DNA binding activities of the Herves transposase from the mosquito Anopheles gambiae

Thumbnail Image


1759-8753-2-9.pdf (2.82 MB)
No. of downloads: 90

Publication or External Link





Kahlon, A.S., Hice, R.H., O'Brochta, D.A. et al. DNA binding activities of the Herves transposase from the mosquito Anopheles gambiae. Mobile DNA 2, 9 (2011).


Determining the mechanisms by which transposable elements move within a genome increases our understanding of how they can shape genome evolution. Class 2 transposable elements transpose via a 'cut-and-paste' mechanism mediated by a transposase that binds to sites at or near the ends of the transposon. Herves is a member of the hAT superfamily of class 2 transposons and was isolated from Anopheles gambiae, a medically important mosquito species that is the major vector of malaria in sub-Saharan Africa. Herves is transpositionally active and intact copies of it are found in field populations of A gambiae. In this study we report the binding activities of the Herves transposase to the sequences at the ends of the Herves transposon and compare these to other sequences recognized by hAT transposases isolated from other organisms. We identified the specific DNA-binding sites of the Herves transposase. Active Herves transposase was purified using an Escherichia coli expression system and bound in a site-specific manner to the subterminal and terminal sequences of the left and right ends of the element, respectively, and also interacted with the right but not the left terminal inverted repeat. We identified a common subterminal DNA-binding motif (CG/AATTCAT) that is critical and sufficient for Herves transposase binding. The Herves transposase binds specifically to a short motif located at both ends of the transposon but shows differential binding with respect to the left and right terminal inverted repeats. Despite similarities in the overall structures of hAT transposases, the regions to which they bind in their respective transposons differ in sequence ensuring the specificity of these enzymes to their respective transposon. The asymmetry with which the Herves terminal inverted repeats are bound by the transposase may indicate that these differ in their interactions with the enzyme.