K has a security indez'
s(K;F) = log|K| — H(K|F) <, (2.1)
where |KC| denotes the cardinality of K. Observe that if K is an e-SK, then both
log K| — H(K) < (2.2)

and

[(K AF) <e (2.3)

hold so that K is nearly uniformly distributed and is nearly independent of F, since
€ is typically small.

Definition 2.1: A nonnegative number R is an achievable SK rate for a set
of terminals A C M if there exist? ¢,-SKs K™ with values in finite sets K™
that are achievable with suitable public communication (with the number of rounds
possibly depending on n), such that lim,, ... €, = 0 and lim,_ % log [K™| = R.
The supremum of achievable SK rates for A is called the SK capacity C(A). An
e,-SK is termed a strong SK if €, vanishes exponentially in n; the corresponding SK
capacity is called the strong SK capacity.

Remark: In the earlier works on the source models for SK generation, a weaker

notion of SK was adopted [39, 1]. In particular, the corresponding notion of SK

LAll logarithms are natural unless stated otherwise.

2The requirement is only for an infinite sequence of K (™) (infinitely many n), and not necessarily

for all n sufficiently large.
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capacity therein, which we shall call the weak SK capacity, is defined as the largest
rate of a sequence of €,-SKs with ¢, being required to satisfy only the condition
lim,, .o, ne, = 0. In other words, the secrecy requirement on the SK is relaxed from
that one in Definition 2.1 to lim,_, %S(K ;F) = 0. An obvious drawback of this
weak notion of SK is that s(K; F) can grow with n (as long as it grows slower than
n) and, hence, the weak SK K may satisfy lim, .. I[(K A F) = co. In effect, the
eavesdropper can gather an unbounded amount of information regarding the SK
with increasing signal observation length. However, it was shown in [41, 15] that in
almost all source models for SK generation studied previously, weak SK capacities
coincide with (strong) SK capacities.

Next, for certain multiterminal source models for SK generation, e.g., the
Pairwise Independent Network model of Chapter 4, it is interesting to investigate
an even stronger notion of SK, namely a perfect SK. It will also be clear that this
notion affords the strongest possible form of information theoretic secrecy. The
notion of perfect secrecy dates back to the work of Shannon [47] in the context of a
secrecy model involving a noiseless channel. Here, we investigate perfect secrecy in
the context of multiterminal source models for SK generation.

Definition 2.2: A nonnegative number R is an achievable perfect SK rate for
a set of terminals A C M if there exist 0-SKs K™ with values in K™ that are
achievable with suitable public communication (with the number of rounds possibly
depending on n), such that lim, .., L log|K™| = R. The supremum of achievable
perfect SK rates for A is called the perfect SK capacity Cp(A).

Observe that if K is a 0-SK, i.e., a perfect SK, then K is independent of F

13



and is uniformly distributed.

Remarks: (i) The stringent requirement of a perfect SK K, namely s(K;F) =0
makes the study of perfect SK generation a subject in zero-error information theory.
Zero-error information theoretic problems are typically of a combinatorial nature
[30], and this is true of perfect SK generation as well. Proof techniques involved
in results concerning perfect SK generation are of a combinatorial kind, and not
probabilistic such as those involved in the study of (strong) SK generation.

(ii) In the formulation of models for SK generation or perfect SK generation,
it is possible to allow the terminals, in addition to engaging public communication,
to also randomize. The randomization at each terminal ¢ € M is represented by a
rv M; such that the rvs My, My, ..., M, (Xy,...,X,,) are mutually independent.
By virtue of this mutual independence, it transpires that randomization does not
enhance SK capacities [15]; this is why we chose to exclude randomization in our
general model for SK generation. On the other hand, randomization can facilitate
SK construction and in some of our specific models below, we explicitly use ran-
domization in code constructions for SK generation (without any enhancement in

SK capacity).

2.2 SK Generation for the Discrete Model

In this section, we focus on SK generation for a model in which each X; takes
values in a finite set X;, i € M. We discuss certain connections between the SK

generation and related problems of multiterminal data compression. We begin with
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a summary of an existing and motivating result on a connection between the SK
capacity and a source coding concept of “minimum rate of communication for omni-
science.” Then we proceed to describe our contribution on a new connection between
the SK capacity and a new source coding concept of “minimum information rate for
signal dissemination.” Lastly, we discuss our results on the structural properties of

optimal codes for SK generation.

2.2.1 SK Generation from Omniscience

The SK capacity for the model in this Section 2.2 was characterized in [15],
where a connection was established between SK capacity and a new concept in data
compression of “minimum rate of communication for omniscience” (that did not
involve any secrecy constraint).

Definition 2.3 [15]: A number R is called an achievable rate of commu-
nication for omniscience (CO rate) for a set of terminals A if there exists com-
munication F™ as described in the second pararaph of Section 2.1 such that X
is €,-CR achievable with F with lim,, . €, = 0 and lim,_. % log [|[F™| = R,
where ||[F(™|| denotes the cardinality of the range of F(™. The infimum of achiev-
able CO rates for A is denoted by OMN(A) and is termed the minimum rate of
communication for omniscience.

Proposition 2.1 [15]: The minimum rate of communication for omniscience

for a set of terminals A C M equals

OMN(A)= min > R, (2.4)

RumER(A) £
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where
R(A) ={Bym = (Ry,...,Rm): Y R; > H(Xp|Xp:), BC M, BB A} (25)
i€B
Furthermore, OM N (A) is achievable by noninteractive communication and with an
exponentially vanishing error in recovery at each terminal © € A.
Theorem 2.2 [15]: The (strong) SK capacity for the terminals A C M
equals

C(A) = H(X,,...,X,) — OMN(A). (2.6)

Furthermore, C'(A) is achievable by noninteractive communication.

Remark: The formula (2.6) not only serves as a single-letter characterization
of SK capacity but also carries an interpretation that suggests a specific recipe for
generating a key of maximum rate. Specifically, it follows from (2.6) that there
will be no loss of optimality (in terms of the maximum achievable SK rate) by a
restriction to the class of schemes for SK generation that proceed in the follow-
ing two stages. In the first stage, the terminals engage in the most parsimonious
interterminal communication for the sole purpose of allowing each terminal in A
to become omniscient, i.e., to reconstruct losslessly the signals observed by all the
other terminals. This step involves no secrecy requirement. Then, the second stage
entails SK extraction from omniscience, i.e., the maximal CR X, with the SK being
independent of the communication in the first stage. The maximum rate of the SK
that can be so generated by this two-stage approach is the entropy rate of X 4, i.e.,

H(X ), less the minimum rate of communication for omniscience.
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2.2.2 SK Generation from Less-Than-Omniscience

In order to attain SK capacity, it suffices, in effect, for the terminals in A
to obtain omniscience through the most parsimonious communication. It is also
interesting to note that omniscience is not necessary to achieve SK capacity, as is
known already for the case of m = 2 terminals (cf. [39, 1]). In fact, the following
result illustrates this observation.

Theorem 2.3 [16]: The (strong) SK capacity for A C M can be achieved
with noninteractive communication and with each terminal i € M publicly commu-
nicating a single message f;(X;). Further, SK capacity can be achieved with the key
generated at any particular terminal k € A obliviously of the public communication.

A useful way of interpreting the result of Theorem 2.3 is by establishing a new
connection, reminiscent of Theorem 2.2, between the SK capacity and a new concept
in source coding of the “minimum information rate of communication for dissem-
inating among A the signal of a member terminal (in A). This new connection,
which is our contribution, is discussed next.

Definition 2.4: For each k € A, a number I > 0 is called an achievable in-
formation rate of communication for disseminating among A the signal of terminal
k (ICD-k rate), if there exists communication F™ as described in the second para-
graph of Section 2.1, such that X}, is €,-CR achievable with communication F®,
and with lim,,_,~. €, = 0 and lim,,_, %[ (Xx AF) < I. The infimum of achievable
ICD-k rates for A is denoted by C'Dy(A) and is termed the minimum information

rate of communication for disseminating among A the signal of terminal k.
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Theorem 2.4: For each k € A, the (strong) SK capacity equals

C(A) = H(X;) — CDy(A). (2.7)

Corollary 2.5: For each k € A, the minimum information rate of commu-

nication for disseminating among A the signal of terminal k equals

CD(A) = OMN(A) — H(X gy | X5). (2.8)

Remarks: (i) In disseminating among A the signal of a particular terminal (in
A), the characterization of the minimum rate of the needed communication (rather
than the information rate as in Definition 2.4) is an open problem in multiterminal
data compression that belongs to the longstanding class of open problems collectively
known as the “helper problems” [13, Chapter 3]. However, a characterization of the
minimum “information” rate of such communication in Theorem 2.4 and Corollary
2.5 follows almost immediately from Theorems 2.2 and 2.3, and is also of independent
interest in the context of multiterminal data compression.

(ii) It is seen readily from Theorem 2.4 that for every k € A,

C(A) = lim lmaXH (X|Fr) (2.9)

n—oomn Fy

where the maximum is over all communication Fj = Flgn) for disseminating among
A the signal of terminal k. The invariance with £ € A of the operational term in
the right side of (2.9) which does not involve any secrecy requirement, could be of
independent interest in multiterminal data compression.
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2.2.3 Linear Codes for SK Generation

Theorems 2.2 and 2.4 suggest two different schemes that suffice to achieve
the SK capacity. The first scheme involves attaining omniscience with the most
parsimonious communication, followed by the extraction of an optimum-rate SK
from omniscience. The second scheme entails a dissemination among A of the signal
of a member terminal of A in the most “informationally” parsimonious manner,
followed by SK extraction of optimum rate from the mentioned signal. Our next
results establish that, in fact, these two schemes can be implemented with linear
communication and subsequent linear secrecy extraction without sacrificing the rate-
optimality of the resulting SK.

In this Section 2.2.3, we shall assume that X} = &, = ... = &), = F,, where
[, is a Galois field; each X" = [y is regarded as a vector space over this field and
each realization x7 € Fy of an Fj-valued rv is thought of as a column vector in
Fy, i=1,....,m.

Definition 2.5: The communication F = F™ is termed linear noninteractive
communication (LC) if F = (F,..., F,) with® F; = L;X;, where L; is a b; x n
matrix with F, -valued entries for some positive integer b;, 1 =1,...,m.

Theorem 2.6: For any R < C(A), there ezists linear noninteractive com-

nR

munication F = F™ qand a Lmlogq

| x n matric K with Fym-valued entries such
that X is €,-recoverable from (X;,F) at each terminal j € A, with €, vanish-

ing exponentially in n; further, KX constitutes a strong SK of rate R, where

3All additions and multiplications are in F,.
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X = (Xpm1,---» Xan) s regarded as a column vector* in Fim.

Theorem 2.7: For any R < C(A) and for any fized k € A, there exists linear
noninteractive communication F = F™ and a [%J x n matriz Ky, with F,-valued
entries such that Xy, is €,-recoverable from (X;, F) at each terminal j € A\{k} with

€n vanishing exponentially in n; further, KXy constitutes a strong SK of rate R.

2.2.4 Proofs

Proof of Theorem 2.4: First, we show that
C(A) < H(Xk) — CDy(A). (2.10)

For an arbitrary § > 0, let F = F(™ be communication for omniscience of minimum

rate for A, i.e., X is €,-CR for A for some ¢, decaying to 0, and
1
lim —log||F|| < OMN(A) +6; (2.11)
n—oo N,

the existence of such F is asserted by Proposition 2.1. Noting that F is a function

of X, it follows from Theorem 2.2 that

lim S H(XuF) > H(Xu) — lim ~log [F]| > C(A) — 6. (2.12)
n—oo N,

n—oo N,
Since k € A, X yp\ (k) is €n-recoverable from (Xj, F). Then

%I(XkAF) = H(Xk)—%H(XIJF)

1 1
= H(X})— EH(XM|F) + 5H(XM\{1€}|X/§>F)

< H(Xy) — C(A) + 5 + ae,, (2.13)

4All additions and multiplications in the computation of KXy are in Fgm
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for some a > 0, by (2.12) and Fano’s inequality. Since Xy is €,-recoverable from
(F,X,) for every i € A\{k}, F is also communication for disseminating X, among
A with the ICD-k rate at most H(X}) — C(A) + d by (2.13). Since 4 is arbitrarily
small, it follows from Definition 2.4 that C'Dy(A) < H(X}) — C(A) which is (2.10).

In order to show that
C(A) > H(X)) — CDy(A), (2.14)

for an arbitrary 6 > 0, consider a communication F for disseminating X, among A
with ICD-k rate £1(X;, AF) < CDy(A) + 6 for all n sufficiently large. Then, X, is

€,-CR for A for some ¢, decaying to zero in n and
1 1
—H(Xg|F) = H(Xy) — —I(Xx AF) > H(X;) — CDy(A) — 4. (2.15)
n n

It suffices to prove assertion (2.14) for blocklengths that are integer multiples
of n. To this end, consider N i.i.d. repetitions of (X, F). For each j € A\{k},

since X, is €,-recoverable from (X;, F), it holds that
H (XX, F) < ne, log | Xy| + hey). (2.16)

A consequence of the Slepian-Wolf theorem [16, Lemma 3.1], we get that X is
nn-recoverable from (X;V ,FV g, (X]kv )) for a suitable
gj XN — {1,.. ., |eNmenlog|Xil+h(en)) |} where ny decays to 0 exponentially rapidly
in N.

It remains to show that there exist SKs K ") with rate limy_. —x log || K" ||
arbitrarily close to the right side of (2.14). To this end, we apply [15, Lemma B3]
with U = Xy, V =F, and R = (|A| — 1) (ne, log |Xk| + h(e,)). With this choice,
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and by (2.16),

HUIV) =R = H(XF) = (A = 1) (ne, log | X[ + h(en))

> 0 [H0) - ODUA) ~ 6= (141 1) (enlog 0]+ 20(en) ).

Since €, decays to 0 in n, [15, Lemma B3] gives that there exists K™) with
log || K|| > nN (H(Xy) — CDg(A) — 6), achievable with appropriate communiction
FN) such that s(K F) decays to 0 exponentially fast in N. Since § was arbitrary,
this establishes (2.14), thereby completing the proof of the theorem. The corollary
is immediate. |

The proofs of Theorems 2.6 and Theorem 2.7 rely on the following technical
lemma which can be regarded as an extension of [15, Lemma B3|. Its proof is
provided in Appendix A.1.

Lemma 2.1: Let A be a rv with values in a Galois field Py and let U be an R™-
valued rv (with or without a density with respect to the Lebesque measure). Consider
N i.i.d. repetitions of (A,U), namely (AN, UV) = ((41,U),...,(An,Uy)) and let
B = BM™) ¢ B = BW) be a finite-valued rv with a given joint distribution with
(AN, UN). Then, for every § > 0 and every R < H(A|U) — +log|B| — 26, there
exists a L%J x N matriz L with F -valued entries such that s(LAY; UN | B) vanishes
exponentially in N.

Remark: Lemma 2.1 extends [15, Lemma B3] in the following specific ways.
First, [15, Lemma B3] deals with a finite-valued U while the U in Lemma 2.1 can
have an arbitrary alphabet. Second, [15, Lemma B3] asserts the existence of strong

secrecy from (U N ,B) obtained as a function of AV but, unlike in Lemma 2.1,
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without the guarantee that the function is linear.

Proof of Theorem 2.6: We begin by invoking a known result in source
coding from [10] that asserts the existence of linear noninteractive communication
for omniscience (cf. Definition 2.3), yielding that X vy is €,-CR for A achievable with
F for an exponentially vanishing ¢,, with the optimum rate lim, .., +log||F|| =

OMN(A). Theorem 2.6 now follows from the fact that (cf. (2.6))
1 .1 .1
C(A)=H (Xpm) —OMN(A) = EH(XM) — lim ﬁlogHFH = lim EH(XM|F),

and by the use of Lemma 2.1 with N = n,A = Xy, B = B™ = F and with U
being constant, respectively. [ ]

Proof of Theorem 2.7: We start in a similar manner as in the proof of
Theorem 2.6. Specifically, by invoking the result of [10], we get that for an arbitrary
but fixed 6 > 0 and for all ¢ sufficiently large, there exists linear noninteractive
communication F®) = {Fngt), i=1,... ,m} with log |[F®|| = <Z:i1 ri> logq <
t(OMN(A) + §) where F; is an r; x t matrix with F -valued entries, i = 1,...,m,

such that Xga is e-recoverable from (th), F(t)> for each i € A. Note that for k € A,
H(XPEO) = H(XPEO) - H (XX, FO)

= tH(Xu)— H(FY) — H(Xm|X),, FV)

> tH(Xp)— H (FY) —et) log|Xi| - h(e)
=1

>t (C’(A)—(S—ezmjlong) — h(e). (2.17)

Here the first inequality is a consequence of the e-recoverability of Xﬁa from (Xl(f), F(t)>
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and Fano’s inequality, and the second inequality follows from
H (FY) <log||[F?| <t (OMN(A) +9)

since H (X)) — OMN(A) = C(A) by Theorem 2.2.

It suffices to prove the assertion for blocklengths equal to integer multiples of
t. To this end, consider N i.i.d. repetitions of (Xsa, F(t)), namely <X(/f/)IN, FON )
Then, for each j € A\{k}, since H <Xl(f)|X§-t),F(t)> < telog |Xi| + h(e), the re-

sult of [10] gives that X,(f)N is ny-recoverable from <X§t)N,F(t)N ,HjX,(f)N> for a

LN(tE log | Xy |[4+h(€)+6)

tlogq | x N matrix H; with F -valued entries, and ny decays to 0 expo-

nentially rapidly in N. It follows upon setting F(N) = (F(t)N, {HjX](“t)N}jeA\{k})
that F(V) satisfies the recoverability assertion of the theorem with n = tN, N =
1,2,....

It remains to show that there exists a linear function KM of X,(f)N that
satisfies the assertion on K™ with n = tN. To this end, we apply Lemma 2.1 with

A= Xl(f)’ B=F®" and B = {Hng)N} o With this choice, by (2.17)
jEA\{k

1
H(A|B) - < log|B| = H(X,S)\F@)) — (|A] = 1)(telog || + R(e) + )

t[C(A) —d—¢ (\AI log | | + Zlog\?ﬂ) ]

i=1

v

—|Al(h(e) +9)

> HC(A) — 20)

upon choosing ¢ > 0 sufficiently small and ¢ sufficiently large. Hence, Lemma
2.1 gives that there exists a ij x N matrix K}, such that for KtV =

tlogq

K kX,(f)N, s <K (tN). ptN )) vanishing to 0 exponentially rapidly in N. The proof of
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Theorem 2.7 is completed by the observation that a linear mapping from IF(];{ to IFé\f ,
for some M, that corresponds to left-multiplication of a vector in Fé\f by each of
the matrices Ky, {H;},. A\{k} 88 above, has an alternative representation as another
linear mapping from IFZN to IFZN which can be represented then by a tM x tN matrix

with F,-valued entries (instead of with F,-valued entries in its current form). m
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Chapter 3

SK Generation for the Gaussian Model
In the general model described in Section 2.1, let Xy,..., X,, be R-valued

jointly Gaussian rvs with

X, X, [Xl,...,Xm]

El ¢+ | =0 Q=E : >0, (3.1)

Xm X

where Q;; = 0;0;p;; with 67 = E[X?], 1 <4,j < m. It follows as a consequence of
(3.1) that

—00 < h(Xp) < h(Xpm) < oo for every B C M. (3.2)

This model describes a situation in which the terminals have prior and priv-
ileged access to jointly Gaussian signals. The SK capacity of the Gaussian model
cannot be inferred from the counterpart result for the discrete model in Chapter
2. Specifically, the central role of omniscience in the attainment of SK capacity
Theorem 2.2, cannot be replayed directly now as the minimum rate of public com-
munication for omniscience is unbounded. We characterize the SK capacity for the
Gaussian model. Our achievability proof is based on a suitably refined quantization
of the signals at the terminals combined with our results in Chapter 2. The con-
verse proof, which constitutes the first main contribution of this chapter, provides
a technique that is applicable to the discrete model of [15] as well as to models
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with R-valued rvs under suitable technical conditions. Our SK capacity formula
acquires a simple form for the special case of “symmetrically correlated” Gaussian
signals. Of special interest is the model with two terminals with signals that are
a fortiori symmetrically correlated. Considering schemes that involve quantization
at one terminal, we characterize the best rate of an achievable SK as a function of
quantization rate; SK capacity is attained as the quantization rate tends to infin-
ity. Structured codes are shown to attain the optimum tradeoff between SK rate
and quantization rate, constituting the second main contribution of this chapter.
This result shows how SK rate increases optimally with processing complexity (as

measured by quantization rate).

3.1 SK Capacity

We begin with the observation that the SK capacity for the model above
will depend on the joint distribution of Xj,...,X,, only through the correlation
coefficients {p;;, 1 <1i# j <n}. This is obvious since replacing X; by f—: where
o; >0 (by (3.1)),7=1,...,m, does not alter SK capacity.

As in [16], for A C M, let
B(A)={BcM: B+0, B2 A} (3.3)

and B;(A) be its subset consisting of those B € B(A) that contain i, i € M. Let
A(A) be the set of all collections A = {A\g : B € B(A)} of weights 0 < Ap < 1,
satisfying

Z Ap=1, foralli=1,...,m. (3.4)
BeB;(A)
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Theorem 3.1: The (strong) SK capacity equals

C(A) = h(Xi,..., Xpn) — max > Ash(Xp|Xpe). (3.5)
Al )BEB(A)

Corollary 3.2: The (strong) SK capacity for a “symmetric” Gaussian model
with
Q(i,1) = o2, 1<i<m
QUi j) = poioj, 1<i#j<m,
with —ﬁ < p <1, and with A = M, equals

C(M) = %log ! | (3.7)

(I=p) A+ (m—1)p)mT

In particular, when m = 2,

1
1—p%

C(M = {1,2}) = %log

3.2 Proof of the SK Capacity Theorem

Proof of Theorem 3.1:

Achievability: The idea is to use scalar quantization of X; at terminal ¢, i =
1,...,m, followed by SK generation for the resulting finite-alphabet source model
along the lines of [15]. By appropriately choosing the scalar quantizer, the claimed

rate of (3.5) will be shown to be achievable in the limit of infinite quantization rates.
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In particular, for each positive integer ¢, consider a quantizer f, : R —

{0,1,...,2¢*}, where

0, ifx>qorz< —q
folx) = (3.9)
[q(z+q)], f —g<2<q.
At each terminal 7, consider the {0, 1,. .., 2¢*}-valued rv Y(Q) fo(X),i=1,...,m.

Define the {0, 1}™-valued rv Yn(ﬂl = (Liux) # 0) 1y

Next, consider a fictitious (finite-alphabet) source model for “private key”

generation iwth m + 1 terminals consisting of legitimate terminals 1,...,m that
observe respectively Y%q), e ,YT(E), and a (compromised helper) terminal m+1 that

observes Y,ﬂﬁl. Now the terminals in the set A C M = {1,...,m} seek to generate
a private key (PK), say K, with the help of all the remaining terminals including
terminal m + 1, using public communication, say F, so that the security condition

(2.1) is satisfied with <Y,(;ﬁrl, F) in the role of F, i.e.,
<K Yﬁn)ﬂ,F> <e (3.10)

Such a PK K is concealed from terminal m+ 1 as well as from an eavesdropper that
observes F. The corresponding largest rate of such a PK, namely PK capacity was
characterized in [15]; it was shown therein that PK capacity is achievable by allowing
the compromised terminal m+1 to fully reveal its observations Yfgll prior to public

communication by the various terminals. From [15], the (strong) PK capacity for

this finite-alphabet source model equals

i [ (AM) = 3 e (V)| 6
BeB(A)
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Returning to the Gaussian model at hand, terminals 1,...,m can simulate
the mentioned model for PK generation by using the scalar quantizer f, at each

terminal and letting each terminal ¢ reveal publicly the i.i.d. repetitions of the rv

Ls,x;) # 0)s ¢ =1,...,m. Consequently, in the limit of infinite quantization,
: : (@) @y (@)
lim min | H ( YmH) N ApH (Y Yo, YmH) , (3.12)
BeB(A)

is an achievable (strong) SK rate for the Gaussian model, by (3.11).

Next, for a fixed A € A(A), using (3.4), we get that

> As(m—|B|)

> AsIB\B

BeB(A) BeB(A)
S VRIS DRY STt
BEB(A) BeB(A)  i=l,..,

= m| > Ap—1]. (3.13)

Consequently, we have that

H <Y(Q)|Y(Q)1 — 1) Z /\ H (Y(Q)| A\B? m+1 1)
BeB(A)

= > awH (VM =1) - | X A1) B (v =1)

BeB(A) BeB(A)
= > A [H (VY0 = 0) — [M\B]logg]
BeB(A)
— Z Ap—1 [ (Y(q\ mH—l)—mlogq}, (3.14)
BEB(A)
by (3.13).

We proceed by using the following technical lemma whose proof is relegated
to the end of this proof of achievability.
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Lemma 3.1: For the Gaussian rvs X1 ..., X,, in the statement of Theorem

3.1, a quantizer f, as described in (3.9), and every B C M = {1,...,m}, we get

that
lim [ (Y(q>| ) — 1) . |B|logq] = h(Xp). (3.15)
gq—0o0
Furthermore,
lim Pr {Y(Q)l - 1} 1. (3.16)
q—o0
Continuing with (3.14) upon using (3.15) of Lemma 3.1, we get that for every
A€ A(A),
: (9) |y ( (9)
lim |H <Y v, = ) N ApH <Y DY, v, = 1)

BEB(A)

= > Ash(Xms) = | D As—1]h(Xn)

BeB(A) BeB(A)

= h(Xm) — Y Ah(Xp|Xpe). (3.17)
BEB(A)

In [15], it was shown using the duality of linear programming that the minimization
in the right side of the expression for the PK capacity (3.11) can be taken over a
finite subset A’(A) (of A(A)) that depends only on M and A. Consequently, the
following achievable (strong) SK rate in (3.12) can be bounded below further as

follows

lim min H(Y/Ef’,)|Yn(f+)1> - Y H( YA(Z{B,Y;%)

1m0 AEAA) B: BeB(A)
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_ T : @)y (@) ()
B c}ggoxe/vf%g/\(/x) <Y | m+1> Z A H< YM\B’Ym“)
BeB(A)

v

lim min  Pr {erhzl = 1} X
q—00 AN (A)CA(A)

H (VY0 =1) = 3 apH (Vi vl = 1)
BeB(A)

= i h(Xm) — Agh (Xp|Xpge
keA’g‘gIClA(A) () BE;(A) o (Xl Xor)

by (3.16), (3.17) and by the fact that A’(A), which does not depend on ¢, is finite

= min |h(X — Aph(Xp|Xpe) |,
i, [BX) = 32 Aoh(XslX)

which is (3.5).

It remains to prove Lemma 3.1.

Pr {Ynﬂl 7&1} = Pr{(Xi,....Xn) € ([~¢,4™)}
/ eXp( 1 TQ—I )
= 5 dx
([~g:qI™)° (27T)n/ Q"2

/ eXp 1 TQ )
n/2 1/2 dx
{x:lxi=q } (27T) QY
1 xI2

/{ ) o (34n) dx (3.18)

||x||>q} (2m)"? Q2

0 2
= rmlex (—T—> dr 3.19
), e (s (319

2
— O(q(m’”exp (—2)\ ) ) — 0,as ¢ — 00, (3.20)

IN

where A4 > 0in (3.18) is the largest eigenvalue of @ and C,, in (3.19) is a constant
that depends only on m. This establishes (3.16).

Next, for each B C M, let

€, 2 Pr{(1wo))i63 £ 1} < Pr {Ynﬂl £ 1} = 0,(1). (3.21)
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Further, for any collection of |B| integers kg, k; € {1,2,...,2¢*}, i € B, let Py, =
Pr{Yp = kg}. It now follows by the uniform continuity of the density function fx,
of X and the mean value theorem that for any kp, there exists an x5 (kp) satisfying

Y; = f,(vi(kp)) = ki, i € B so that Py, = fx,(vs(kp))q1Pl. Consequently,
H (Ysl (1) e = 1)

By

o (22

I
(]

kpe{l...2q2} 1Bl I—¢ 1—¢
P P
l—¢ 1 —¢

kpe{l...,2q2}IBI

Sxp(zp(kp))qg P )

1—¢

Il
(]

tog ( fxa(wn(ke))a™)

kpe{l...,2¢2}IB
+log (1 —¢g)
- | 2 <fXB<9”B(kB)>Q"B'>10g<fx3(x3(k3)>>

1 —e¢
knell 22} 15
+ log (1 —¢,) +|B|loggq.

Hence,

L > <fXB (iUB(/fB))(J*'Bl) log <fXB (xB(kB))>

1—¢,
kpe{l...,2q2}IBl

Taking limit as ¢ — oo, we obtain (3.15); this concludes the proof of Lemma 3.1. m
Converse: Our converse constitutes our first main contribution of this chapter.

The main technical tools are supplied by Lemmas 3.2 and 3.3 that follow.
Lemma 3.2: Consider the i.i.d. repetitions of the jointly Gaussian rvs X p =

(X1,...,Xm) in the statement of Theorem 3.1, namely, Xy = (Xq,...,X;n), and
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let Z be a rv with a joint distribution with X . For any A € A(A), i =1,...

and any U; that is a function of (X;, Z), i.e., Uy = u; (X;, Z), it holds that

h(XumlZ) = Y Ash(XpXpe, Z)
BeB(A)

= Y I (U AXp|Z)
BEeB(A):B>i

+[ XumlZU) = 3 Aph (Xp[Xpe, 2, U)]
BEB(A)

Proof:

h(XmlZ) — Y Aph(Xp[Xpe, Z)
BeB(A)

= h(Xum|Z,Ui) + 1 (Ui A Xuml|Z)
— > A [h(Xp[Xpe, Z,U;) + 1 (U A Xp|Xpe, Z)]
= |[hXMZ,U) = > Aph(Xpl|Xpe, Z,U)

BeB(A)

+ | T(UAXM|Z) = > ApI (Ui A Xp|Xpe, Z)
BeB(A)

= |[hXMZU) = > Aph(Xp|Xpe, Z,U)
BeB(A)

(3.22)

+ S X | TWUAXMZ) = > Apl (Ui AXp[Xpe,

BeB(A):B3i BEB(A):B3i

= |[hXMZU) = > Aph(Xp|Xpe, Z,U)
BeB(A)

+ Y Al (UiAXp|Z).

BeB(A):B>i
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Lemma 3.3: Consider the i.i.d. repetitions of the jointly Gaussian rvs X p =
(X1,...,Xm) in the statement of Theorem 3.1, namely, Xy = (Xq,...,Xn), and

let Z be a rv with a joint distribution with X . For any A € A(A), it holds that

h(XmlZ) = Y Aph(Xp|Xpe, Z) > 0. (3.23)
BeB(A)

Proof:

h(XmlZ) = Z Z A | h(XilXy, .., X1, Z)

i€EM \ BEB(A):B3i

= Z )\BZh X|X1, zl)Z)

BeB(A)  i€B

BeB(A)  i€B

= ) Ash(XpXpe, Z).
BEB(A)

|

Suppose that K™ represents an ¢,-SK for A achievable with (possibly interac-

tive) communication F™ with, say, r rounds (as described in the second paragraph
of Section 2.1), where lim,, g€, = 0 (see Definition 2.1).

For j = 1,...,mr, by repeated application of Lemma 3.2 with Fj; ;, F; and

jJ mod m in the roles of Z, U; and i, respectively, and the fact that

ZBeB(A);Bgi Al (U AN Xpge|Z) > 0, we obtain

h(Xm) = Y. Aph(Xp[Xpe) > h(XuMF) = Y Aph(Xp[Xp,F).
BeB(A) BeB(A)

(3.24)

Next, for some i € A, let K; = kZ(") (X;, F) be such that Pr {KZ.(") = K(”)} < €,.
Continuing from (3.24) by using Lemma 3.2 again but now with F and K; in the
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roles of Z and U;, respectively, we obtain that

h(XmlF) = > Aph(Xp|Xpe
BEB(A)

F)

= ) Al (K AXp|F)
BeB(A):B3i
1 OlF K = 3T Ash (Xp[Xe T ) |
BeB(A)
> Y ApI(K; AXp|F), by Lemma 3.3
BeB(A):B3i
> Y Ap[H(K)|F) — H(K;|Xp,F)]
BEB(A):Bi
> Y Ap[H(K[F) - H(K|K;,F) — H (K;|Xp,F)]
BEB(A):Bi
> H(K|F)—2[log|Kl|e, + 1], by (3.4) and Fano’s inequality
> (log|K| — €n) —2[log |Kle, + 1], by (2:2)
> (1 —2¢,)log|K| —¢€, —2. (3.25)

Consequently, by (3.25) and (3.24), we have that for every A € A(A) that

lim — log|IC|<h(XM > Aph(Xp|Xpe).

n—oo N,

BeB(A)
The converse proof now follows by minimization over the set of A € A(A). [
Proof of Corollary 3.2:
For a set B = {i1,...,ip} C M, i1 < iy < ... < ip, and a permutation 7

on {1,...,m}, let w(B) denote {m(iy),...,m(ip)}. For \* € A(M) attaining the
maximization in the right side of (3.5) for the symmetric Gaussian model, consider
A= {m, Yo A, Be B(M)} where the summation is over all permutations
on {1,...,m}. It is readily seen that \** is in A(M). By virtue of the fact that
h (Xp|Xpg:) depends on B only through |B]|, it is clear that \** also attains the
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maximization in (3.7). Note that \** has the property that A\jf = A%}, for any B, B
such that |B| = |B’|. Consequently, the optimization in right side of (3.5) can be

reduced to the following easier one:

max mz_l% ( m ) H, (3.26)

1 1 m—1 =l
()it s X =1
i —1

..........

denote the 7 x 7 matrix with diagonal entries being 1 and with all off-diagonal entries

being p. It now follows from (3.26) that

CM) = h(XM)—;lmax X

(3
1 .
+T,5 log ((2me)™ idet (IK,_;))
1

! % log (2me)™ " det (Km)miﬂ

(2me)m=Dmdet (K,,_;)™

1[1 K, )"
= min —— §log M)]

i=1,..,m-1 ¢ det (Km_i)m
- ( L >ml
, 11 (I=p)™ T(1+(m=1)p)
= min —= | = log m
i=1,.m—-1 § |2 1
<(17p)m_i_1(1+(m*i*1)p)>

= i s (o )| 327

By a simple calculation, the minimum in (3.26) is always attained by i* = m — 1,

from which (3.7) follows. [ |
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3.3 Trading SK Rate off Quantization Rate by Structured Codes

The achievability proof of Theorem 3.1 involves scalar quantization of X; at
terminal ¢, ¢+ = 1,..., m, followed by SK generation for the resulting finite-alphabet
source model along the lines of [15, 16]; SK capacity is attained in the limit of
infinite quantization rates. The SK, extracted from omniscience at all the terminals
in M, involves public communication by said terminals. As underlying the proof of
achievability of SK capacity for the finite-alphabet source model with two terminals
[39, 1], communication from a single terminal, say terminal 1, suffices to generate
an optimum-rate SK from less-than-omniscience.

In the context of a Gaussian source model with two terminals, this motivates

the following questions.

e Suppose that quantization at a rate R is permitted at terminal 1, what is the
largest rate of SK that can be generated from the quantized source at terminal

1 and the original Gaussian source at terminal 2 using public communication?

e Does the rate of SK thereby generated tend to the SK capacity C'(M =

{1,2}) = 3 log 1fp2 (by (3.8) of Corollary 3.2), as R — oo?

e Can an explicit code structure be identified for quantization, communication

as well as SK extraction?

In order to address these questions, we pose the following formulation, and
provide answers that involve structured codes, namely, nested lattice codes and

linear codes, combined with randomization at the terminals.
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Let Mj, My be independent M- and My-valued rvs with (M;, Ms) being
independent of (X;,X,). For each R > 0, let g : M; x R" — Qg be a (vector)
random quantizer of rate R, where Qr C R" with +tlog|Qr| < R. Let C(R)
be the largest rate of a SK that can be generated from qr (M, X;) at terminal 1
and (Mj, X2) at terminal 2 by public communication (cf. the second paragraph of
Section 2.1, with (M7, X;) and (Ms, Xs) in the roles of X; and X, respectively)
among all choice of qr, M;, My as above.

Theorem 3.3: For every R > 0, we have

1 1
C(R) = 5 1Og e—2I(X1AX2) + (1 _ 6—2I(X1/\X2)) e—2R’ (3.28)
In particular,
lim C(R) = I(X) A X) = - log —— = (M = {1,2}) (3.29)
Pk T AR m o e T e T — A '

We present first the converse proof. The proof of achievability using structured
lattice codes and linear codes constitutes a second main contribution of this chapter

and is presented in Section 3.3.2 below.

3.3.1 The Converse Proof

The proof uses the following technical lemma, the first part of which provides

an alternative expression for C'(R) in Theorem 3.3.
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Lemma 3.4: (i) For every R > 0, it holds that
C(R) = max I(U N Xs). (3.30)
U—o— X| —0— X,
IUNX)) <R
Further, C(R) is nondecreasing, concave and continuous for R > 0.

(i) For each n > 1 and for every quantizer q : R™ — Q where Q is a finite

set, and R' = L 1log|Q), it holds that

%I(q(Xl)/\Xg) < C(R). (3.31)

Proof: Without loss of generality, we assume that Xo = X; + N, where N is

independent of X; ~ N(0,1). Consequently,

E[X1 X E[X1(X; + N)] 1

P EXAVER] | Jltoh  Jiio

and, hence,
o% =— —1. (3.32)
N pg
Let (U, X1, X5) be such that U —o— X; —o— X, and I(U A X;) < R. We get

that

IUNXy) = MXy)—hX|U) = h(X2) —h(X; + N|U)

IN

1
h(Xs) — 3 log [th(Xl‘U) + ezh(NW)] (3.33)

1
= h(Xy) — 5 log [th(Xl‘U) + ezh(N)}, (3.34)
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where (3.33) follows from the conditional entropy power inequality, and (3.34) follows

from

= I({UAN|X)) = I(U X, AN)

> I(UAN),

where the fourth equality is by the fact that X; and N are independent.

Let I denote I(X; A X3) = %log L. Following from (3.34), we have that

(U A X,)

1-p

1
h(Xs) — Qlog [€2h(X1\U)_+_e2h(N)}

(3.35)

1 1.1, T 1— p?

-1 2 B | 2h(X1|U) 92

5 og (( 7re)p2) 5108 _e + (27e) 7

1 1.1, 1— p?

_1 2 N _1 —2[(U/\X1) Qh(Xl) 2

5108 (2ne) ) — o [ N 4 (2me)

1 1.1, 1— p?

—log ((2me)=) — =1 —2(9 2 3.36
5 108((270) ) — o [e727(2me) + (2r0) L] (330
11 1

—lo

2 T (1 )

1 1

alog “AR(] — g2l 4 o2 = C(R)

The first equality follows from (3.32); the second inequality follows from [(UAX;) <

R. Consequently,

max

U —o— X1 —O0— X2

IUANX) <R

IUANXy) < C(R).

To show equality, i.e., to establish (3.30), we shall select a rv U that satisfies

U —e— X7 —— X, and achieves equalities in both (3.33) (and, hence, (3.35)) and (3.36).
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To this end, we shall find a zero-mean Gaussian rv U satisfying I(U A X5|X;) = 0,
I(X; ANJU) =0and I(UA X;) = R. By the conditional entropy power inequality,
the condition I(X; A N|U) = 0 will give equality in (3.33) and the condition I(U A
X,) = R will give equality in (3.36). Specifically, let U = X; + N, where N is

e 2R

independent of (X1, Xs) and N ~ (0, <ﬁ)) Clearly, (U A Xs|X1) = 0.

Also,

I(XyANU) = WU)-WU[IXy) =

Next,

E[NU] = E[(X;—X1)(X1+N)] = E[(X2— X1)Xi]

= E[NXj] = 0.

The second and last equalities are by the facts that N is independent of (X1, X2)
and that N is independent of X, respectively. Since (U, N) are jointly Gaussian

with both means being zero, U is independent of N. Consequently,

I(X;AN|U) = I(X;,,UAN) = I(X;,NAN)
= I(X;AN)+I(NAN|X;)
< I(X;AN)+I(NAN, X))
= I(X;AN)+I(NAX,X,) = 0,
also by the facts that X; is independent of N and that N is independent of (X1, X,).

With this choice of U, (3.30) is established.
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It is clear from the definition of C(R) in Theorem 3.3 that it is increasing and
continuous for R > 0. Concavity of C'(R) follows from the fact that

dC(R) (1 — e 2h)e 2R 1

dR e 2R(1 —e2l) f -2 B 14 e2R 27

1—e—21

which is positive and decreasing for R > 0.
The proof of part (ii) is similar to the converse proof in [52] and it is given in
Appendix B.1. ]
Let K be an ¢,-SK generated by a scheme in Theorem 3.3 using a randomized

quantizer g of rate at most R together with public communication F and random-
ization My, M. Then,
H(K) = I(KAM,F Xy) + H(K|My, F,X,)

= I(KAF)+I1(KANMy, Xo|F)+ H(K|M,, F,X,)

< e+ (K, My, q(My,X1) A My, Xo|F) + H(K|My, F,X5)

= & + I(My,q(Mi, X1) A Mo, Xo|F) + I(K A M, Xo[ My, q(M,X4), F)

+ H(K’M% F7 XQ)

< en + I(My,q(My, Xy) A My, Xo|F) + H(K|My,q(M,Xy),F)
+H(K|M,,F, X,),

< en + I(My,q(M,X1) A My, Xs|F) + 2(e, log || + 1),

< € + I(My,q(My,Xy) A My, Xs) + 2(€, log | K| 4+ 1), (3.37)

< en 4+ I(q(My,X1) A Xo| M) + 2(enlog [K| + 1), (3.38)

where the third line follows from (2.3); the sixth line follows from the fact that K
is recoverable from (M, q(My,X;),F) as also from (Ms, F, X5); (3.37) follows from
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[1, Lemma 2.2] (equivalently, this is tantamount to the repeated use of Lemma 3.2
in the manner similar to the attainment of (3.24)); and the last line follows from
the mutual independence of M, My, (X1, Xs).

Using Lemma 3.4 and the fact that M;, and (X;, Xs) are mutually indepen-

dent, it follows that
1 1
EI(CI(Ml, X1) A Xo|My) < 0(5 log [Q]).
Continuing from (3.38) using (2.2), we have that
" log || < (- 1og]Q)) + 0n(1)
—lo —lo on(1).
n g =S g

The converse proof is completed by the fact that C(R) is continuous for R > 0.

3.3.2 SK Generation Scheme Using Nested Lattice and Linear Codes

In order to describe our scheme for achieving C'(R) and, hence, the SK capacity
in Theorem 3.3 using nested lattice codes and linear codes, we first compile, in
Section 3.3.1.1, pertinent definitions and facts from [60]. Our scheme and results

are presented in Section 3.3.1.2.

3.3.2.1 Nested Lattice Codes: Definitions and Facts

Definition 3.1: Consider n basis (column) vectors gi,...,8, in R". An
n-dimensional lattice code A is the set of all integral combinations of these basis

vectors, i.e.,

A2 {N:X=CGi for some icZ"},
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with n X n generating matrix G = [g1, ..., g,]. Clearly, A contains the zero vector
0 in R".
e The Voronoi region of a lattice code A, denoted by v(A), is the nearest

neighbor set of 0 in R", i.e.,

L n. : _
v(A) 2 {ue R s uf < minu—Al},

where ||+ || denotes Euclidean norm. Let [v(A)| denote the volume in R™ of v(A).

e The second moment per dimension of a lattice code A, denoted by o?(A), is

1
o?(A) £ —Var| rv distributed uniformly in v(A)].
n

e The covering radius of a lattice code A, denoted by r{’(n), is the infimum of

all positive numbers r such that R™ C A +rB, where B be the n-dimensional sphere
with unit radius.

e The operation of quantization by a lattice code A, denoted by @y, is
Qa(x) £ argmin ||x — A||, x € R,
AEA

where ties are broken arbitrarily.

e The mod operation of a lattice code A is
xmod A 2 x — Q,(x), x € R,

and corresponds to the quantization error.

The following property of the mod operation (cf. [60]) will be useful:

((xmod A)+y) mod A =(x+y) mod A, x,y € R". (3.39)
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A pair of lattice codes Ay, Ay are nested, i.e., Ay D A,, if there exists an n x n
matrix H with Z-valued entries and with det(H) > 1, such that Gy = G1H, where
G and Gy are the generating matrices of Ay and A,, respectively. It follows that
v (A2)|/|v(A1)] = det(H).

For A € Ay, the set A+ Ay C A; is called a coset of A, relative to Ay; it turns
out that there are exactly |v(As)|/|v(A1)| distinct such cosets. For A’ # A’ belonging
to both A; and v(A3), the cosets A+ Ay and A’ + A, are disjoint. It transpires that
we can always find a set S of |v(Ay)|/|v(A1)] lattice points of A;, comprising all the
lattice points of A; in v(As) and some of the lattice points of A; on the boundary
of v(Ay) such that for distinct v € S, the sets v + Ay are disjoint and furthermore

A= [ [{v+Aq).

ves

The set & C Ay is called a set of coset leaders of Ay relative to A; note that there
can be several such sets S since the lattice points of A; on the boundary of v(Aj) can
be selected in many ways. Upon fixing one such set S, the ties of the quantization
operation (,(x), x € Aj, can be broken systematically in a unique manner by
requiring that x mod Ay = x — Q),(x) coincides with the unique coset leader in S
of the coset containing x.

In the dithered quantization of a source using a lattice code (cf. [58, 59]), a rv
distributed uniformly in its Voronoi region and independent of the source, is added to
the source sequence prior to quantization. This procedure, in effect, decorrelates the

“quantization error” from the source, as formalized in the following result of [58, 59].
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Lemma 3.5 [58, 59]: For a R"-valued rv X and any given lattice code A,
let U be the “dither” rv distributed uniformly in v(A) and independent of X. Then,
the quantization error (X +U) —Qa (X +U) is independent of X and is distributed

as U.

3.3.2.2 The Scheme

Our scheme for SK generation consists of two steps—analog, followed by dig-
ital. Tt is motivated by, and partly follows, the work of Zamir et al. [60].

1) Analog Part: In the first (analog) step, terminals 1 and 2 agree upon
three n-dimensional nested lattice codes A; D Ay D A3 to be specified below. The
following operations are performed on N i.i.d. repetitions (X;,,Xs,), i =1,..., N,
of (Xy,X3), where Xy, X, € R". We remark that the reason for the use of N i.i.d.
repetitions is to obtain strong secrecy in step (2.2) below.

e (1.1) Dithered quantization at terminal 1: Terminal 1 generates i.i.d. rvs U;
, it =1,..., N, where U; is uniformly distributed in v(A;), and {Ui,Xl,i,ngi}i]\il
are mutually independent. This is followed by dithered quantization of aX,;, i =

1,..., N, and a mod operation of the lattice code A3 to yield
Li = QAI (O[XLZ‘ + Uz) mod Ag, (340)

for a > 0 to be specified below. Each L; takes values in the set of coset leaders of

A3 relative to Ay, denoted by L, where |£| = mﬁjgl The associated quantization

g~ 1 [v(As)]
rate is & - log DI

e (1.2) Public communication from terminal 1 to terminal 2: Terminal 1 com-
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putes

Pi = ]—_1Z mod AQ = QAI (OZXLZ‘ + Uz) mod AQ, 1= 1, ey N, (341)

since Ay D Az, and publicly communicates (PY, UY) = (Py,..., Py, Uy, ..., Uy)

to terminal 2. Observe that each P; takes values in the set of coset leaders of Ag

relative to Ay, denoted by P, with |P| = Izgﬁi;}

e (1.3) Reconstruction of quantized rvs at terminal 2: Terminal 2 reconstructs

A~

L;asL;,i=1,..., N, where
]:i = [(Pz — O[XQJ‘ — Uz) mod A2 + O[XQJ‘ + Uz] mod Ag. (342)

For R > 0 and an arbitrary but fixed D > 0, we select « as

VD@1

a(R, D) = B — (3.43)
whereby
1 ook, +D

Let I £ Llog 1jp2 (cf. Theorem 3.3). Our following main technical lemma

summarizes the outcome of the first step of the algorithm.

Lemma 3.6: For R >0, let

R,=R,(R) = %log (e =1)e™ +1). (3.45)

For every e > 0 and all n sufficiently large, there exist n-dimensional nested lattice

codes A1 D Ny D A3 such that, fori=1,..., N,
1 1
—log|L| < R+e€ —log|P| < R,+e, (3.46)
n n

Pr{L; # L;} = 0,(1), (3.47)

48



and R — %H(LJUZ) = 0,(1). (3.48)

2) Digital Part:

Before describing the (digital) part 2, we note that the (finite) set £ in step
1.1 above can be shown to be in 1-1 correspondence with a (finite) field F|z| through
a mapping f (see Lemma 3.7 and Appendix B.2 below); the rvs f(L;) will then take

values in Fz), i = 1,..., N. Part 2 of the scheme entails the following.

e (2.1) CR generation at terminals 1 and 2 by Slepian- Wolf data compression:
The i.i.d. sequence f(L;),7=1,..., N, at terminal 1 is reconstructed near-losslessly
at terminal 2 with f (IAJZ), t = 1,..., N, as side information using Slepian-Wolf
data compression. This reconstruction is performed with error probability vanishing
exponentially in N. Specifically, a linearly encoded Slepian-Wolf codeword A f(L)",
where f(L)Y = (f(Ly),..., f(Ly)) and A; is a matrix with entries taking values in

IF|z), is transmitted publicly. Terminal 2 produces an estimate

—_—

f(L)N = (f(Ll)a .- 7f(LN))

based on the codeword A; f(L)" and the side information

The rate of the codeword A, f(L)¥ is
LH(F (L) (E)) = 0,(1)

49



by Fano’s inequality since, from (3.47), Pr{L; # L1} = 0,(1).

e (2.2) SK generation by linear operation on CR: Lastly, terminals 1 and 2
generate a SK K, by means of a linear operation on the CR f(L)V, viz. K =

Ay f(L)N, with A, having entries in Fz|, of rate arbitrarily close to

1
e=2l 4 (1 —e2l)e2R

1
C(R):R—szélog

the optimum tradeoff between SK rate and the quantization rate in Theorem 3.3.

3.3.2.3 Achievability Proof

Using the two-step scheme described in the previous section, our second main
contribution in this chapter establishes the existence of a strong SK of rate arbitrarily
close to C(R). In particular, we show now that for any R > 0 and any R, < C(R)
(cf. Theorem 3.3), there exist n-dimensional nested lattice codes Ay D Ay D Ag,
mapping f and matrices Ay, Ay, such that the scheme above produces a rv f(L)" of
rate arbitrarily close to R from which a strong SK K™ = A, f(L)" can be extracted
of rate arbitrarily close to R;.

Without loss of generality, we can write
Xl = XQ + Z, (349)

where Z is independent of X, and consists of n i.i.d. repetitions of the rv Z ~

N(0,0%) with 0% = 0%, — 0%, so that, from (3.44), R, = R,(R) can be written also
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as

(3.50)

Further, U is taken to be independent of (Xo, Z) and, hence, (X1, Xa, Z).

Proof of Lemma 3.6: We suppress the symbol i. The proof relies on the
existence of three “good” n-dimensional nested lattice codes A1 D Ay D A3z with the
properties stated below in Lemma 3.7; the proof of existence is obtained by suitably
generalizing ideas from [21] (see the proof in Appendix B.2).

Lemma 3.7: (“Good” lattice codes): For each R > 0 and D > 0, let R, =
R,(R) and a = (R, D) as in (3.43), (3.45). For every e > 0 and all n sufficiently

large, there exist n-dimensional nested lattice codes A1 D Ay D Ag with

%log :Z&ji: <R+e %log Izggl <R, +e, (3.51)
PriaZ — U ¢ v(As)} = 0,(1) (3.52)
Pr{aX, — U ¢ v(As)} = 0,(1), (3.53)

o*(Ay) = D, (3.54)

and 5 (n) = O(y/n). (3.55)

Upon using such “good” lattice codes, the claimed rates in (3.46) follow from
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(3.51). We next consider (3.47). By (3.41), upon using (3.39), we get

(P—aXy;—U)modAy; = (Qp,(aX;+ U)modA; — aXy — U)mod A,
= (Qr(aX;1 4+ U) —aXy; — U)mod A,

= (aZ — E)mod A,

where E = (aX; 4+ U) mod A is a quantization error with respect to A;. Therefore,

from (3.42),

L = [[(P—-aX;—U)modA;y] + aXs + U] mod A

= [(@Z —E)modA; + aX; + U] mod As.
Defining the event £ = {aZ — E ¢ v(A2)}, we see that in £°,

L = (aZ—-E+ aXy;+ U)modA;
= (aX;+ U — (aX; +U)modA;) mod Aj
= QA1 (O{Xl + U) mod A3

= L

?

so that {L # L} C &£. Now, observe that E is conditionally independent of Z
conditioned on X, = X5, x5 € R”, which, combined with the independence of X,
and Z, gives that E is independent of Z. Further, E is distributed as U by Lemma

3.5 and U is independent of Z, so that
Pr{L # L} < Pr{€} = Pr{aZ — E ¢ v(A,)}

Pr{aZ — U ¢ v(As)} = 0,(1),
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by Lemma 3.7, thereby establishing (3.47).

Lastly, in order to establish (3.48), the idea is to show that L serves as a
codeword of an optimum Gaussian rate distortion code for the source X, with CR U
at the encoder and decoder. Since L can be selected to have rate arbitrarily close to
R, it will possess the mentioned attribute if there exists a decoder for reconstructing
X, from (L,U) with mean-squared error distortion = e *#¢% . Then, with U
(independent of X;) being known to the encoder and decoder, the codeword L—
at optimality—must be nearly independent of U and nearly uniformly distributed,
thereby establishing (3.48 ). Firstly, we show that, upon using the nested lattice

codes above with a suitable decoder, we can reconstruct X; from (L, U) with the

distortion above. To this end, consider the decoder that reconstruct X; as
X; = ¢((L — U)mod Ay),

where ¢ > 0 is to be chosen later so as to minimize the mean-squared error distortion.

Using (3.39), we have that

(L=U)modA; = (Qu(aX;+U)modA; — U)modA;
= (Qar,(aX;4+U)—-U)modA;

= (aX; —E)modA;,

so that X; = ¢((aX; — E)mod A3). Observe next that by Lemma 3.5, E is inde-

pendent of X; and is distributed as U and hence by (3.53),

Pr{(aX; — E)mod A3 # aX; — E} = 0,(1). (3.56)
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It readily follows, as shown in Appendix B.3, that

1 .
lim —E[||X; — X1 []!] < (1 — ca)?c%, + D + o0,(1). (3.57)
n—oo N
040'2
The significant sum on the right-side above is minimized by the choice ¢ = —— Xjr = =
X1
% by (3.44), and so
1 ~
lim —E[||X; — Xy |]*] = 0%, e " + 0,(1). (3.58)
n—oo N,
Now we are ready to prove (3.48). With
A . 5 1 o3
Rx, (D) = min I(XiNXy) = zlog—=, D>0,
E[(X1-X1)2)<D 2 D
1 1
—H(LIU) = —I(LAX;|U)
n n
1
= —I(L,UA Xy)
n
1 .
> —I(X;NXy)
n
I o
> =3 I(Xi A Xyy)
o
1< A
= > Ry, (E[(X10 — X1.)?)
t=1
I S
> Ry, (ﬁ D E[(Xie— X10)?). (3.59)

t=1

where the second equality above is by the independence of U and Xj; the first
inequality follows from X; being a function of L and Uj; the second inequality is from
X having independent components; and the last inequality is by the convexity of
Rx, (+). Finally, combining (3.58) and (3.59), and noting that Rx, (.) is nonincreasing

and uniformly continuous, we get that

%H(L|U) > R — 0,(1),
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which is (3.48). |
Fix R > 0 and € > 0, the latter to be specified later. For every n > 0 and all
n sufficiently large, Lemma 3.6 provides for the existence of n-dimensional lattice

codes A1 D Ay D A3 such that

log |L] < n(R+n/2), log|P|<n(R,+n/2), (3.60)
PriLy # L} <e (3.61)

and
H(Li|Uy) > n(R —e). (3.62)

By Fano’s inequality and (3.60), (3.61),
H(Ly|Ly) < en(R +1/2) + h(e) (3.63)

where h(.) is the binary entropy function. With f being a IF|z-valued mapping as
above, the existence of the matrix Ay, follows from [10, Theorem 1] on the adequacy
of linear encoding for the Slepian-Wolf data compression of the i.i.d. rvs f(L;), i =
1,..., N, with decoder side-information f (f;z), 1 =1,...,N, and decoding error

probability vanishing to zero exponentially in N. Specifically, from [10, Theorem 1]

and using (3.61), there exists a fN[E”(ﬁIgl/gl)’Lh(g”] x N-matrix A; with F|z-valued
entries such that f(L)N can be reconstructed from A, f(L)N and f(L)N with the
probability of error vanishing exponentially in N.

It remains to show the existence of a matrix A, with the asserted property.
To this end, we shall use Lemma 2.1, as for the Section 2.2.4, but now with the U

in the lemma being continuous valued rv.
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Apply Lemma 2.1 with A = f(L;), U =U; and B = (P¥ A, f(L)") with
1
- log |B] < n(R, +n/2) + en(R+n/2) + h(e),
and consequentially, using (3.62),

H(AID) ~ log|B] = H(L.|U,) -
[n(Ry, +n/2) + en(R +n/2) + h(e)]
> n(R—R,—n)

= n(C(R)—n) (3.64)

if (the yet unspecified) € > 0 is chosen to be sufficiently small. Hence, Lemma 2.1

gives that there exists a matrix A, such that for K™ = A, f(L)"N of range K",

log |K™)| = log || Test2
> NR,(1-0,(1))

= nN(C(R) —n)(1 - on(1)) (3.65)

and s(K®N): UN PN, A, f(L)V) vanishes exponentially in N. Since 7 is arbitrary,
the rate of f(L) and hence f(L)" can be chosen arbitrary close to R, and the rate
of K("V) can be chosen arbitrarily close to C'(R) for all n sufficiently large. This

completes the proof. [ ]
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Chapter 4
Perfect SK Generation for the Pairwise Independent Network Model

4.1 Motivation and the Model

In this chapter, we turn our attention to the problem of perfect SK genera-
tion. In contrast with materials in the previous two Chapters 2 and 3, this chapter
bears the essence of “zero-error information theory,” and accordingly, we rely on
mathematical techniques of a combinatorial nature [30]. Our emphasis here is on
perfect SK generation for fixed signal observation lengths as well as for their asymp-
totic limits [44]. It is of interest also to consider strong (rather than perfect) SK
generation for a natural variant of the model studied in this chapter. This variant
model [45] which entails a probabilistic analog of the blueprint below, is deferred to
Applendix C.3 so as to retain the combinatorial flavor of the chapter.

We consider a “Pairwise Independent Network (PIN)” model in which every
pair 7,7 of terminals, 1 < ¢ < 5 < m, share a random binary string of length
e;; (bits), with the strings shared by distinct pairs of terminals being mutually
independent.

The PIN model is motivated by practical aspects of a wireless communication
network in which terminals communicate on the same frequency. In a typical mul-
tipath environment, the wireless channel between each pair of terminals produces a

random mapping between the transmitted and received signals which is time-varying
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and location-specific. For a fixed time and location, this mapping is reciprocal, i.e.,
effectively the same in both directions. Also, the mapping decorrelates over different
time-coherence intervals as well as over distances of the order of a few wavelengths.

Our three main contributions in this chapter described below are motivated
by a known general connection between (not necessarily perfect) SK generation at
the maximum rate and the minimum communication for (not necessarily perfect)
omniscience [15, 16].

First, the concept of perfect omniscience enables us to obtain a single-letter
formula for the perfect SK capacity of the PIN model; moreover, this capacity is
shown to be achieved by linear noninteractive communication, and coincides with
the strong SK capacity. This result establishes a connection between perfect SK
capacity and the minimum rate of communication for perfect omniscience, thereby
particularizing to the PIN model a known general link between these notions sans
the requirement of the omniscience or secrecy being perfect [15].

Second, the PIN model can be represented by a multigraph. Taking advantage
of this representation, we put forth an efficient algorithm for perfect SK generation
using a maximal packing of Steiner trees of the multigraph. This algorithm involves
public communication that is linear as well as noninteractive, and produces a perfect
SK of length equal to the maximum size of such Steiner tree packing. When all the
terminals in M seek to share a perfect SK, the algorithm is shown to achieve perfect
SK capacity. However, when only a subset of terminals in A C M wish to share
a perfect SK, the algorithm can fall short of achieving capacity; nonetheless, it is

shown to achieve at least half of it. Additionally, we obtain nonasymptotic and
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asymptotic bounds on the size and rate of the best perfect SKs generated by the
algorithm. These bounds are of independent interest from a purely graph theoretic
viewpoint as they constitute new estimates for the maximum size and rate of Steiner
tree packing of a given multigraph.

Third, a special configuration of the PIN model arises when a lone “helper”
terminal m aids the “user” terminals in A = M\{m} generate a perfect SK. This
model has two special features: firstly, (a single) terminal m possesses all the bit
strings that are not in A; secondly, a Steiner tree for A is a spanning tree for either
A or M. These features enable us to obtain necessary and sufficient conditions
for Steiner tree packing to achieve perfect SK capacity, as also a further sufficient

4

condition that posits a “weak” role for the helper terminal m.

The PIN model is a special case of the multiterminal source model for SK
generation in Section 2.1 in which each rv X;, ¢ = 1,...m, is finite-valued and is of
the form X; = (Y;;, j € M\{i}) with m—1 components, with the “reciprocal pairs”

of rvs {(Yi;,Y}:), 1 <i < j < m} being mutually independent. We assume further

5
that Y;; = Y}, 1 < i # j < m, where Yj; is uniformly distributed over the set of
all binary strings of length e;; (bits). Thus, every pair of terminals is associated
with a random binary string that is independent of all other random binary strings
associated with all other pairs of terminals. The assumption is tantamount to every
pair of terminals 7, j sharing at the outset privileged and pairwise “perfect secrecy”

of e;; bits.

Now, the alphabet! X; = {0,1}>5#i% = 1,...,m and, hence, the alpha-

'It is assumed that Y, e;; > 1.
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bets at different terminals can be different, Definition 2.5 of linear noninteractive
communication is suitably modified here for the PIN model as follows.
Definition 4.1: The communication F = F®™ is termed linear noninter-

active communication (LC) if F = (Fy,..., F,) with> F; = L, X

7

where L; is a
by X (22;.; ney) matrix® with {0,1}-valued entries, @ = 1,...,m. The integer
b; >0, i=1,...,m, represents the length (in bits) of the communication F; from
terminal 4; the overall communication F has length Y" | b; (bits).

A central role is played by the notion of perfect omniscience which is a strict
version of the concept of omniscience introduced in [15]. This notion does not involve
any secrecy requirements.

Definition 4.2: The communication F is communication for perfect om-
niscience for A if (X7',...,X") is perfectly recoverable from (X" F) for every
1 € A. Further, F is linear noninteractive communication for perfect omniscience
(LCO™(A)) if F is an LC and satisfies the previous perfect recoverability condi-
tion. The minimum length (in bits) of an LCO™(A), i.e., minLCO“”(A) S b,
will be denoted by LCO™(A). The minimum rate of LCO™(A) is OMN,(A) £

lim sup,, %LCO%L)(A).

4.2 Perfect SK Capacity

Our first main contribution in this chapter is a (single-letter) characterization

of the perfect SK capacity for the PIN model, which brings forth a connection with

2All additions and multiplications are modulo 2.

3Tt is assumed that Yjsicij >l i=1...,m.
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the minimum rate of communication for perfect omniscience.

Theorem 4.1: The perfect SK capacity for a set of terminals A C M is

Cp(A) = ) e — OMN,(A) (4.1)
‘7.]’
where
MN,(A) = i , 4.2
OMN,(4) =~ min ZZIRZ, (4.2)
with

R(A) =
( )
(Rl,...,Rm)GRm:RiZO,izl,...,m,

ZieB Ry > Zl§i<j§m, ieB, jeB Cij> : (4-3)

VB2 A 0+#BcCM

\ J

Furthermore, this perfect SK capacity can be achieved with linear noninteractive
communication.

Remarks: (i) Clearly, the perfect SK capacity, by definition, cannot exceed the
SK capacity Indeed, Theorem 1 implies that the latter is attained by a perfect SK.

(ii) In the same vein, the minimum rate of communication for (asymptotic)
omniscience [15] can be attained for the PIN model with perfect recoverability at
Aof (X7,....,X") for all n sufficiently large, and with linear noninteractive com-
munication. We mention that noninteractive communication, without a claim of

linearity, was shown to suffice for (asymptotic) omniscience in [15].
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4.3 Perfect SK Generation by Steiner Tree Packing

Theorem 4.1 serves to establish the sufficiency of an LC in achieving perfect
SK capacity through the intermediate attainment of perfect omniscience for A, as
seen in its proof below. However, as also evident from the proof, decoding is by
exhaustive search of prohibitive complexity.

The PIN model can be represented by a multigraph. This representation leads
us to an efficient algorithm for perfect SK generation, not necessarily through perfect
omniscience, by a maximal packing of Steiner trees of the multigraph. In particular,
this algorithm will be seen to entail public communication in the form of an LC. On
the other hand, such an algorithm based on maximal Steiner tree packing need not
attain perfect SK capacity. The size of the largest perfect SK that is thus generated
can be estimated in terms of the minimum length of an LCO™ (A).

Definition 4.3: A multigraph G = (V, E') with vertex set V and edge set FE
is a connected undirected graph with no self loops and with multiple edges possible
between any pair of vertices. Given G = (V, E) and a positive integer n, let G =
(V, E(")) denote the multigraph with vertex set V and edge set E™ wherein every
vertex pair is connected by n times as many edges as in E; in particular, G = G.
Furthermore, |E™| will denote the total number of edges in E™.

To the PIN model Xi,...,X,,, we can associate a multigraph G = (M, E)
with M = {1,...,m} and the number of edges connecting a vertex pair (i,7) in
E equal to e;;; in particular, the edge connecting (7, j) will be associated with the

random binary string Y;;.
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By this association, it will be convenient to represent (4.2) and (4.3) as

OMNg(A) = i R, 4.4
o(4) min Y (1.4

(Rl aaaa Rm) S RG i=1
with
(Rl,...,Rm) e R™: Rz ZO, izl,...,m,
Ra(4) = Yien BiZ Yicicicm, ic, jen € ' (4.5)

VB2 A 0#BCM

\ /

whereupon (4.1) can be restated as
Cp(A) = |E| —OMNg(A). (4.6)
Furthermore, it is easy and useful to note that for every n > 1,
OMNgn(A) = nOMNg(A). (4.7)

Definition 4.4: For A C V' a Steiner tree (for A) of G = (V, E) is a subgraph
of G that is a tree, i.e., containing no cycle, and whose vertex set contains A; such
a Steiner tree is said to cover A. A Steiner tree packing of G is any collection of
edge-disjoint Steiner trees of G. Let u(A,G) denote the mazimum size of such a
packing (cf. [26]), i.e., the maximum number of trees in the packing. The mazimum
rate* of Steiner tree packing of G is limsup,, %,u(A, G™). When A =V, a Steiner
tree becomes a spanning tree, with corresponding notions of spanning tree packing,
maximum size and rate.

Given a PIN model, the notion of Steiner tree packing of the associated multi-

graph leads to an efficient algorithm for constructing an LCO(")(A) and thereby

4In fact, lim, .o %M(A, G™) exists, as shown later in Proposition 4.4.
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generating a perfect SK. The next Theorem 4.2 indicates that the largest size of
a perfect SK that the algorithm generates is the maximum size of the Steiner tree
packing. Furthermore, Theorem 4.2 and its corollary, and Theorem 4.5 provide
nonasymptotic and asymptotic bounds on the size and rate, respectively, of the best
perfect SKs generated by the algorithm. Of independent interest from a purely graph
theoretic viewpoint, these results also constitute new bounds for the maximum size

and rate of Steiner tree packing of a given multigraph.

Theorem 4.2: For the multigraph G = (M, E) associated with a PIN model
and for A C M, it holds for every n > 1 that
(i) the terminals in M can devise an LCO™(A) of total length n|EM| —

(A, G™) and subsequently generate a perfect SK K™ with log |KK™| = (A, G™);

(i) u(4,G™) < n|BD| — LOOY (A); (4.8)

(iii) furthermore, LCO™ (A) is bounded below by the value of an integer linear

program according to

LCOW(A) = INTgm (A)

where

with
(]1,...,Im) ezZm™: >0, 1=1,....,m,

Laon(4) = Doep li Z 1 Yiciciom, ie, jen i ' (4.10)

VB2 A 0#BcCM
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Corollary 4.3: For every n > 1, the maximum size of Steiner tree packing

of a multigraph G™ satisfies
w(A,G™) < n |[EW| = INTgm (A), (4.11)

with equality when A = M.

Remarks: (i) Note that the bounds in Theorem 4.2 are nonasymptotic, i.e.,
valid for every n. Also, note in the bound in Theorem 4.2 (ii) for u(A, G™) that
LCO™(A) is defined in terms of its operational significance.

(ii) Further, Theorem 4.2 provides a nonasymptotic computable lower bound
for LCO%Z) (A) in terms of an integer linear program. The optimum value of its linear

programming relaxation constitutes a further lower bound which equals OM N ) (A)

nOMNg(A), by (4.7).

Next, we turn to connections between perfect SK capacity C,(A) and the
maximum rate of Steiner tree packing of G = (M, E). The following concept of
“fractional” Steiner tree packing will be relevant.

For A C M = {1,...,m}, consider the collection {Si,..., Sk} of all distinct

Steiner trees (for A) of G, where k = k(G). Consider the region

( )

(Ty,....,T,) e RF: T;>0,1=1,....k,

Ta(A) = S e s TS ey : (4.12)

V(i,j), 1<i<j<m

\ Vs

Definition 4.5: For a multigraph G = (M, E) and A C M, the mazimal
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“fractional” Steiner tree packing of G, denoted (A, G), is pu (A, G) £ maxs,(a) Zle 1;.
Remarks: (i) Clearly, ps(A, G) corresponds to a linear program with finite
optimum value, and the maximum is attained. Furthermore, it is readily verified
that for every n > 1,
pr(A,GM) = npug(AG). (4.13)

(ii) We observe that in Definition 4.4, u(A4, G) = Maxy,, (4)nzh Zle T;.

Proposition 4.4: For a multigraph G = (M, E) and A C M, it holds that

the mazimum rate of Steiner tree packing (for A) of G satisfies

1 1
limsup —u(A,G™) = liminf —pu(A,G™)
n

n—0o0 n—oo M

= lim l,u(A, GM)

n—oo N,

= (A G). (4.14)

Theorem 4.5: For the multigraph G = (M, E) associated with the PIN model

and for A C M, it holds that

1 1
QOP(A) < lim _M(AaG(n)) < Gy(A). (4.15)

n—oo N,

Furthermore, when A = M,

lim —u(M,G™) = Cy(M). (4.16)

n—oo N

Remark: For the PIN model with m terminals, every Steiner tree has at most
m—1 edges. Also, from (4.15), u(A, G™) < nC(A) for all large n. Hence, the over-
all complexity of the perfect SK generation algorithm based on Steiner tree packing

66



is linear (in n).

The upper bound on lim,, % (A, G™) in Theorem 4.5 is not tight, in gen-
eral, as seen by the following example.

Example: Consider the multigraph [32] in Figure 1 with |[M| = 7 and |A| = 4;
the terminals in A are represented by the solid circles and every shown edge is single.
Computations give that Cj,(A) = 2.0 by (4.6), (4.4), while lim, .o 21(G™, A) = 1.8

by Proposition 4.4 and the scheme in Lemma 4.1 below.

Figure 1: Example

4.4 The Single Helper Case

As observed after Theorem 4.5, the maximum rate of Steiner tree packing
can fail to achieve perfect SK capacity. A natural question that remains open is
whether the maximum rate of Steiner tree packing equals perfect SK capacity for
the special case of the PIN model in which a lone “helper” terminal m assists the
“user” terminals in A = {1,...,m — 1} generate a perfect SK. In this section, we
provide partial answers.

First, we derive necessary and sufficient conditions for the maximum rate of

Steiner tree packing to equal perfect SK capacity in (4.15) and, analogously, the
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(nonasymptotic) maximum size of Steiner tree packing to meet its upper bound in
(4.11). These conditions entail the notion of a fractional multigraph. Throughout
this section, we shall assume that A ={1,... m—1} ¢ M ={1,...,m}.
Definition 4.6: Given a multigraph G = (M, E) as in Definition 4.3, a
fractional multigraph G = (A, E) in A (with vertex set A) has edge set £ = {&;; €
R, 0 <é; <ey, 1 <i<j<m—1}. For any such G, the complementary fractional
multigraph G\G = (M, E\E) has vertex set M and edge set E\E £ {e;; —é;, 1 <
i<j<m-—=1; ey, 1 <i<m—1}. The definitions of Rg(A) in (4.5), OMNg(A)
n (4.4), 7¢(A) in (4.12) and pr(A, G) in Definition 4.5 all have obvious extensions

to G and G\G as well. Further, (4.7) and (4.13) also hold for G and G\G.

Proposition 4.6: For the multigraph G = (M, E) associated with the PIN

model, the following hold:

(i)
5(A, G) Z maxjig (A4, G) + 1y (M, G\G);
(i)
OMNg(A) < min OMNg(A) + OMNg\6(M):
(i)
#(A, G) 2 max p(4, G1) + (M, G\G);
(iv)

INTG(A) € min INTg, (A) + INT g, (M),
Gy
where the optima in (i) and (i) are over all fractional multigraphs G = (A, E) in
A, and the optima in (iii) and (iv) are over all multigraphs Gy = (A, E) in A for
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which E consists of only integer-valued €ij$.

Theorem 4.7: For the multigraph G = (M, E) associated with the PIN

model,

(1)

1
lim —p(A, GM) = C,(A) (4.17)
of
OMN g(A) = min OMN@(A) + OMNG\G(M), (4.18)
G

where the minimum is over all fractional multigraphs G = (A, E) in A;
(ii)

WA, G") = |E| = INTg(A)

]NTg(A) = min INT@I (A) + INTG\G‘I (./\/l), (4.19)
Gr

where the minimum is over all multigraphs G; = (A, E) for which E consists of only

integer-valued €;;s.

Our final result provides another sufficient condition for the maximum rate of
Steiner tree packing to equal perfect SK capacity. Recall from Theorem 4.1 that, in
general, perfect SK capacity for A can be attained with public communication that
corresponds to the minimum communication for perfect omniscience. If the latter
can be accomplished with the sole helper terminal m communicating “sparingly,”
then it transpires that maximal Steiner tree packing attains the best perfect SK

rate. An analogous nonasymptotic version of this claim also holds. Heuristically, a
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sufficient “weak” role of the helper terminal m turns the Steiner tree packing of A,
in effect, into a spanning tree packing of A.

Let d; & Zj# e;; denote the degree of vertex i, ¢« = 1,...,m. Clearly,
any (R7,...,R}) (vesp. (I7,...,I%)) that attains the minimum corresponding to
OMNg(A) (cf. (4.4)) (resp. INT(A) (cf. (4.9))) must satisfy Rf < d; (resp.

Theorem 4.8: For the multigraph G = (M, E) associated with the PIN
model,

(1) if there exists (R3, ..., R:) that attains OMNg(A) (cf. (4.4)) with R, <
dp/2, then

lim (A, G™) = C,(A) = |E| — OMNg(A).

n—oo N
(ii) of there exists (If,...,I) that attains INTG(A) (cf. (4.9)) with I}, <
|dn /2], then

WA, G) = |E| - INT&(A).

4.5 Proofs

Proof of Theorem 4.1: From Remark (i) following Theorem 1, we need
prove only the achievability part. The main step is to show, using a random coding
argument, the existence with large probability of an LCO™ (A) of small length under
appropriate conditions; the terminals in A then extract from the corresponding

perfect omniscience a perfect SK of optimum rate.
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Let X% = (X7,..., X)) take values in Xy = A" x ... x A

m?

where X" =
{0,1}%3#i "%, We denote a realization of X7 by a7, = («7,...,27). Fixby,...,by.
Let L = (Ly,...,L,,) consist of mutually independent random matrices of appro-
priate dimensions as in Definition 4.1. Furthermore, the rv L; consists of i.i.d.
equiprobable components, ¢ = 1,...,m. Clearly, Ly, ..., L, makes for a random

LC.

Since for Ly, ..., L,, to constitute an LCO(”)(A), it suffices that the mapping
2y — (27, L2, ... L)

be one-to-one for every ¢ € A, we have

Pr{ L does not constitute an LCO™(A) }

3 ay # 2’y € X}y satistying

= Pr 2} = 2’} for some j € A such that

Lix? =L;2'" foreachi=1,...,m
1% (2 1 Y Y

Vs
4 3\

3 2%, # 0 € X} satistying

= Pr z = 0 for some j € A such that (4.20)

Lz} =0foreachi=1,...,m
\ Vs
4 )

3%, € A}y satistying

x? #0Vj€ B, and 2] =0Vj € B

B#0, such that L;z? = 0
BJA

foreachi=1,....m

(4.21)
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where (4.20) is by the linearity of the communication and (4.21) is obtained by
applying the union bound to the event in (4.20).

Now, we note by the assumed independence of Ly, . .. L,, and the fact that the
components of L; are i.i.d. and equiprobable, : =1, ..., m, that for each nonempty

B 2 A, and any '}, satisfying x? #0Vj € B, and z7 = 0 Vj € B¢, we have

Pr{L;z} =0 foreveryi=1,...,m} = Pr{L;z}! =0 for every i € B}

= J[2 =2 2ient (4.22)
i€B

Continuing with (4.21) upon using (4.22), we obtain

Pr{ L does not constitute an LCO™(A4) }

iy € Xy 12t #0
< SR
B#0, ) n = ] ¢
B2A VjeB, xj=0vVjeD
S sy i
B#0),
B2A
_ Z 2—”(%2163 bi=>iken elk), (423)
B#0),
B2A

We note that in this proof, the special structure of the PIN model is used for the
first time in the second inequality above.

Now, let (R],..., R},) achieve the minimum in the right side of (4.2). Pick an
arbitrary € > 0 and choose b; in (4.23) as b; = [n(Rf +€)], i = 1,...,m. Then,
by the definition of R(A), the right side of (4.23) decays to zero exponentially

rapidly in n; in particular, we get that for all n sufficiently large, L constitutes an
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LCO™(A) with large probability. This implies the existence of a (deterministic)
L = (Ly,...,Ly) that constitutes an LCO™(A) for all n sufficiently large.
It remains to extract a perfect SK from the perfect omniscience obtained above.

By the definition of the PIN model, observe that
Pr{Xh, = a%,} =272 " for all 27y, € X}y

By the linearity of the LCO™(A) above, it is readily seen that the cardinality
Hah € XYy @ Lz} = a;, 0 = 1,...,m}| is the same for all feasible (ai,...,an)

where a; € {0, 1}bi, i=1,...,m, and that this common number is at least
N — Q(ZZ,k nelk)*(zzmzl bi).

For each communication message (aq,...,a,), we index the elements of the coset
{z: Liz?? = a;, i =1,...,m} in a fixed manner. Then, for a realization z%, € X},
every terminal in A (which knows z’;, by omniscience) picks as the perfect SK the
index of x7, in its coset, as in [55]. Since X}, takes values in X'}, and since each
coset has the same size, it follows that this random index is uniformly distributed
and independent of the coset (the communication message), thereby constituting a

perfect SK. Lastly, the rate of this perfect SK is at least

JLIEO%IogN = Z el — iR;‘—me
Lk

i=1

= Z €l — OMNP(A) — e,
I,k

where € > 0 is arbitrary. ]
Proof of Theorem 4.2: The proof will rely on the technical Lemma 4.1
which is stated next and established in Appendix C.1.
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Lemma 4.1: Let G = (V,T) be a tree, and associate with each edge a bit.
Then the terminals in V' can devise a (noninteractive) LC of length |T| — 1 bits

enabling every terminal in V' to recover all the edges of T', i.e., all the bits associated

with the edges of T.

(i,ii) If u(A, G™) = k, say, then E™ is the disjoint union of k Steiner trees

Ti,..., Tk (each of which covers A) and the remaining edge set R, so that

k
|E™| = n|EW| = Y |Ti| + |R|, (4.24)
i=1
where |T;| denote the number of edges in T;.
Apply Lemma 4.1 to every Steiner tree T;, t = 1,...,k, in (4.24) to get k LCs
that enable every terminal in A to recover the edges of all the T;, i =1,...,k. An

additional communication of |R| bits will lead to the recovery of the leftover edges

in R. Thus, there exists an LCO™ (A) of length

k

Y OIT| = k + [R| =n|ED| — k (bits),

i=1
which establishes the first assertion of (i); also, clearly, LCO™(A) < n|EM| — E,
thereby proving (ii). To establish the second assertion of (i), it remains to extract
a perfect SK from the perfect omniscience obtained using the LCO(")(A) above of
total length n|EM| — (A, G™) (bits). This is accomplished exactly as in the
proof of Theorem 4.1, whereby the terminals in A extract a perfect SK K™ with
log [KC] = (4, G).

(iii) Consider an LCO™ (A) = (L4, ..., Ly,) achieving LCO™ (A) with (by, ..., by)

(bits), respectively. Fix B ¢ M, B 2 A, and consider § = {z7, : 27 =
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0 for every j € B¢} with cardinality O Lici<j<m, i€B, jeB %9 For every k € BN A
and every 27, € S, it holds that z}} = 0. Consequently, by the perfect recover-
ability property of an LCO™ (A), such a terminal k£ must be able to discern all
the sequences in S using only (L4, ..., L,,). Note also that for every 2%, € S and
every i € B¢ it follows that L;(z}') = 0; therefore, the set of all communication
messages corresponding to S has cardinality at most 22-icz% . From the mentioned
condition on perfect recoverability at terminal k& € B¢ N A of all sequences in S,
it must hold that 2Xiesb > 2"Xicicjsm, Gaes “i. Since this argument is valid for
every B C M, B 2 A, we have that (by,...,b,) € Zew (A) and, hence, LCO™ (A)

is at least minz, In) €T (n) (A) 2721 I;. u

.....

Proof of Corollary 4.3: The inequality in the Corollary 4.3 is immediate
from (4.8) and (4.10). Equality when A = M relies on Lemma 4.2 and 4.3 below;
Lemma 4.2 is a classic result of Nash-Williams [43] and Tutte [48] on the maximal
size of spanning tree packing of a multigraph, and Lemma 4.3 [15] provides an upper

bound for strong SK capacity
Lemma 4.2 [43], [48]: For a multigraph G = (M, E),

(M, G) = er%n {e € E : e crosses P}H,

1
Pl -1
where the minimum is over all partitions P of M.

Lemma 4.3 [15]: For the multigraph G = (M, E) associated with the PIN

model and for A C M,

m

1
Cy(A) = |E| - min n Z R, < H%Din P-1 {e € E': e crosses P}|,

(R1,.-,Rm) € Ra “
i=1
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where the minimum is over all partitions P of M such that each atom of P intersects

A

By (4.5) and (4.10), Rge (M) D Zgm (M) with G™ and M in the roles of

G and A in (4.5), it is clear that

min Ri—‘ < min I;, 4.25
’V(Rl (11 ..... Im) (S IG(") (M) ZZI ( )

noting that the value on the right side above is an integer.

Then the claimed equality follows since

(Il ----- In) € IG

M, Gy < p|EDW| - min I;
WM,G) < n B o 2

m

< |n 1B - min Ry, by (425
= 2 (R1,:Rm) € Ry (M) ZZI v 2]

1
< i ) . P ’ .
< er%n Po1 {e € E'™ : e crosses P} J (4.26)

= w(M,G™), by Lemma 4.2,
where (4.26) is by Lemma 4.3. ]

Proof of Proposition 4.4: By Remark (ii) after Definition 4.5 in Section

4.3, we have that

. ) . k k
~p(A,G0) = m ;Tl = e ;Tz
Since
k k
e 22T R T = A )
the assertion follows. m

Proof of Theorem 4.5: The second inequality of the theorem is immediate
by Theorem 4.2 (i) and the definition of C},(A).
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The proof of the first inequality takes recourse to the following result.

Lemma 4.4 [34, 31]: For a multigraph G = (M, E) that is Eulerian® and

ACM,

1
u(A,G) > b . Al/rln(ljnAﬁ {e € E: e crosses C,C}
C N

|

Now, for every n, Rgm (A) D Zgm (A), and so

min I, > mm R;.
Tam(A) T gt () Z
By Lemma 4.3,
n|EW| — min R < min —— |{e € E™ : ¢ crosses P ’
| | Ry (A) - P |Pl-1 { }
< min {e € EM™ : e crosses C, C’C}’. (4.27)
CCM:CNAZD

Restricting ourselves to n even, note that G is Eulerian, i.e., each vertex has even
degree. Then since the term within | | in the right side in Lemma 4.4 is clearly an

integer, we have that

1
w(A,G™Y > 3 @iCer\r}li.gmAﬂ ){e € EM : e crosses C, C°}

1

> = nE(1 — min R; (4.27

-2 | R (A) Z )
1

= 5 [H‘E ‘ — OMNG(W,)(A)}
1

= 20 [IBY] - OMN6(4)], by (4.7
1

= inCP(A)7

thereby establishing the left inequality of the theorem. ]

5The number of edges incident on each vertex is even.

7



Proof of Proposition 4.6: We prove (i) and (ii). The proofs of (iii) and (iv)
are similar but simpler, and are omitted.

(i) Similarly as in Remark (i) following Definition 4.5, we note that the right
side of (i) corresponds to a linear program with finite optimum value, and the
maximum is attained. Let G*, (T}, ... ST ), (T7, ..., 1) attain the maximum
in the right side of (i), where (T7,..., T} ) and (17, ..., T;”) attain the respective
maxima in p (A, G*) and p;(M, G\G*), with k; (resp. ky) being the number of all
distinct spanning trees in A (resp. M) of G. Clearly, (T7,...,T; ,Ty", ..., T;) is
feasible for pf(A, G), noting that a Steiner tree for A of G is either a spanning tree
in A or a spanning tree in M.

(ii) Similarly as in the proof of (i), we let G* (RY,...,R*,_,), (R™ ..., R*)
attain the minimum in the right side of (ii), where (R, ..., R, _,) and (R}*,..., R:¥)
attain the respective minima in OMNg.(A) and OMNg, . (M). Clearly, (R} +
Ry, ... R |+ R |, RY) is feasible for OM Ng(A), thereby proving (ii).

Similar arguments considering the corresponding integer linear programs lead

to (iii) and (iv). u

Proof of Theorem 4.7: We shall prove only (i); the proof of (ii) is similar
and is omitted.

First, we show that (4.18) implies (4.17), i.e.,
1
lim —u(A,G™) > C(A) = |E| — OMNg(A), (4.28)

n—oo M,

(since the reverse inequality always hold by Theorem 4.5). Let a fractional multi-
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graph G* = (A, E*) achieve the minimum in the right side of (4.18). Then,

1
lim —u(A,G™) = (A G), by (4.14)
n—oo N
> max (A4, G) +Mf(MaG\é)>
¢
by Proposition 4.6 (i)

> up(A,GY) + (M G\GY). (4.29)

Next, because the linear program in the right side of (4.18) involves a cost and
linear constraints with only integer-valued coefficients, G* = (A, E*) can always
be taken to be rational, i.e., all €;s in E* are rational. Next, let [ be the least
common multiple of all €j;s so that G0 = (A, E’*(l)) is a multigraph with edge set
E*D ={l¢&;, 1<i<j<m-—1}. Then,
n(A,GY) = %W(Aa "), by (4.13)
1

= 7(|E*(Z)| — OMNg.qy)(A))

= |E*| = OMNg.(A), by (4.7); (4.30)

the second equality is by Proposition 4.4 and the second assertion of Theorem 4.5

noting that the vertex set of G*® is A. By a similar argument, we have that
pp(M,G\G") = |E\E"| = OM N, 5. (M). (4.31)
Substituting (4.30) and (4.31) in (4.29),

lim p(A,G™) > |E*|+ |B\E
n—oo 1
—(OMNg.(A) + OMNg & (M)
= |E| - OMNg(A), by (4.18)

79



thereby giving (4.28).

Conversely, to prove that (4.17) implies (4.18), i.e.,
OMNg(A) > min OMN (A) + OMN g 5(M)
G

(since the reverse inequality always holds by Proposition 4.6 (ii)), we can assume
similarly as above that p(A, G) is attained by (17, ...,Ty) with rational compo-
nents, where k& = k(G) is the number of distinct Steiner trees (for A) of G (see
passage preceding (4.12)). Next, since A = {1,...,m — 1} C M, the collection of
all distinct Steiner trees of (for A) of G, namely {Sj,..., Sk} can be decomposed as
S1 US,, where S; (resp. Sy) comprises all spanning trees in A (resp. M). Consider

the fractional multigraph in A defined by

G =(AE), E ={&= Y Tni1<i<j<m-—1})

l:(i,j)ESl,
S1€EST

Then, it follows that
1A G) = pp(A,G*) + pp(M, G\G") (4.32)

since

k
pr(A,G) = Y 17
=1
- Y re Y w
I: S1e81 l: S1ES,

< pp(AGY) + (A, G\GY),

by the definition of yy; the reverse inequality is always true. Finally, the right side

of (4.17) satisfies
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OMNg.(A) + OMNg, 6. (M)

< OMN¢.(A) + OMN,, = (M)

G\G*
= (B - pp(A,G)) +
(IE\E"| = (M, G\G")),
as in (4.30), (4.31)
= |B| - pg(A,G), by (432)

= OMNg(A),

by (4.17), (4.14) and (4.6). n

Proof of Theorem 4.8: First, we prove (ii), and then (i) by applying (ii) to
G™ = (M, E™) and taking appropriate limits.

The proof of (ii) entails considering a modification of G = (M, E) obtained by
“edge-splitting” at the helper vertex m. Specifically, if G has more than one vertex
in A connecting to m, then for any two such vertices u,v € A, let G* = (M, E")
denote the multigraph obtained from G by splitting off the edges (u, m) and (v, m),
i.e., by reducing e,,, and e,,, each by unity and increasing e,, by unity; note that
|[E"| = |E| — 1.

The following claim, whose proof is relegated to Appendix C.2, will be used
to establish the theorem.

Claim: For a multigraph G = (M, E),

(a) if m is connected to at most one vertex in A or if there exists (I7,...,1I})
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attaining INT(A) with I}, = 0, then

1(A,G) = |E| = INT(A); (4.33)

(b) if m is connected to more than one vertez in A and if there exists (I, ..., I%,)
attaining INTG(A) with 0 < I, < |d,,/2], then for u € A connecting to m there
erists v = v(u) € A, v # u, also connecting to m, such that (If,...,, 1} 1,17 —1)

'y Tm—1"m

attains INTguw (A), and so

|E| — INTG(A) = |B*| — INTgur (A); (4.34)

(c) if m is connected to more than one vertex in A, then for u,v € A both

connecting to m,

H(A,G) = (A, G™).

In order to prove (ii), we observe first that it holds if the hypothesis of Claim
(a) is met. It remains to consider the realm of Claim (b). Let (I7,...,I}) be as in
Claim (b). Then we obtain Gy = (M, Ey) = G* for some u,v € A connecting to
m, and with (I,..., I} — 1) attaining INTg,(A). If I7, —1 = 0 or m connects to

m

at most one vertex in A in Gy, then by (4.33) (4.34),

WA, Go) = |Bs| — INT,(A) = |B|— INTG(A).

Else, Gy = (M, Es) is back in the realm of Claim (b), noting that the degree of m
inGyisd,, —2and I, -1 < |(d, —2)/2| as 2 < I, < |d,»/2]. Thus, we obtain a

finite number of multigraphs G; = G, Gy, ..., Gy, such that G; = (M, E;) = G},
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for some (u,v) = (u,v)(i) in A, and satisfying
|Ei1| — INTg, ,(A) = |E;| — INTg,(A), i =2,...,q (4.35)
and
WA, Gy) = |Ey| — INTg, (A). (4.36)

Using Claim (c) repeatedly,

WA G) = wA,G) = u(A, Gy)
= |E,| = INTg,(A). by (4.36)

= |E| - INT(4) (4.37)

by the repeated use of (4.35). Then, (ii) is immediate from (4.37) and Corollary 4.3.

To establish (i), the hypothesis implies (with a slight abuse of notation) that

min R; = OMNg(A). 4.38
R (A) (V{ R <dom /2} Zl a(4) (4.38)

Pick (R7,..., R},) that attains the left side with all rational components, and let [
be the least common multiple of their denominators. Thus, for every integer n > 1,

(nlR3,...,nlR},) attains INT 5o (A). As nlR;, < nl% it follows from (ii) that

w(A,GM) = nl|E| — INTg (A)

= nl|E| —nlOMN¢g(A), by (4.38).

Upon dividing both sides by nl and taking limits as n — oo (with [ fixed), we obtain

(i). n
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Chapter 5

Conclusion

This dissertation, in a nutshell, investigates secret key (SK) generation for spe-
cific multiterminal source models with emphasis on a single-letter characterization
of SK capacities and algorithms for SK construction. Various security requirements:
weak, strong and perfect secrecy, as well as different types of sources: finite-valued
and continuous, are studied. In this concluding chapter, we first compile specific
open problems emerging from our work that are yet to be resolved. Finally, we

point out broader research directions that are motivated by this dissertation

5.1 Specific Open Problems

5.1.1 SK for Gaussian Sources

In the Gaussian multiterminal model of Chapter 3, it remains to extend the
formulation of Theorem 3.3 to models with arbitrary number m > 2 of terminals;
the resulting model will involve quantization at one terminal in the secrecy-seeking
set A, say terminal k£, with randomization allowed at all the terminals. In particular,
following the paragraph preceding the statement of Theorem 3.3, the model under
consideration can be described as follows. Let M; be a M;-valued rv, 71 =1,...,m,
with My, Ms, ..., M,,, X, being mutually independent. For each R > 0, let gg :

M x R" — Qg be a (vector) random quantizer at terminal k of rate R, where
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Qr C R™ with 2log|Qg| < R. Let C(R) be the largest rate of a SK that can be
generated from qg(My, Xj) at terminal k and (M;, X;) at each of the other terminals
i € M\{k}. A characterization of C'(R), and devising algorithms for SK generation
that attains the optimum tradeoff C'(R), will constitute the main objectives of this
effort. Similarly as in Theorem 3.3, these questions are connected to problems in

multiterminal Gaussian lossy data compression (cf. e.g., [49]).

5.1.2 Perfect SK for the PIN Model

Consider the PIN model of Chapter 4. When all the terminals in M seek to
share a perfect SK, i.e., A = M, we see from Theorem 4.5 that maximal spanning
tree packing attains perfect SK capacity; this is no longer true, in general, when
A C M (cf. the example in Section 4.3). However, the single helper model in Section
4.4 possesses the special feature that a Steiner tree for A is a spanning tree for either
A or M. In spite of this, it is unresolved whether a maximal Steiner tree packing of A
attains perfect SK capacity (i.e., if the second inequality in (4.15) is tight) or if (4.11)
holds with equality (whereupon the sufficient conditions of Theorem 4.8 become
superfluous). We note that the optimality of maximal spanning tree packing in (4.11)
and (4.16), constitutes, in effect, a reformulation of the classic graph-theoretic results
of Nash-Williams [43] and Tutte [48]. A better information theoretic understanding
of (4.11) and (4.16) is desirable, and might suggest alternative interpretations of
related results in combinatorial tree packing.

Perfect SK capacity in Theorem 4.1 was shown to be achievable by way of the
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attainment of perfect omniscience at a minimum communication rate OMN,(A).
However, when A = M, Theorem 4.5 asserts that maximal spanning tree packing
attains capacity; an examination of its proof (cf. Lemma 4.1) shows the correspond-
ing rate of communication to be (m —1)C,(M) which can be less than OM N,(M).
It remains open to characterize the minimum rate of public communication needed
to attain perfect SK capacity.

Maximal Steiner tree packing is guaranteed by Theorem 4.5 to attain a fraction
of at least half of the capacity C,(A). What is the best feasible value of this fraction?

A natural generalization of the PIN model involves signals observed at vari-
ous terminals that go beyond being correlated in pairs. For example, in a sensor
network a group of proximate sensors can be assumed to observe (nearly) identi-
cal signals. An apt generalization of the PIN model is the Groupwise Independent
Network (GIN) model: Consider a collection of mutually independent binary strings
Ei, FE,, ..., E., where each E; is shared by a group of terminals G; C M, 1 =1,... e,
with overlaps allowed among the groups. Consequently, each terminal ¢ observes
iid. repetitions of the v X; = {E;, j=1,...,e: i € G,}. Perfect SK capacity
for the GIN model can be characterized using methods similar to those in the proof
of Theorem 4.1. An appropriate combinatorial representation of the GIN model is
now a hypermultigraph with hyperedges replacing edges in the multigraph represen-
tation of the PIN model. The definition of Steiner tree can be suitably modified for
hypermultigraphs, and can be used to generate a perfect SK in an efficient manner.
However, similarly as in the case of the PIN model, these efficient algorithms are

not expected to achieve perfect SK capacity.
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This raises the following question: Can ideas from network coding be exploited
to construct efficient algorithms for generating rate-optimal perfect SKs? Prompt-
ing this question are two findings in Chapter 4: A connection between perfect SK
generation and perfect omniscience, and the adequacy of linear coding for attaining

perfect SK capacity.

5.2 Future Research Directions

The results in this dissertation represent only a small step towards realizing
network cryptosystems that guarantee information theoretic security. Several issues
are left unexplored and remain rich research areas for future exploration.

One avenue of future investigations deals with certain fundamental unanswered
questions concerning SK capacity. First, the results in Sections 2.2.1 and 2.2.2 re-
garding connections between SK generation and related multiterminal data com-
pression problems raise the following interesting question: What are the smallest
(entropy) rates of common randomness (rather than full omniscience) and the as-
sociated communication that are required to attain SK capacity? Answers can be
useful in studying practical cryptographic systems with limited communication or
storage resources.

Second, the feasibility of perfect SK in a general discrete multiterminal source
model merits further investigation. The Pairwise Independent Network (PIN) model
in Chapter 4 possesses a special structure that allows the terminals to devise a

perfect SK instead of a strong SK without sacrificing rate optimality. This will not
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be the case for models with general discrete sources. Thus, what are the correlation
structures of sources that enable perfect SK generation?

Third, can there be an intermediate notion of SK capacity between strong SK
capacity and perfect SK capacity? In particular, for a SK K with key-space K and
the eavesdropper’s observation F, the security index in (2.1) can be interpreted as a
measure of closeness, on the average, of the conditional entropy of K, conditioned on
F = £, to log ||, the entropy of a rv uniformly distributed on K. A more stringent
criterion can require that the SK is close to being uniformly distributed for every
realization f of F. In this regard, it makes sense to define a new security index as
5(K; F) = max¢ [log |K| — H(K|F = f)]; a new notion of SK capacity can be defined
suitably with respect to this new security index. Clearly, this new SK capacity is
bounded below by perfect SK capacity and is bounded above by the strong SK
capacity. What are the ramifications of this new security index 57

A second avenue of related future research involves code constructions for SK
generation for various multiterminal source models. Such constructions are con-
nected closely to code constructions for multiterminal data compression (lossless
or lossy). These, in turn, are closely related to multiterminal channel code con-
structions which also constitute a largely open research field. Further, the nature
and structure of optimal codes may vary significantly for different types of source
models as well as with different levels of security requirements. The primary goal in
this direction is to obtain explicit constructions of optimal codes for SK generation
that admit efficient implementations. Preliminary works can be found in [56] (see
also [54]). In general, constructing optimal codes for SK generation involves more
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complex models than those for constructing optimal codes for other information
theoretic purposes. One reason is that the problem of SK generation involves two
simultaneous constraints: common randomness (recoverability) and secrecy, while
other information theoretic problems usually deal with a single constraint (proba-

bility of error or distortion).
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Appendix A
Appendix for Chapter 2

A.1 Proof of Lemma 2.1

Consider a random L%J x N matrix L with entries taking values mutually
independently and uniformly in Fy, i.e., L is uniformly distributed on the set of all

M x N = Ll]gfglz | x N matrices with F-valued entries. Further, assume that L is

independent of (AN, UY, B) and, hence, the average of H(LAY|UY, B) over the set
of all M x N matrices L can be written as H(LAY|L, UV, B).

The proof of Lemma 2.1 involves a series of steps that result in successive lower
bounds for H(LAYN |L,U"Y, B), yielding eventually that under the assumptions of

the lemma,

H(LAY |L,UY,B) > Mlogq — ey, (A1)

for an exponentially vanishing ey, whereupon the assertion of the lemma follows.
These steps in the proof will follow, in a similar manner, the recipe in the proof of
Lemma 7 of [41] which established an analogous version of Lemma of 2.1 but with
an extra assumption that U is also a finite-valued rv.

Note that the set of all M x N matrices with F,-valued entries corresponds,
in a one-to-one manner, to the set of all linear functions G = {g : F) — F}'}.

Let G denote a rv distributed uniformly on G. Then, it holds that, for any al’ #
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N N _N N
ay, ay,ay €F/,

Pr{G(aY) = G(a))} = Pr{LaY = La)} =¢ ™ = ﬁ (A.2)

For a set of functions, not necessarily linear, with a common domain and
a common range, this very property (A.2) of the set that for a random function
distributed uniformly on the set, the reciprocal of the cardinality of the size of the
common range equals the probability that the two values of the random function
applied to any two distinct inputs coincide, is referred to as the “universal” property

in [3], and is used therein to prove the following result.
Lemma A.1 [3, Theorem 3]: For a finite-valued rv X € X, let G be the
rv uniformly distributed on a universal set of functions G from X to a finite set B.

Then it holds that

H(G(X)|G) > log |B] — elsIB-H:00)

where

H,(X) 2 —log ) Px(x)”. (A.3)

The proof of Lemma 2.1 relies, additionally, on the following three lemmas;
the first two of these lemmas are new with their proofs being relegated to the end

of this appendix, while the third lemma was shown in [7].

Lemma A.2: For ) > 0, let

(a™,u) e FY x R™V :
gN((S): )

PAN|UN (aN‘uN) < e—N(H(A|U)—6)
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where H(A|U) £ E[—log P (A|U)] and Paw(sJu), u € R", is the conditional pmf
of A conditioned on U = u. Then, Pr <(AN, UN) ¢ QN((5)> = on(e™®N), for some

a > 0.

Lemma A.3: For d >0, let

N
qu

Fn(6) =Gn(6) N

{UN : ZaNZ(aN,UN)EQN(5) PAN‘UN(GN|UN) > 6_5N}

Then Pr((AN, UN) ¢ FN(5)) = on (e PN) for some 3 > 0. Furthermore, for every

u™ in a subset of R™ of Py r,s)-measure 1, it holds that!

H, (AN|UYN =N, (AN, UY) € Fn(6)) = N(H(A|U) — 20)

for all N sufficiently large.

Lemma A.4 [7]: Let A and B be finite-valued rvs, and let € > 0 be given.

Then

PB<{b €B: H.(A)— H.(A|B=0) <log|B| + 6}) >1— 22

Fix € > 0. By Lemma A 4, for every u’¥ € R™",

H(AN|U" =V, B = b, Fn(9)) >
PB|UN,.7:N(5) b c B : UN,fN((s)
HC<AN|U" - uN,fN(a)) “log |B| — ¢
>1—2e 2 (A.4)

'Here, H, (AN|UN =ulN, (AN, UN) € .7-'N(5)) is computed according to (A.3) but with the
conditional pmf of AN conditioned on {U" =uN, (AN, UN) € Fn (6)} instead of according to its

marginal probability.
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Then with S = S ¢ R™ denoting the special subset from Lemma A.3 of

Pyny sy (5-measure 1, we have

Pun s ({(UN, D) eSxB: HC<AN\U" —uN, B =b, ]—“N((S)> > Q}

-7:N(5)>
>1—2e 2 (A.5)
for all N = N(0) sufficiently large, where
Q2 N (H(A|U) —20) —log |B| — e.
By Lemma A.1, for (u'V,b) satisfying the condition of (A.5), we have

H(LAN‘L, UN =uV, B = b,l( (AN,UN) c _7:N(5>) _ 1) > Mlogq — eMo8a-Q,
(A.6)

Since
HLAN|L,UN,B) > Panyn(F(6)H <LAN|L, UV, B, 1( (AN, UM e fN(é)) - 1) ,
and furthermore by (A.5), (A.6),

H (LANIL, U", B, 1( (AN, UN) € FN(5)> = 1) > (1—-2e"/%)(M log g—eM159=@Q),
(A.7)

for all N = N(0) sufficiently large, we obtain that
H(LAN|L, U, B) > Pr(F(6))(1 — 2e~/?)(M log q — eM'°81-9) (A.8)

for all N = N(0) sufficiently large.
Upon selecting ¢ sufficiently small and v = ¢/N such that
1
R < [H(A|U) =26 — N10g|B| -,
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we obtain from (A.8) that
HAUN|L,UN, B) > (1 — on(e7"))(1 — 267™V2) (M log g — e™"™),

for some 1 > 0. This proves (A.1) and, hence, the assertion of the lemma. ]
Proof of Lemma A.2:
The proof uses results from large deviations theory (see, e.g., [18]) to prove
the lemma. Let X; = —log Py (A4;|U;), i =1,..., N, where (AN, UN) are N ii.d.
repetitions of (A, U). Observe that X; is nonnegative and E[X;] = H(A|U), i =
1,...,N, where 0 < H(A|U) <log|F,| < 0.

Then, from Theorem 2.2.3 of [18], we have that for 0 < § < H(A|U),

N
1 1
lim sup N log P(N ;1 X; €0, H(A|U) = ¢]) < ze[O,I;?AfW)fé]A (x),

where

A (z) & sup Az — A(N) and
AER

A()\) A log E[e,\(— logPA\U(AIU))]_

As in [18], we define Dy = {\: A()\) < oo}. Next, we have that

M1) = logBlp—r]

1
= log( Z PA|U(a|U)WdFU(u))

a:PA‘U(a|u)>0

< log|F,| < 0.

In addition, because —log Pajy(A|U) > 0, A(.) is nondecreasing. We then have

that (—o0,0] is in the interior of D,. It follows from Lemma 2.2.5(b) in [18] that
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A*(H(A|U)) = 0 and that A*(x) is nonincreasing for © < H(A|U). Consequently,

N
1 1
lim sup N log P(N ;1 X; €0, HAIU)—-4]) < ze[O,f}gﬁlflU)fé]A (x)

— A*(H(AJU) - ).

Also, from Lemma 2.2.5(c) in [18] and the fact that 0 is in the the interior of Dy,
A(A) is differentiable at A = 0 and A’(0) = H(A|U). It suffices to prove that for
0<d< H(AU), A*(H(A|U)—0) > 0. Suppose this is not the case, i.e., there exists
0 <0 < H(AJU) such that A*(H(A|U)—¢) = 0. Then, from the definition of A*(z),
it is necessarily true that for every A < 0, A(H(A|U) — d) < A(N\). Consequently,

lim A(0) — A(N) . AN
A—0— 0— A A—0— A

thereby contradicting the fact that A’(0) = H(A|U). This completes the proof of
Lemma A.3. ]
Proof of Lemma A.3:

We have that

Pr((A¥,uM) ¢ Fu(8) < Pr((AY,UY) ¢ Gx(9))
u  Pr((AY,UY) ¢ Gu() U™ = u)
+PUN
>1—e N
In the right side above, the first term = oy (e™*") by Lemma A.2, while the second
term = % = oy(e™PN) for some B < a. Thus, Pr((AN,UN) ¢ FN(5)) =

on(e M), which is the first assertion of the lemma.

Next, for every (aV,u) € Fy(d),

Pr <AN = a|UN =, (AY UY) € ]—“N((S)>
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Py (a [u™)
Pr( (AN, UN) € Fy(8)|UN = uN>
PAN‘UN(CI/N|UN)

ZaN:(aN,uN)EQN(zS) Pawjgx (@ [ul)
o~ N(H(A|U)-5)
< —————, since Fn(0) C Gn(9)

e—Nd

o~ N(H(AJU)-26)

Hence, for every v’V € S, it holds that

H, <AN|UN =, (AN, UN) € ]:N(5)>

= —logz [Pr(AN =a™|UY =, (AN, U") 6.7-"]\7((5)”2
> —log [ZPT(AN = a"|UN =", (AN,UN) c }"N(5)> . e~ N(H(A|U)—20)

= N(H(A|U) - 25),

thereby establishing the second assertion of the lemma.
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Appendix B
Appendix for Chapter 3
B.1 Proof of Part (ii) of Lemma 3.4
Note that X; = (X1.1,...,X1n) = X? and Xo = (Xo1,...,Xon) = X2,

where (X4, Xa;), i =1,...,n, are i.i.d. repetitions of the jointly Gaussian random

variables (X7, X5) with both means being zero and with correlation coefficient p.

1 1
ﬁ[(Q(Xl) ANXq) = ﬁ[(CJ(X{L) AN XY)
— Lh(XE) - —h(XPla(XD)
- n 2 n 2 q 1
1 " 1 a n i—
= E Z h(XQJ) — E Z h(X2,z‘Q(X1 )7 X2,11>
=1 i=1
1 - 1 = n i— i—
< ~ Z h(Xs;) — " Z h(Xs;|q(XT), X1,11> X2,11)
=1 i=1
1 . n i— i—
B EZI(Q(X1)=X1,11>X2,11 A Xai). (B-1)
i1
Next,

1 1
—1 > —I(g(X7) NXT
0 0g|Q| = 0 (Q( 1) 1)

1 1
= —h(X}) — ~h(Xlg(X}
n ( 1) N ( 1|Q( 1))
1 “ 1 - n i—
= EE h(Xl,i)_EE h(X1ile(XT), Xi7')
i=1 i=1

1 - ]- . n i— i—
T on Zh(XLi> T n Zh(xl,i\Q(Xl )7X1,117X2,11)’

i=1 i=1

1 - n i— i—
= E § [(Q(Xl)aXl,llaXQ,ll AXl,i)a (B_Q)
i=1
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where the last equality is from
I(Xq: N X;,_11|Q(X?)7Xf,_11)
< I( Xy, q(XT) A X§31|X1i,31)
< (X, X A Xon XG0
< I(Xy, XPog A X1 X50Y) =0,

by the assumption that (X;,;, X2,), ¢ =1,...,n, are i.i.d.

Let U; = (q(X7), X{7", X53"). Then,
I(U; N Xo4| X03) = I(q(X7), XliTll? X;,]l N Xl X1,)
< I(XT X7 X570 A Xo | Xy )
< (XN X7 X570 A X X5 =0, (B-3)
by the assumption that (X,, Xs,), i =1,...,n, areii.d., so that U; - X; ;- X5;.

Consequently, from (B-1) and (3.30), we get

% I(q(X1) A Xy) < % i CI(U; A X14)) (B-4)

and, from (B-2), we get
1< 1
—> I(Ui A Xy,) < ~log Q). (B-5)
n —1 n

Continuing from (B-4), we have that

n

%I(Q(Xl) AXy) < %ZO(I(UiAXl’i))
< C (%i[(Ui/\Xl,i)>
<

c(llogrgw),
n
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where the second inequality is by the concavity of C(.) and the last inequality is

from (B-5) and the fact that C(.) is increasing.

B.2 Proof of Lemma 3.7

For the proof of Lemma 3.7, we shall need the following definitions.

Definition B.1: The effective radius of an n-dimensional lattice code A,
denoted by rif / (n), is the radius of an n-dimensional sphere with the same volume
as the Voronoi region of the lattice code.

Definition B.2: A sequence of lattice codes is good for covering if the ratio
of its covering radius to effective radius approaches 1 as the dimension of the lattice
codes tends to oo.

Definition B.3: Let Z be a Gaussian rv with mean 0 and variance 0% and
let Z be n i.i.d. repetitions of Z. For each § > h(Z) = 1 log(2meo%), a sequence of
lattice codes A is said to be exponentially good for AWGN channel coding for noise

Z without power constraint and with parameter § if there exists a mapping E(.) such

that E(u) > 0 for every u > 0,

1
lim —log|v(A)| =6,

n—oo 1
and

Pr{Z ¢ v(A)} < e~ MEE=h(Z))=on (1))

The exponent of the error probability Pr{Z ¢ v(A)} can be expressed in terms

of the ratio, p > 1, of the effective radius of the lattice code to the (approximated)
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radius of the Gaussian noise vector /noz. In [46], Poltyrev characterizes an achiev-
able error exponent Ep(p). In particular, he shows the existence of a sequence of

lattice codes A = A with the property that

n—oo \/nos,

and

Pr{Z ¢ v(\)} < efn(EP(p)*O"(l)),

where Ep(p) is the Poltyrev exponent given by

;

Hp*—1) —Inp], 1<p*<2
Ep(p) = %ln%, 2<p?<4

2

& p* >4

\

Observe that the properties of being good for covering and being exponentially
good for AWGN channel coding and achieving the Poltyrev exponent are invariant
under scaling. To prove the existence of nested lattice codes with the required
properties, we shall use the results of [21]. In [21], the authors considered the
random lattice ensemble constructed from a random linear code C by the following
procedure described in x below (The construction is known as Construction A in
the theory of lattices, see, e.g., [9]). The random lattice ensemble is denoted by
7" + Ifn)c , where p(n) is a sequence of primes and C is the ensemble of uniform
random linear code over Zy,).

Definition B.4:

e Let C denote the uniform random (n, k(n)) linear code ensemble over Z ).

Specifically, the random generating matrix G of the code in the ensemble is obtained
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by drawing each element of G independently and uniformly from Z,) and letting
C={x=iG,ic Zﬁgzg}, where all the operations are over Z,(,) (i.e., modulo-p).

e Transform each codeword of C into a point in [0,1]" C R" by dividing all
the coordinates by p(n). Denote such a random constellation by ﬁc C [0, 1]

e Replicate Ifn)c over all of R" by performing Z" + Ifn)c . It is easy to check
that Z" + ﬁc is indeed a lattice.

Note that if G is nonsingular then the volume of the Voronoi region is p(n) =%,
The probability of G being singular can be easily shown to be at most p(n) =" (p*(n)—
1) (see (24) of [21]). Following [21], we shall consider only lattice ensembles such
that k(n) < fBn for some 0 < # < 1, so that this mentioned probability goes to
zero in n at least exponentially (p may also grow with n). Consequently, there is a

relationship among the parameters p(n), k(n) and r//(n) for typical lattice codes

in the ensemble which can be stated as:

P ) ey o
= Yoy

where Vz(r//(n)) denotes the volume of the ball of radius ¢/ (n) in R™.

As in [21], we shall hold r$//(n) approximately constant as n — oo. Specifi-
cally, since p(n) is prime and k(n) is an integer, 7¢//(n) cannot be a constant. For

a suitably chosen k(n), it suffices to pick p(n) such that r$//(n) as defined in (B-6)

satisfies, for all sufficiently large n,
Ponin < 757 (1) < 2rpin, (B-7)

for a constant r,,;,. By the fact that k(n) < fn for some [ < 1, it transpires that
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for a fixed i, and for all n sufficiently large there exist a prime p(n) and r/ (n)
satisfying both (B-6) and (B-7). The results of [21], restated here, give constraints
on the ranges of r,,;, and k(n) of the random lattice ensemble Z™ + ﬁc , with p(n)
appropriately picked as above, such that with probability approaching 1, a lattice
code in the ensemble has full dimension and is good for covering or is exponentially
good for AWGN channel coding, respectively. These constraints are summarized

below.

Lemma B.1 (Goodness for covering): [21, Theorem 2| For any fixed rpn,
such that 0 < Ty < % and any k(n) such that log”n < k(n) < fBn, for some
B < 1, let p(n) and 7 (n) be such that both (B-6) and (B-7) are satisfied (for
all n sufficiently large). Then, for such parameters (n,p(n),k(n)), with probability
approaching 1, the random lattice code in the lattice ensemble Z™ + Ifn)c 1s good for

covering and C has dimension exactly k(n).

Lemma B.2 (Ezxponentially goodness for AWGN channel coding achieving

the Poltyrev exponent evaluated at p): [21, Theorem 4] For any fixed rp, such that

0 < Tmin < min(32§2(p), 1) and any k(n) such that k(n) < fn for some § < 3, let
p(n) and M (n) be such that both (B-6) and (B-7) are satisfied (for all n sufficiently
large). Then, for such parameters (n,p(n),k(n)), with probability approaching 1,
the random lattice code in the lattice ensemble 7" + ﬁc 1s exponentially good for

AWGN channel coding and achieving the Poltyrev exponent evaluated at p, and C

has dimension ezxactly k(n).

Lemma B.3: For any D, Ry, R3, po > 1 and p3 > 1, there exists a sequence
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1
of three level nested lattice codes A1 D Ay D As such that Izgﬁzgl n = eflston(D) gnd

v(A2)|® _ Ra+on(D)
V(A0 '

Furthermore, Ay is good for covering with second moment
per dimension D and Ay (A3) is exponentially good for AWGN channel coding and

achieving the Poltyrev exponents evaluated at py (ps3), respectively.

Proof of Lemma B.3: We shall consider the nested ensembles of lattice
codes A = Z" + Ifn)cl DAy =7"+ ﬁ(fg DA =7"+ ﬁcg, where C; D Cy D C5
denote the nested uniform random (n, k1(n)), (n, k2(n)) and (n, ks(n)) linear codes
over Zpn), respectively. In particular, we first draw a uniform random k;(n) x n
matrix (with entries taking values uniformly and independently in Z,,) to be the
random generating matrix of C;. Then the first ko(n), k3(n) rows of the random
matrix constitute the random generating matrices of Cy, Cs, respectively. It is then

left to pick (p(n),ki(n),ka(n), ks(n)) appropriately to obtain the required nested

lattice codes.

To this end, we first select 7, = min(32£}i?p2), 321522(,;3)’ i) Next we select

Tming Sall enough and 7,1 < Tmine < Tming < Tmin SO that :m—"f = e and
man

Imini — s We then select ki(n) as growing linearly in n, say in. Then, ks(n) and

Tmin2

k3(n) are constrained by the ratios of the volume of the Voronoi regions of the three

lattice codes, namely kqo(n) = ki(n) — hogfffnﬂ and k3(n) = ka(n) — Llo’;?gﬂ)] Lastly,

we shall select a prime number p(n) so that 7,1 < Ti{ ! (n) < 27rmin1- Observe that

for every large enough n, we can find a prime p(n) so that 7,1 < ri{ ! (n) < 2rmin1-

xk1(n) — 1

To see this, let p* € R satisfy (B-6) for a radius 27,1, i.e., p et

From (B-6) and by rpin1 < Tf\{f(n) < 2Tmin1, our claim is true if we can find a
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prime p(n) € [p*,Zﬁp*]. Since ki(n) = in, it follows that there exists such a
prime for every large enough n, because there is a prime number between ¢ and 2
for every integer i (Bertrand’s postulate, see, e.g. [27]). By (B-6), the choice of
ki(n) above and the fact that r,,;,1 < ri{ / (n) < 27min1, it is clear that p(n) grows
subexponentially in n. It then follows, for all n sufficiently large, by the manner
of selection of ko(n), k3(n), Tminz and rpims that rpme < ri]; ! (n) < 2rpine and

eff
Tming < TAS

(n) < 2rping. It is clear that (7.1, k1(n)) satisfy the constraints in
Lemma B.1 above for A; to be good for covering and (7in2, k2(n)) ((Tmin3, k3(n)))
satisfy the constraints in Lemma B.2 above for Ay, A3 to be exponentially good for

AWGN channel coding and achieving the Poltyrev exponent evaluated at ps, ps,

respectively. Specifically, by Lemma B.1 and Lemma B.2 above, we have that the

events
A = {A; is good for covering and dim(Cy) = ky1(n)},
( 3
Ay is good for AWGN channel coding
B pum
achieving Ep(p2) and dim(Cs) = ko(n)
\ Vs
and ) \
A3 is good for AWGN channel coding
C =
achieving Ep(ps3) and dim(Cs) = ks(n)
J

\

satisfy Pr{A} = 1—o0,(1), Pr{B} =1—0,(1) and Pr{C} = 1—o0,(1), respectively.

Consequently,

Pr{ANBNC}=1—-Pr{A°UB°UC} >1—o0,(1).

Therefore, there exists a sequence of three level nested lattice codes A1 D Ay D As
such that A; is good for covering, and As, A3 are exponentially good for AWGN
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channel coding and achieving the Poltyrev exponents evaluated at ps, p3, respec-
tively. The claims regarding the ratio of volume of the Voronoi region of A3 to that
of Ay and the ratio of volume of the Voronoi region of A, to that of Ay follow from

ka(n) — ks(n) = |48 ki(n) — ka(n) = |22 and the fact that p(n) grows

log p(n) log p(n)

subexponentially, respectively. Lastly, we shall scale all lattice codes so that the
second moment per dimension of A; is D. [ ]

Now, returning to Lemma 3.7, we have the following Lemma.
Lemma B.4: For R > 0 and an arbitrary but fired D > 0, let « be selected

as in (3.43). Then, for any P > o0 + D and any Q > o*c%, + D, there exists a

sequence of nested lattice codes Ay D Ay D Az such that 0?(Ay) = D, Ay is good for

covering,
.1 [v(As)] _ 1
lim —1lo =—lo D, B-8
A g R T 2 gQ/ (B-8)
1 Ay 1
lim —lo = —log P/D, B-9
M ) 2 (B-9)
Pr{aZ —U ¢ v(Ay)} — 0 exponentially in n (B-10)
and
Pr{aX; —U ¢ v(A3)} — 0 exponentially in n. (B-11)

Proof of Lemma B.4: Let r > 1 be sufficiently close to 1 such that T% >
a?0? + D and 7% > a’c%, + D. By Lemma B.3, there exists a sequence of nested
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lattice codes A1 D Ay D As such that

[v(Ag)| _ eg(bg%-i-en(l)); [v(As)] _ eg(log%—wn(l))’ (B-12)
|v(Ay)] v(Ag)]

A is good for covering with second moment per dimension D, and A,, A3 are ex-

ponentially good for AWGN channel coding and achieving the Poltyrev exponent

evaluated at ps, p3, respectively, where

P Q
— = ) B-13
& \/7"2(0420% + D)’ ps \/7“2(04203(1 + D) (B-13)

It is then left to prove (B-10) and (B-11) for the sequence of nested lattice codes
A1 D) A2 D) Ag.

First, we claim that

%log W(A)] = log (27¢)D + on(1). (B-14)

The normalized second moment of v(A;), denoted by G(v(Ay)), is defined as (see,

e.g., [9])
o?(Ay)

Gv(Ay)) = AR

(B-15)

It is known that the normalized second moment is invariant under scaling and that

*
n’

the normalized second moment of a sphere, denoted by G, converges to 2—71re as
n — oo (see, e.g. [9]). By the fact that A; is good for covering, we have that (see

[21, Proposition 1])

Glv(A)) — 2_; (B-16)

Then (B-14) follows from o?(A;) = D, (B-15) and (B-16).
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The following lemma, from Lemma 6 and 11 in [22], gives upper bounds for
the two probabilities (B-10) and (B-11) in terms of those for i.i.d. Gaussian rvs with

asymptotically equal variances per source symbol.

Lemma B.5: If Ay is good for covering and o*(Ay) = D, then there exists €}

and €3 depending only on Ay and going to 0 and 1 in n, respectively such that
Pr{aZ — U ¢ v(Ay)} < Pr{Z ¢ v(A,)}e™

and

Pr{aX; —U ¢ v(A3)} < PT{Xl ¢ v(Ag)}e T,

where Zi and X, are n i.1.d. repetitions of Gaussian rvs with mean 0 and variances

50?0} + D) and €5 (a?o%, + D), respectively. Specifically,

2
" )
<€ < !
n+2 = <Ti{f(")>

and

r(n 1 1
ey = log ( é\flf( )> + élogZWerL + -

Let py denote the the ratio of the effective radius of Ay to the approximated

radius of the Gaussian rv Z (y/nej(a20% + D)), i.e.,

P )l
Vg(l)% \/neg(oﬂa% + D) \/(27re)e§‘(a20% + D)’

(B-17)

and let p3 denote the ratio of the radius of A3 to the approximated radius of the

Gaussian rv X, (\/neg(oﬂa%(1 + D)), i.e.,

As)| "t
ﬁgz |V( 3)| n (B_18)

\/(2we)6§((x2a§(1 + D) ’
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where V(1) is the volume of the ball in R™ of radius 1 and, hence, from (B-6)
1/n
o= /20 (F22) 7 1 (see, e [9).
Using (B-14), it follows from (B-12) that |v(Ag)| = e2(osre)P+on(l)) anq

[v(As)| = ez(loe@me)@+on(l) - Consequently, for all n sufficiently large, we get from

(B-17) and (B-18) that

Do > P2 = P > 1 (B-19)
2= P2 = r2(a20% + D)

and, from (B-18) and (B-18), that

By Q
> p3 = > 1. B-20

Let Z and X; be n iid. repetitions of Gaussian rvs with mean 0 and variances
r*(a?o%+ D) and r*(a’o%, + D), respectively. From Lemma B.5, (B-19), (B-20) and
the fact that Ay, A3 are exponentially good for AWGN channel coding and achieving

the Poltyrev exponent evaluated at ps, p3, respectively, for all n sufficiently large,

Pr{aZ -U ¢ v(Ay)} < Pr{% ¢ v(Ay)} < e~ Ep(p2)—on(1)).

PT{O[Xl — U ¢ V(Ag)} S Pr{il ¢ V(Ag)} S e_n(EP(P3)_0n(1))’

thereby establishing (B-10) and (B-11). [
All assertions in Lemma 3.7 except for (3.55) follow from Lemma B.4 by noting

from (3.44) and (3.50) that

1 a’o% + D 1 a?02 + D
R=-log—=t—, R,=-log—Z—.
2% p 0 T
To see (3.55), note that we have shown that log |T§£;))g tends to 0 in n. Consequently,
. (2me)D
rifl(n) = O(——==) = O(VnD).
Vs(1)n
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By the fact that A; is good for covering, TfflTin)
Ta, (1

y = 1, r{%(n) = O(vVnD).

B.3  Proof of (3.57)

Denoting A = {(aX; — E) mod A3 = aX; — E}, we have that Pr{A} =

1 —o0,(1) by (3.56). Then

E (X - Xi[?| = E[JX: - c((aX) ~ B) - Qu, (X ~ )|’
< E[I(1 - ca)X, + cBJ]?] +
E [|cQu, (aX; — E))|?]
= E[(1-ca)X, + cE|JF] +

E [[[cQa,(aX1 — E))|? 1ias)]

IN

E [[|(1 = ca)X; + cE[?] +

VE [1c@ay (X1 = E)[4] Pr(1 i)

= n[(1-ca)’ok, + D]+

VE[[[cQu,(aX; — E)[[]y/Pr(1e),

where the second equality is by that fact that in A, Qa,(aX; — E) = 0; the two
inequalities above are by the triangle inequality and the Cauchy-Schwarz inequality,

respectively. Next,

VE [[[cQu, (aXy — E)|]
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= AVE[[(aX, - E) — (aX; — E) mod Ag]J]

< @ [E[I@X ~B))F +E[|(0X, - B) mod A,)]
< 2[E[IeX, - B} +E[l0X, - B)|)]

< 4 [E [ll(aX, — E)H‘*}‘l‘}2

< 4’ [E llaXy|*]* +E [||E||4]‘1‘}2

2

— [O(n2)i+0(n2)ﬂ = O(n),

where the first and the last inequalities are by Minkowski’s inequality; the second
inequality is from

[(@Xy — E) mod As|| < [|(aXy — E)[;

the last equality is a consequence of the components of X; being i.i.d. Gaussian rvs
and E taking values in v(A;) that is covered by a ball of radius O(y/n) in (3.55).

Consequently, we have that

E [IX; = X ] < n([(1 - ca)20}, +¢*D] + 0(1)),
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Appendix C
Appendix for Chapter 4

C.1 Proof of Lemma 4.1

We prove a slightly stronger result that there exists an LC whose null space
comprises only the all-zero and the all-one strings (corresponding to the edges in
T being labelled all zero or all one) which clearly enables every terminal in V' to
recover all the edges of T. We prove the claim by induction. When |T'| = 2, say,
with T = {e; = (v1,v2), 2 = (v2,v3)}, then e; + e5 mod 2 constitutes an LC whose
null space is {(00),(11)}. Next, suppose the claim is true for all trees with k — 1
edges, k > 3. Given a tree with k edges, pick an end vertex vy of the tree (a
vertex with degree one), and let v, be the sole vertex connecting to vgy;. Then
G = (V,T'\UJ{(vk,vk+1)}), and G" = (V\{vks1},T") is a subtree of G. By the
induction hypothesis, there exists an LC for G’, say, F'(T") of length k£ —2 (bits) and
whose null space is {0"“_1, 1k_1}. Let vi_1 be another vertex connecting to v, and
let €1 = (vgp_1,vx) and ex = (vg, vgy1). Then, consider {F(T"),ex_1 + ex} as an

LC of G of length k — 1. It is now clear that the null space of this LC is {0%, 1%}.
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C.2  Proof of Claim in (The Proof of) Theorem 4.8

(a) Let G4 = (A, E4) denote a subgraph of G in A, where £4 C E consists
only of those edges in F whose both end vertices lie in A. Clearly,
|E| — INTG(A) > wAG) > p(A,Ga)
= |Ea| = INTg,(A),
by Corollary 3 with M = A

= |E| = (dn+INT;,(A)).

Thus, it suffices to show that

dm +INTg,(A) < INTG(A). (C-1)
Consider first the case where (15, ..., I _;,0) attains INT¢(A). Without loss of gen-

erality, let {1,...,a}, a < m—1, be the set of vertices in A connecting to m. For any
ve{l,...,a},since {v,m} 2 A, we have that I +I% = I* > e, (see (4.10)). Con-

sequently, since d,, = > o _ | €um, we see that (If —eipm, ..., [i—€am, Lip1, - 1),

s dm—1
with components summing to INT;(A) — d,, is feasible for INT¢,(A). Thus,
INTG(A)—d,, > INTg, (A), establishing (C-1). A nearly identical argument would
show that (C-1) holds too for the case when at most vertex 1 is connected to m,
and is omitted.

(b) Consider any G*¥ = (M, E") as in the second paragraph of the proof of
Theorem 4.8, and let (I7*, ..., I'*) attain INTguw(A). Then, (17, ..., I}, [X+1)

ytm—17"m

is feasible for INT(A), so that

INTH(A) < INTgun(A) + 1. (C-2)
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Without loss of generality, let {1,...,a} be as in the proof of Claim (a). To prove
Claim (b), it suffices to show for u = 1 that there exists v € {2,...,a} such that
(I5,..., Iy, I}, — 1) is feasible for INTgio(A) if 0 < I}, < [%]. This would mean

that

INTG(A) — 1 > INTg (A). (C-3)

which, together with the observation that |E| —1 = |E'|, establishes Claim (b). To

this end, referring to (4.10), for B C M, set

[I>

eG(B) Z €ij» €G(@) = 07 (C_4)

1<i<j<m, i€B, jEB

and let
B,0#BCM, B2 A,

We make the following

Claim (d): For u = 1, there exists v € {2,...,a} connecting to m with the
properties that

a) for B € B such that 1 ¢ B, m € B, it holds that v € B;

b) for B € B such that 1 € B, m ¢ B, it holds that v ¢ B.

Then, with the choice of v as in the Claim (d), a simple check of all the possibil-
ities for B (in B or in B°) that are feasible in (4.10), shows that (17, ..., ¥ _,, I* —1)
is feasible for I NTg1.(A), thereby establishing (C-3) (and hence Claim (b)).

It only remains to establish Claim (d). We first state the following facts with

accompanying proofs.

Fact 1: For By, By C M, eq(B1) + eq(B2) < eq(By U Bsy) + eg(B1 N By).
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This holds by observing that eq(B; U Bs) + eq(B1 N Bs) — eq(B1) — eq(Bs) =

Zl§i<j§m, i€B1\B2, j€B2\B1 OT i€B>\B1, j€B1\B2 €ij > 0.

Fact 2: For By, By € B with By U By ;_5 A, it holds that B1 U By and B; N By

are both in B. To see this, note first that

=Y nr+> - > I

1€B1UB> i€B1 i€EBo i€B1NBsy
= ca(Bi)+eq(Ba)— Y I}
i€B1NB2
S €G(Bl> + eg(BQ> — eg(Bl N Bz)

IN

eq(By U By), by Fact 1.

Also, ZBlUB2 I¥ > eq(B1 U By), since By U By 2 A is feasible in (4.10). The fact
follows.
Fact 3: For B C M, let D,,(B) denote the total number of edges connecting

m to all the vertices in BNA. Then, for B € B, if m € B then D,,,(B) > I

m?’

and if
m & B then D,,(B) < I*,. To see this, consider first the case m € B € B. As {m} ¢
B (since I}, > 0), we have BN A # (). Since B € B, Y,z I = eq(BNA) + Dy, (B).
Also, since BN A # 0 is feasible in (4.10), > ,cpa Ii > eq(B N A). Subtracting
the latter from the former gives I¥, < D,,(B). The second assertion of the fact is
proved similarly.

Fact 4: The intersection of all Bs in B satisfying 1 ¢ B, m € B, when
nonempty, is also in B. The union of all Bs in B satisfying 1 € B, m ¢ B, when
nonempty, is also in B.

The first assertion in Fact 4 is obtained by observing that the union of all Bs
in B with 1 ¢ B, m € B, does not contain A, and by a repeated use of Fact 2. The
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second assertion would follow similarly by Fact 2 if the union of all Bs in B with
1 € B, m ¢ B, is strictly contained in A. Suppose not; then this union is exactly
A. The ensuing contradiction can be seen, for instance, with By, By as above with
By UBy = A. Then
dp = Dp(A) =D, (B UBs)
= D,((B1\B2) U (B1 N By) U (B\By))
= Dpn(B1\B2) + D, (B1 N By) + D,y (Bs\ By)

= Dp(By) + Dy(By) — Dy(By N By)

< I'+1;—1, by Fact 3and 1 € B; N By

m o
< 2L7J — 1, by the assumption I}, < L7J
< dp,

a contradiction.
Finally, to prove Claim (d), let B’ (resp. B”) represent the intersection (resp.
union), when nonempty, in Fact 4. It suffices now to show that there exists v € B'NA

(when B’ # ()) such that v ¢ B” and v connects to m; this follows from
D,.(B\B") = D, (B")— D, (B"'nB")
= Dpn(B') = (Dm(B") = Din(B"\B'))

> I* —(I', — 1), by Fact 3 and 1 € B"\ B’

m m

Then, any B as in Claim (d)(a) must contain B’ and hence the v above. On the
other hand, any B as in Claim (d)(b) must be contained in B” and so cannot contain
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the v above. The cases B’ = () or B” = () are handled trivially.

(c) Let G* = (M, E*) and suppose that Ty . ..UT, C E* attain pu(A, G™).
If Ew\{U¥ T;} contains at least one edge connecting (u,v), then {T,..., Ty} is
also a Steiner tree packing of G = (M, E), so that u(A,G) > u(A,G*). Else, let
T, say, be the Steiner tree that contains an edge connecting u, v that emerged by
splitting off (u, m) and (v, m) of G = (M, E). Then, {T7\{(u, v)}}U{(u,m), (v,m)}
is A-connected and hence contains a Steiner tree 7] for A in G = (M, E) that

corresponds to T7; clearly, again u(A, G) > u(A, G*™).

C.3 Strong SK for the PIN Model

We shall be concerned in this appendix with a variant of the PIN model
in Chapter 4. Suppose that terminals 1,...,m, m > 2, observe n independent
and identically distributed (i.i.d.) repetitions of the rvs X;,..., X,,, denoted by
X7, X, where X' = (Xi1,...,Xi,), i€ M ={l,...,m}. Each1v X;, i €
M, is of the form X; = (Y;;, j € M\{i}) with m—1 components, and the “reciprocal
pairs” of rvs {(Y;;,Y}:), 1 <i < j < m} are mutually independent.! See Figure 2.
Thus, every pair of terminals in M is associated with a corresponding pair of rvs
that are independent of pairs of rvs associated with all the other pairs of terminals.
All the rvs are assumed to take their values in finite sets.

The overall goal is to generate a strong SK for a given set A C M of terminals

at the largest rate possible, with the remaining terminals (if any) cooperating in

L Unlike in Chapter 4, we do not require that Yii=Y;, 1<i<j<m.
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secrecy generation.

o =

Xm = (Ymh Ym27 o 7Ym,m71>

Figure 2: The PIN Model for Appendix C.3

C.3.1 Results

All references below to a “PIN model” are to the model in this appendix. Our
main results are the following. First, we obtain, upon particularizing the results
of [15], a (single-letter) expression for C'(A) for a PIN model, in terms of a linear
combination of mutual information terms that involve only pairs of “reciprocal” rvs
{(Y:;,Y5:), 1 <i# j<m}. Second, stemming from this observation, a connection
is drawn between SK generation for the PIN model and the combinatorial problem
of maximal packing of Steiner trees in an associated multigraph. Specifically, we
show that the maximum rate of Steiner tree packing in the multigraph is always a
lower bound for SK capacity. Third, for the case |A] = 2 (when the Steiner tree
becomes a path connecting the two vertices in A) and for the case A = M (when
the Steiner tree becomes a spanning tree), the previous lower bound is shown to

be tight. This is done by means of an explicit algorithm, based on maximal path
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packing and maximal spanning tree packing, respectively, that forms an SK out
of independent SKs for pairs of terminals. In fact, the maximum rate of the SK
thereby generated equals the previously known upper bound for SK capacity [15]

mentioned above.

C.3.1.1 Strong SK Capacity

In order to state our result, we recall the notation of Section 3.1.
Proposition C.1: For a PIN model, the SK capacity for a set of terminals

A C M, with |A| > 2, is

C(A) = i A | I(Yi; ANYj)| . C-6
(A) )\g}\l&) Z Z B | I(Yy ji) (C-6)
1<i<j<m \ BeB(A):
i€B,jeBe

Remarks: (i) It is of interest in (C-6) that the SK capacity for a PIN model
depends on the joint probability distribution of the underlying rvs only through a
linear combination of the pairwise reciprocal mutual information terms.

(ii) We note from [15, Theorem 3] that additional independent randomization
at the terminals in M, enabled by giving them access to the mutually independent
rvs My, ..., M,,, respectively, that are independent also of (X7,..., X)), does not
serve to enhance SK capacity. Heuristically speaking, the mentioned independence of
the randomization forces any additional “common randomness” among the terminals
in A to be acquired only through public communication, which is observed fully by

the eavesdropper. On the other hand, randomization can serve to enhance secrecy

generation for certain models (cf. e.g., [51])
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Proof: The proof entails an application of the formula for SK capacity in
[15, 16] to the PIN model. For B € B(A), denote X5 = (X;, ¢ € B). From ([16,

Theorem 3.1],

C(A) = H(Xl,u-,Xm)—Arerl/%)BgA)ABH(XBWBC). (C-7)

For the PIN model, since X; = (Y;;, j € M\{i}), we observe in (C-7) that

H(Xy,...,Xn) = H{(Yi, Y h<ici<m)

= ), HY,Yp (C-8)

1<i<j<m

and

H(Xp|Xpe) = H(Xum)—H(Xpe)

= Z H(Y;;,Y;) — Z H(Yi;, Yj)

1<i<j<m 1<i<j<m,
i€B¢,jeBe
- > H(Yy)
i€B¢,jeB
= > HY Y+ > HYilY). (C-9)
1<i<j<m, 1€B, jeB°
i€B,jeB

A straightforward manipulation of (C-7), using (C-8), (C-9), gives

c= i, X (a0 | X |0
1<i<j<m BeB(A):
i€B,jeB

—| D0 M |HMY) -] D s YiilYig) |-
BeB(A): BeB(A):
i€B,jeB¢ i€B¢,jeB
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Since by (2),

dodp=1— ) Ap=1- > g

BeB(A): BeB(A): BeB(A):

1€B, jeB i€B, jeB° 1€B¢, jEB
we get

H(Yi, Vi)
Oy = jmin | D> | D Asf | —HEY) ||
1<i<j<m BeB(A):
1€B, jeB°
! —H (Y[Yi;)

thereby completing the proof. [

An upper bound had been established for SK capacity for a general multi-
terminal source model [15, Example 4]. This bound was expressed in terms of the
(Kullback-Leibler) divergence between the joint distribution of the rvs defining the
underlying correlated sources and the product of the (marginal) distributions as-
sociated with appropriate partitions of these rvs, thereby measuring the minimum
mutual dependence among the latter. The bound was particularized to the PIN
model in [57], and is restated below in a slightly different form that will be used
subsequently.

Let P be a partition of M = {1,...,m}, and denote the number of atoms of

P by |P|.

Lemma C.2 [57]: The SK capacity C(A), A C M, for the PIN model is

bounded above according to
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C(4) < C“b(A)éngn( ! > > IV A, (C-10)

Pl-1 1<i<j<m
(i,j) CTOSSes P
where for a fixed P, a pair of indices (i, j) crosses P if i and j are in different atoms

of P. The minimization in the right side of (C-10) is over all partitions P of M for

which every atom of P intersects A.

C.3.1.2 SK Capacity and Steiner Tree Packing

There exists a natural connection between SK generation for the PIN model
and the combinatorial problem of Steiner tree packing in an associated multigraph.

We note that when |A| = 2, a Steiner tree for A always contains a path
connecting the two vertices in A. Clearly, it suffices to take u(A,G) to be the
maximum number of edge disjoint paths connecting the two terminals in A.

Next, assume without any loss of generality in the PIN model that all pair-
wise reciprocal mutual information values 1(Y;; AY};), 1 < i # j < m, are rational
numbers. Let N denote the collection of positive integers n such that the number of
edges between any pair of vertices i, j is equal to nl(Y;; AY};) is integer-valued for all
1 <1 # j < m; clearly, the elements of A/ form an arithmetic progression. For a PIN
model, consider a sequence of associated multigraphs {G™ = (M, E(")) , neN},
where EM™, n € N, is such that e; = nI(Y;; AY};). We term sup,,cy ~p(A, G™)
as the mazimum rate of Steiner tree packing in the multigraph G = (M, E). The
connection between SK generation for the PIN model and Steiner tree packing is
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formalized below.

Theorem C.3: For a PIN model,

(i) the SK capacity satisfies

C(A) > sup 1 (A, G™) (C-11)

neN T

for every A C M;
(il) when |A| = 2, the SK capacity is

C(A) = sup S (A, G = CUb(A). (C-12)

neN T
Remarks: (i) The inequality in (C-11) can be strict, as shown by the exam-
ple after Theorem 4.5. See also the remark following Theorem C.4 for a heuristic
explanation.
(i) An exact determination of (A, G) is known to be NP-hard [8]. A nontrivial
upper bound for (A, G), similar in form to (C-10), is known [28, Paragraph 5 of Sec-
tion 1]. This bound can be extended to yield an upper bound for sup,,c s % (A, G™)

which, in general, is inferior to that provided by C'(A) in (C-11).

Proof: (i) The proof consists of two main steps. In the first step, fix an
e > 0 that is smaller than every positive I(Y;; AY};), 1 < i < j < m. Each pair
of terminals ¢, j with I(Y;; A Yj;) > 0, generates a (pairwise) SK K;; = Ki(;l) of size

|n(L(Y;; ANYj;) — €)] bits, using public communication Fj; = Fi(j"), and satisfying
s(Kij; Fij) = on(1); (C-13)

the existence of such an SK follows from [40]. The SK achievability scheme in [40]
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consists of a “weak” SK generated by Slepian-Wolf data compression, followed by
“privacy amplification” to extract a “strong” SK. Note by the definition of the PIN
model that {(K;, Fi;) hi<i<j<m are mutually independent.

In the second step, consider the sequence of multigraphs
{ng) = (M, EZ/"))}ZO:l, where E(M is such that the number of edges between any
pair of vertices 7, j equals |n(I(Yi; AYj;) —€)|. We next show that every Steiner
tree in a Steiner tree packing of ng) yields one shared bit for the terminals in
A that is independent of the communication in that Steiner tree. Specifically, for
edges (i,7) and (,7'), 7 # 7', with common vertex i in the Steiner tree, vertex i
broadcasts to vertices 7,7’ the binary sum of two independent SK bits — one with
j and the other with 5/ — obtained from the first step. This enables i, j, 7' to share
any one of these two bits, with the attribute that the shared bit is independent of
the binary sum. This method of propagation ([15, Proof of Theorem 5]) enables
all the vertices in A, which are connected in the Steiner tree, to share one bit
that is independent of all the broadcast binary sums from this tree. Therefore, the
maximum number of such shared bits for the terminals in A that can be generated
by this procedure equals p(A, ng)). Denote these shared bits (of size u(A, ng)))
and the communication messages generated by the mechanism in this second step
by K = K™W({K;}i<icjem) and F' = F™({K;}1<icj<m), respectively.

We claim that K constitutes an SK for A. Specifically, it remains to show that
K satisfies the secrecy condition (2.1) with respect to the overall communication in
steps 1 and 2. To this end, we denote by K}(;)({Kij}lgiqgm) all the pairwise SK bits

generated in the first step, that are residual from the maximal Steiner tree packing
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of G used to generate K by means of F. Clearly,

{Kijh<icjcm = (K, F, Kg).

Moreover, since the total number of edges in any Steiner tree equals the sum of

unity (i.e., the shared bit of K) and the number of bits of public communication for

that shared bit, we have

|E®)| = log |K| + log | F| + log |Kxl,

where IC, F and Kg denote

log |K| = (A, G™). Then,

s(K { Fijhi<icj<m, F)

the respective ranges of K, F and Kpg. Note that

IN

IN

log [K| — H(K[{F;}1<i<j<m. I)

log |K| — H(K|{Fj }h1i<icj<m, Fs Kg)

log | K| — H(K, F, Kp|{F;}1<i<j<m)
+H(F, Kp[{F;j }1<icj<m)

log |K| — H({Kijh1<icjzml{Fijh1<icj<m)
+H(F, Kpl{Fij}i<icj<m), by (C-14)
log | K| + s({Kij hi<icj<m; {Fij b1<icjzm)
| E®)| + H(F, Kg)

s({Kij h<icj<mi {Fij hi<icj<m), Dby (C-15)

> (K Fy),

1<i<j<m



where the second-to-last equality is by the fact that {(K;;, F};) }1<i<j<m are mutually
independent, and the last equality is by (C-13). The maximum rate of the SK thus

generated is equal to lim,, .. % (A, ng)) which, since € > 0 was arbitrary, equals

SUPp e & % lu(A7 G(n))

(ii) Suppose that A = {1,2}, and note from the paragraph after Definition
3 that p(A,G) is the maximum number of edge disjoint paths in G connecting
terminals 1 and 2. It is clear that %M(A, G™) is nondecreasing in n € N, by
the definition of G™. According to Menger’s theorem [42, 5], given a multigraph
G = (M, E), the maximum number of edge disjoint paths in G' connecting terminals

1 and 2 is equal to

min (number of edges that cross {B, B°}).
0£BCM
1€B, 2€B°

Applying this to G™ as above, we have that for n € N,

1 1
Zu(A.GMYy = . I(Y;; ANYs
n:u( 9 ) n @;%ICHM Z n ( ’ A f )
1€B, 2€B¢ . 1<i<j<m:
(i,j) crosses {B,Bc}
It then follows that
! ()
C(A) > sup _M(A,G )’ by (C—ll)
neN T
@;glcnfvt Z n ( J J)
1€B, 2€B¢ 1<i<j<m:

(i,j) Crosses {B,Bc}

— C"(4), by (C-10).
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The last equality follows upon noting that when |A| = 2, the minimization in (C-10)
is over only those partitions that contain two atoms, each of which includes terminal

1 and terminal 2, respectively. This proves (ii). ]

C.3.2 SK Capacity and Spanning Tree Packing for A = M

When all the terminals in M seek a shared SK, i.e., when A = M, a Steiner
tree for A is a spanning tree for M. In this case, we show that the lower bound
for SK capacity in Theorem C.3 (i) is, in fact, tight. Specifically, we show that the
algorithm in the proof of Theorem C.3 yields an SK of maximum rate that coincides

with the upper bound for C'(M) in Lemma C.2.

Theorem C.4: For a PIN model, the SK capacity C(M) is

CM) = sup - u(M,G™)

neN T

= C""(M). (C-16)

Remark: When A C M, Steiner tree packing may not attain SK capacity. In

SK generation, a helper terminal in A¢ helps link the user terminals in A in complex
ways through various combinations of subsets of A. In general, an optimal such
linkage need not be attained by Steiner tree packing. However, when |A| = 2, the
two user terminals are either directly connected or are connected by a path through
helpers in A both can be accomplished by Steiner tree packing. When A = M,

the mentioned complexity of a helper is nonexistent.

Proof: The proof relies on a graph-theoretic result of Nash-Williams [43] and
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Tutte [48], that gives a min max formula for the maximum size of spanning tree
packing in a multigraph.

It is clear that 1;(M,G™) is nondecreasing in n € N, by the definition of
G™. By [43, 48], given a multigraph G = (M, E), the maximum number of edge

disjoint spanning trees that can be packed in G is equal to

min (number of edges that cross P) J,

{ 1
P LIP|—1
with the minimization being over all partitions P of M. Applying this to G as

above, we have that forn € N,

1 . 1| 1
ﬁ,u(/\/l,G( )) = min Z nl(Yij NYji) J

n| P LP-1 1<i<j<m:

(i,7) Crosses P

Denoting by D the quantity in above, it follows that

1
C(M) > sup —u(M,G™), by Theorem C.3
neN T
1
> sup {D-—}
neN n
) 1
2 min > I AY)
1<i<i<m:
(i,j) Crosses P
= CO“"(M), by (C-10).
The assertion in (C-16) is now immediate. [ |

Lastly, the following observation is of independent interest. Given a combi-
natorial problem of finding the maximal packing of Steiner trees in a multigraph,
we can always associate with it a problem of SK generation for an associated PIN
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model. By Theorem C.3 (i), the SK capacity for the PIN model yields an upper
bound for the maximum rate of edge disjoint Steiner trees that can be packed in the
multigraph; the upper bound is tight both in the case of path packing by Theorem

C.3 (ii) and in the case of spanning tree packing by Theorem C.4.

C.3.3 Discussion

Our proofs of Theorems 3.3 and 3.4 give rise to explicit polynomial-time
schemes for forming a group-wide SK for the terminals in A from the collection
of optimum and mutually independent SKs for pairs of terminals in M (namely the
K;s in the proof of Theorem C.3). When |A| = 2 or A = M, our schemes achieve
SK capacity. Specifically, the schemes combine known polynomial-time algorithms
for finding a maximal collection of edge-disjoint paths (resp. spanning trees) con-
necting the vertices in A when |A| = 2 (resp. A = M) [19, 20, 23] with the technique
for SK propagation in each tree as in the proof of Theorem C.3.

For a general multiterminal source model, the notions of wiretap secret key
(WSK) [38, 1, 15] and private key (PK) [15] have also been proposed. Specifically,
these notions involve an extra “wiretapped” terminal, say m+1, that observes n i.i.d.
repetitions of a rv X,,,; with a given joint pmf with (X1, ..., X,,), and to which the
eavesdropper has access. The key must now be concealed from the eavesdropper’s
observations of X', = (Xmy11,..., Ximt1,n) and the public communication. The
notion of a WSK requires that terminal m 4 1 not cooperate in key generation.

The less restrictive notion of a PK allows cooperation by terminal m + 1 by way of
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public communication. The corresponding capacities for the terminals in A C M
are defined in the usual manner, and denoted by Cy (A) and Cp(A). We remark

that in the context of a PIN model, terminal m + 1 represents a compromised entity.

m
One model for the wiretapped rv X,,, 1 entails its consisting of mutu-

2
ally independent components, one corresponding to each pair (Y;;,Y};), 1 <i<j <

m, of legitimate correlated signals. This model is unresolved even in the simplest
case of m = 2 terminals [39, 1, 15, 24, 25]. Instead, we consider a different model
which depicts the situation in which an erstwhile legitimate terminal m + 1 becomes
compromised. Specifically, the model now involves every legitimate terminal ¢ in M
observing n i.i.d. repetitions of the rv (Xj, Y;u41), while terminal m + 1 observes n
i.i.d. repetitions of X,, 11 = (Yiut14, J € M). We argue in the following proposi-
tion that the WSK and PK capacities for this PIN model are the same as the SK
capacity of a reduced PIN model obtained by disregarding terminal m + 1 and with

each legitimate terminal ¢ in M observing just X.
Proposition C.5: It holds that

Cw(A) =Cp(A) = C(A).

Proof: We shall prove that

The inequality (b) is by definition. Next, let K = K(X7,...,X") be a SK for
A achieved with communication F = F(X7,..., X") for the reduced PIN model.
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Then K is also a WSK since

5 (KQ F, (Yo, J€ M)) = log|K|-H (K|Fv (Yoi1: J € M))
= S(K;F)+I(KA (Y, J€M)F)
= o,(1)

since I (K, F A (Y1, J € M)) = 0, thereby establishing (a). In order to estab-
lish (c¢), we claim that every achievable PK rate is an achievable SK rate for the
reduced PIN model upon using randomization at the terminals in M; by Remark

(ii) after Proposition C.1, (c) then follows. Since (Y,7,,;, j € M) is independent

m

of (XT',..., X} ), any terminal in M, say terminal 1, can simulate (Y,;,,;, j € M)

m

and broadcast it to all the terminals. Next, each terminal ¢ in M can simulate

yn

2, m-+

, conditioned on (Y2, j € M) = (yp,11,, J € M). This second step of
randomization is feasible since (X7,..., X7), Y .y, ..., Y ., are conditionally
mutually independent conditioned on (Y,5,,;, j € M) = (y5,,,, j € M). Thus,

m

each terminal ¢ in M now has access to (X7, Y/, ) while the eavesdropper observes
(Yori1s J € M), so that the reduced PIN model for SK generation can be used to
simulate a PIN model for PK generation with the given underlying joint pmf. Thus,
any achievable rate of a PK for A in the given PIN model for PK generation is an
achievable rate of a PK for A in the simulated model. Further, the latter PK is a

fortiori an SK for A in the reduced PIN model with randomization permitted at the

terminals in M. This establishes (c). [

In the proof of achievability of SK capacity for the general multiterminal source
model in [15], an SK of optimum rate was extracted from “omniscience,” i.e., from
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i € M) observed by

a reconstruction by the terminals in A of all the signals (X,
the terminals in M. In contrast, the scheme in Theorem C.3 (ii) (resp. Theorem
C.4) for achieving SK capacity for a PIN model with |A| = 2 (resp. A = M) neither
seeks nor attains omniscience; however, we note that omniscience can be attained

by letting the terminals in M simply broadcast all the residual bits left over from a

maximal path packing (resp. maximal spanning tree packing).
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