Critical Points of Matrix Least Square Distance Functions
dc.contributor.author | Helmke, Uwe | en_US |
dc.contributor.author | Shayman, Mark A. | en_US |
dc.contributor.department | ISR | en_US |
dc.date.accessioned | 2007-05-23T09:50:20Z | |
dc.date.available | 2007-05-23T09:50:20Z | |
dc.date.issued | 1992 | en_US |
dc.description.abstract | A Classical problem in matrix analysis and total least squares estimation is that of finding a best approximant of a given matrix by lower rank ones. In this paper the critical points and the local minima are determined for the function on varieties of fixed-rank symmetric, skew-symmetric and rectangular matrices representing the distance to a fixed matrix. Our results extend earlier work of Eckart and Young and Higham. | en_US |
dc.format.extent | 729050 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/1903/5212 | |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | ISR; TR 1992-30 | en_US |
dc.subject | linear systems | en_US |
dc.subject | optimization | en_US |
dc.subject | Communication | en_US |
dc.subject | Signal Processing Systems | en_US |
dc.title | Critical Points of Matrix Least Square Distance Functions | en_US |
dc.type | Technical Report | en_US |
Files
Original bundle
1 - 1 of 1