Critical Points of Matrix Least Square Distance Functions

dc.contributor.authorHelmke, Uween_US
dc.contributor.authorShayman, Mark A.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:50:20Z
dc.date.available2007-05-23T09:50:20Z
dc.date.issued1992en_US
dc.description.abstractA Classical problem in matrix analysis and total least squares estimation is that of finding a best approximant of a given matrix by lower rank ones. In this paper the critical points and the local minima are determined for the function on varieties of fixed-rank symmetric, skew-symmetric and rectangular matrices representing the distance to a fixed matrix. Our results extend earlier work of Eckart and Young and Higham.en_US
dc.format.extent729050 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/5212
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1992-30en_US
dc.subjectlinear systemsen_US
dc.subjectoptimizationen_US
dc.subjectCommunication en_US
dc.subjectSignal Processing Systemsen_US
dc.titleCritical Points of Matrix Least Square Distance Functionsen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_92-30.pdf
Size:
711.96 KB
Format:
Adobe Portable Document Format