Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2019-11-23

Advisor

Citation

Choudhury, A.; Lansing, S. Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture. Energies 2019, 12, 4464.

Abstract

Co-digestion of dairy manure with waste organic substrates has been shown to increase the methane (CH4) yield of farm-scale anaerobic digestion (AD). A gummy vitamin waste (GVW) product was evaluated as an AD co-digestion substrate using batch AD testing. The GVW product was added at four inclusion levels (0%, 5%, 9%, and 23% on a wet mass basis) to a co-digestion substrate mixture of dairy manure (DM), food-waste (FW), and grease-waste (GW) and compared to mono-digestion of the GVW, DM, FW, and GW substrates. All GVW co-digestion treatments significantly increased CH4 yield by 126–151% (336–374 mL CH4/g volatile solids (VS)) compared to DM-only treatment (149 mL CH4/g VS). The GVW co-digestion treatments also significantly decreased the hydrogen sulfide (H2S) content in the biogas by 66–83% (35.1–71.9 mL H2S/kg VS) compared to DM-only (212 mL H2S/kg VS) due to the low sulfur (S) content in GVW waste. The study showed that GVW is a potentially valuable co-digestion substrate for dairy manure. The high density of VS and low moisture and S content of GVW resulted in higher CH4 yields and lower H2S concentrations, which could be economically beneficial for dairy farmers.

Notes

Rights