DATA-DRIVEN OPTIMIZATION AND STATISTICAL MODELING TO IMPROVE DECISION MAKING IN LOGISTICS
dc.contributor.advisor | Golden, Bruce | en_US |
dc.contributor.author | Sinha Roy, Debdatta | en_US |
dc.contributor.department | Business and Management: Decision & Information Technologies | en_US |
dc.contributor.publisher | Digital Repository at the University of Maryland | en_US |
dc.contributor.publisher | University of Maryland (College Park, Md.) | en_US |
dc.date.accessioned | 2019-10-01T05:39:18Z | |
dc.date.available | 2019-10-01T05:39:18Z | |
dc.date.issued | 2019 | en_US |
dc.description.abstract | In this dissertation, we develop data-driven optimization and statistical modeling techniques to produce practically applicable and implementable solutions to real-world logistics problems. First, we address a significant and practical problem encountered by utility companies. These companies collect usage data from meters on a regular basis. Each meter has a signal transmitter that is automatically read by a receiver within a specified distance using radio-frequency identification (RFID) technology. The RFID signals are discontinuous, and each meter differs with respect to the specified distance. These factors could lead to missed reads. We use data analytics, optimization, and Bayesian statistics to address the uncertainty. Second, we focus on an important problem experienced by delivery and service companies. These companies send out vehicles to deliver customer products and provide services. For the capacitated vehicle routing problem, we show that reducing route-length variability while generating the routes is an important consideration to minimize the total operating and delivery costs for a company when met with random traffic. Third, we address a real-time decision-making problem experienced in practice. In one application, routing companies participating in competitive bidding might need to respond to a large number of requests regarding route costs in a very short amount of time. In another application, during post-disaster aerial surveillance planning or using drones to deliver emergency medical supplies, route-length estimation would quickly need to assess whether the duration to cover a region of interest would exceed the drone battery life. For the close enough traveling salesman problem, we estimate the route length using information about the instances. Fourth, we address a practical problem encountered by local governments. These organizations carry out road inspections to decide which street segments to repair by recording videos using a camera mounted on a vehicle. The vehicle taking the videos needs to proceed straight or take a left turn to cover an intersection fully. Right turns and U-turns do not capture an intersection fully. We introduce the intersection inspection rural postman problem, a new variant of the rural postman problem involving turns. We develop two integer programming formulations and three heuristics to generate least-cost vehicle routes. | en_US |
dc.identifier | https://doi.org/10.13016/6bmq-arfg | |
dc.identifier.uri | http://hdl.handle.net/1903/25136 | |
dc.language.iso | en | en_US |
dc.subject.pqcontrolled | Operations research | en_US |
dc.subject.pqcontrolled | Transportation | en_US |
dc.subject.pqcontrolled | Statistics | en_US |
dc.subject.pquncontrolled | Data Analytics | en_US |
dc.subject.pquncontrolled | Decision Making | en_US |
dc.subject.pquncontrolled | Logistics | en_US |
dc.subject.pquncontrolled | Optimization | en_US |
dc.subject.pquncontrolled | Statistical Modeling | en_US |
dc.subject.pquncontrolled | Vehicle Routing | en_US |
dc.title | DATA-DRIVEN OPTIMIZATION AND STATISTICAL MODELING TO IMPROVE DECISION MAKING IN LOGISTICS | en_US |
dc.type | Dissertation | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- SinhaRoy_umd_0117E_20205.pdf
- Size:
- 4.87 MB
- Format:
- Adobe Portable Document Format