Entomology Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/16

Browse

Search Results

Now showing 1 - 10 of 71
  • Thumbnail Image
    Item
    Floral traits and their connection with pollinators and climate
    (Oxford Academic, 2024-03-19) Basnett, Shweta; Krpan, Julia; Espindola, Anahi
    Floral characteristics vary significantly among plant species, and multiple underlying factors govern this diversity. Although it is widely known that spatial variation in pollinator groups can exert selection on floral traits, the relative contribution of pollinators and climate to the variation of floral traits across large geographical areas remains a little-studied area. Besides furthering our conceptual understanding of these processes, gaining insight into the topic is also of conservation relevance: understanding how climate might drive variation in floral traits can serve to protect plant–pollinator interactions in globally change conditions. We used Rhododendron as a model system and collected floral traits (corolla length, nectar volume and concentrations), floral visitors and climatic data on 21 Rhododendron species across two continents (North America, Appalachians and Asia, Himalaya). Based on this, we quantified the influence of climate and pollinators on floral traits using phylogeny-informed analyses. Our results indicate that there is substantial variation in pollinators and morphological traits across Rhododendron species and continents. We came across four pollinator groups: birds, bees, butterflies and flies. Asian species were commonly visited by birds, bees and flies, whereas bees and butterflies were the most common visitors of North American species. The visitor identity explained nectar trait variation, with flowers visited by birds presenting higher volumes of dilute nectar and those visited by insects producing concentrated nectar. Nectar concentration and corolla length exhibited a strong phylogenetic signal across the analysed set of species. We also found that nectar trait variation in the Himalayas could also be explained by climate, which presented significant interactions with pollinator identity. Our results indicate that both pollinators and climate contribute and interact to drive nectar trait variation, suggesting that both can affect pollination interactions and floral (and plant) evolution individually and in interaction with each other.
  • Thumbnail Image
    Item
    Net Methane Production Predicted by Patch Characteristics in a Freshwater Wetland
    (Wiley, 2023-12-27) Sharp, Sean J.; Maietta, Christine E.; Stewart, Graham A.; Taylor, Aileen K.; Williams, Michael R.; Palmer, Margaret A.
    Methane (CH4) dynamics in wetlands are spatially variable and difficult to estimate at ecosystem scales. Patches with different plant functional types (PFT) represent discrete units within wetlands that may help characterize patterns in CH4 variability. We investigate dissolved porewater CH4 concentrations, a representation of net CH4 production and potential source of atmospheric flux, in five wetland patches characterized by a dominant PFT or lack of plants. Using soil, porewater, and plant variables we hypothesized to influence CH4, we used three modeling approaches—Classification and regression tree, AIC model selection, and Structural Equation Modeling—to identify direct and indirect influences on porewater CH4 dynamics. Across all three models, dissolved porewater CO2 concentration was the dominant driver of CH4 concentrations, partly through the influence of PFT patches. Plants in each patch type likely had variable influence on CH4 via root exudates (a substrate for methanogens), capacity to transport gas (both O2 from and CH4 to the atmosphere), and plant litter quality which impacted soil respiration and production of CO2 in the porewater. We attribute the importance of CO2 to the dominant methanogenic pathway we identified, which uses CO2 as a terminal electron acceptor. We propose a mechanistic relationship between PFT patches and porewater CH4 dynamics which, when combined with sources of CH4 loss including methanotrophy, oxidation, or plant-mediated transport, can provide patch-scale estimates of CH4 flux. Combining these estimates with the distribution of PFTs can improve ecosystem CH4 flux estimates in heterogenous wetlands and improve global CH4 budgets.
  • Thumbnail Image
    Item
    Legacy effects of long-term autumn leaf litter removal slow decomposition rates and reduce soil carbon in suburban yards
    (Wiley, 2024-02-22) Ferlauto, Max; Schmitt, Lauren; Burghardt, Karin T.
    Societal Impact Statement As cities grow, it is essential to understand how landscape management decisions in urban spaces alter ecosystem function. This study demonstrates that the ubiquitous practice of long-term leaf litter removal in suburbs, even in relatively small patches of a yard, reduces the soil's ability to cycle nutrients in plant litter and results in lower amounts of carbon stored in the soil. Even two years of retaining leaves where they previously were removed is insufficient to restore decomposition rates or carbon pools. This research is an important step in creating best practices for litter management to maintain essential ecosystem functions, like carbon sequestration, water holding capacity, and soil fertility. Summary Seasonal senesced leaf litter removal eliminates considerable organic material from suburban soils annually. We test if this disturbance alters decomposition and carbon cycles and depletes soils of organic matter over time, creating persistent legacy effects. We used a factorial experimental design to implement 1–2 years of current leaf litter manipulations (remove or retain fallen leaves) within historically raked and unraked areas in suburban Maryland yards. We then compared total organic soil carbon and decomposition using a standardized substrate decomposition methodology (Tea Bag Index) across treatment plots. Long-term litter removal in suburban yards reduced decomposition rates by 17% and total soil organic carbon concentration by up to 24% compared to areas where leaf litter was retained in situ. In contrast, short-term management changes (1–2 years) did not significantly impact decomposition rates or total organic soil carbon concentrations. Our findings suggest that long-term suburban litter raking creates legacy effects that alter decomposition and carbon storage process trajectories that are not easily reversed. This is important in understanding urban ecosystem function and sustainable management.
  • Thumbnail Image
    Item
    Influence of cover cropping and conservation tillage on weeds during the critical period for weed control in soybean
    (Cambridge University Press, 2023-11) Yurchak, Veronica; Leslie, Alan; Hooks, Cerruti R.R.
    Limited research has been directed at evaluating the ability of single cover crop plantings to suppress weeds in crops beyond the initial field season. Thus, this experiment was conducted to investigate the ability of a second-year self-regenerated annual and second-year perennial cover crop planting to suppress weeds during the critical period for weed control (CPWC) in soybean crops. Whole-plot treatments included 1) conventional till, 2) no-till with cover crop residue, 3) living mulch + cover crop residue, and 4) living mulch + winter-killed residue. Subplot treatments involved weed management intensity: a) no weed management (weedy), b) weeds manually removed through the CPWC (third node soybean stage; V3), and c) weeds manually removed until soybean canopy closure (weed-free). Overall, total annual cover crop biomass during the second field season was comparable to biomass obtained from direct seeded stands during the initial field season. All cover crop treatments reduced total weed biomass through the CPWC compared to conventional till. Soybean yield was low across all treatments in this experiment. Still, yield was similar between cover crop and conventional till treatments at one site-year, however, yields were lower in all cover crop treatments at the other site-year.
  • Item
    Methane Emissions Vary by Rainfall in Wetland and are Mediated by Vegetation
    (2024-03-13) Kesey, Chloe; Palmer, Margaret; Sharp, Sean
    Investigating the effects of rainfall on methane emissions within wetlands, and the effect of the presence of vegetation. We measured methane flux using floating chambers with 3 replicates in two patches: Open Water (OPW) and Submerged Aquatic Vegetation (SAV), before and after storm events. Dissolved methane concentration was also investigated using Rhizons at two different depths (Shallow and Deep) with 3 replicates in OPW and SAV patches. We observed a trend that methane flux decreased after storms in the SAV patch, with an average difference of -114.18 ± 89.88 mg/m2/hr before and after, but the OPW patch’s mean and variance highly overlapped, seeming negligent with a mean difference of -4.28 ± 15.69 mg/m2/hr. For the dissolved methane, we found that the SAV patches generally increased in dissolved methane concentration, the Shallow depth average difference of 0.41 ± 0.23 𝛍mol/l before and after, while the deep had 41.34 ± 36.84 𝛍mol/l before and after. The dissolved methane in the OPW patches also highly overlapped, seeming negligent with a Shallow depth average difference of -0.45 ± 0.31 𝛍mol/l, and a Deep depth average difference of -4.89 ± 17.01 𝛍mol/l. A potential explanation for the negligent results from the OPW patch could be due to its fast methane recharge rate. While in the SAV patch, diffusive transport and pressurized gas flow can occur, releasing methane in the upper part of the water column. Increased photosynthesis after storm events could also lead to increased gas transport through plant tissue. This study shows that storm events can have important effects on wetland methane flux and complex interactions with vegetation.
  • Thumbnail Image
    Item
    The Effect of Barley Cover Crop Residue and Herbicide Management on the Foliar Arthropod Community in No-Till Soybeans
    (MDPI, 2018-06-01) Rosario-Lebron, Armando; Leslie, Alan W.; Chen, Guihua; Hooks, Cerruti R. R.
    Cover cropping has long been used as a method of reducing soil erosion, increasing soil quality, and suppressing weeds. However, the effects of cover crops in local farming systems are varied and can be affected by timing and method of termination. Field experiments were conducted at two sites in Maryland, USA during the 2013 and 2014 growing seasons to examine how varying the date and method of terminating a barley (Hordeum vulgare) cover crop affects the arthropod communities in succeeding no-till soybean (Glycine max). Experimental treatments included early-kill with pre- and post-emergent herbicides (EK), late-kill with pre- and post-emergent herbicides (LK), late-kill with a flail mower and pre-emergent herbicide (FM), and a fallow/bare-ground check with pre- and post-emergent herbicides (BG). Terminating barley late, just prior to soybean planting, resulted in significantly greater biomass accumulation in LK and FM than EK. However, method and timing of termination had no effect on the community of pest and beneficial arthropods in the soybean canopy. Results from this experiment suggest that terminating the cover crop early or late (just prior to crop planting) or using a mower or post-emergent herbicide will result in a similar community of arthropods within the soybean canopy.
  • Thumbnail Image
    Item
    Should I Eat or Should I Go? Acridid Grasshoppers and Their Novel Host Plants: Potential for Biotic Resistance
    (MDPI, 2018-10-07) Avaneysan, Alina
    Novel, non-coevolved associations between introduced plants and native insect herbivores may lead to changes in trophic interactions in native communities, as well as to substantial economic problems. Although some studies in invasion ecology demonstrated that native herbivores can preferentially feed on introduced plants and therefore contribute to the biotic resistance of native communities to plant invasions, the role of acridid grasshoppers as native generalist insect herbivores is largely overlooked. This systematic review aimed to identify patterns of grasshopper feeding preferences for native versus introduced plants and, consequently, a potential of grasshoppers to provide biotic resistance of native communities. The analysis of 63 records of feeding preference trials for 28 North-American grasshopper species (retrieved from 2146 studies published during 1967–2017) has demonstrated a preference of grasshoppers for introduced host plants, and identified 12 preferred introduced plants with high or middle invasive ranks. A significant effect of the life stage (p < 0.001), but not the experimental environment, plant material, and measurements, on grasshopper preferences for introduced plants was also detected. Overall, results suggest a potential of acridid grasshoppers to contribute to the biotic resistance of native communities. The review also provides methodological recommendations for future experimental studies on grasshopper-host plant interactions.
  • Thumbnail Image
    Item
    Use of Molecular Gut Content Analysis to Decipher the Range of Food Plants of the Invasive Spotted Lanternfly, Lycorma delicatula
    (MDPI, 2020-04-01) Avanesyan, Alina; Lamp, William O.
    Spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), is an introduced highly invasive insect pest in the US that poses a significant risk to forestry and agriculture. Assessing and predicting plant usage of the lanternfly has been challenging, and little is known regarding the lanternfly nymph association with its host plants. In this study, we focused on: (a) providing a protocol for using molecular markers for food plant identification of L. delicatula; (b) determining whether the ingested plant DNA corresponds with DNA of the plants from which the lanternfly was collected; and, (c) investigating the spectrum of ingested plants. We utilized gut contents of third and fourth instar nymphs that were collected from multiple plants; we isolated ingested plant DNA and identified consumed plants. We demonstrated that (a) up to 534 bp of the rbcL gene from ingested plants can be detected in L. delicatula guts, (b) ingested plants in ~93% of the nymphs did not correspond with the plants from which the nymphs were collected, and (c) both introduced and native plants, as well as woody and non-woody plants, were ingested. This information will aid effective the monitoring and management of the lanternfly, as well as predict the lanternfly host plants with range expansion.
  • Thumbnail Image
    Item
    Comparative Efficacy of Common Active Ingredients in Organic Insecticides Against Difficult to Control Insect Pests
    (MDPI, 2020-09-08) Dively, Galen P.; Patton, Terrence; Barranco, Lindsay; Kulhanek, Kelly
    There exists a lack of control efficacy information to enable decision-making about which organic insecticide product works best for a given insect pest. Here, we summarize results of 153 field trials on the control efficacy of common active ingredients in organic insecticides against 12 groups of the most difficult to control insect pests. These trials evaluated primarily the organic products Entrust (spinosad), Azera (pyrethrin and azadirachtin), PyGanic (pyrethrin) and Neemix (azadirachtin), which reduced pest infestations by an overall 73.9%, 61.7%, 48.6% and 46.1% respectively, averaged across all trials. Entrust was the most effective control option for many insect pests, particularly providing >75% control of flea beetles, Colorado potato beetle, cabbageworms and alfalfa weevil, but was relatively ineffective against true bugs and aphids. Azera provided >75% control of green peach aphid, flea beetles, Japanese beetle, Mexican bean beetle, potato leafhopper and cabbageworms. PyGanic was less effective than Entrust and Azera but still provided >75% control of green peach aphid, flea beetles and potato leafhopper. The growth inhibition effects of azadirachtin in Neemix were particularly effective against larvae of Mexican bean beetle and Colorado potato beetle but was generally less effective in trials with insect infestations consisting mainly of adult stages. Those insect pests that were particularly difficult to control included thrips, stinkbugs, cucumber beetles and fruitworms. Several caveats pertaining to the application of the results are discussed.
  • Thumbnail Image
    Item
    Cultural Control of Drosophila suzukii in Small Fruit—Current and Pending Tactics in the U.S.
    (MDPI, 2021-02-17) Schöneberg, Torsten; Lewis, Margaret T.; Burrack, Hannah J.; Grieshop, Matthew; Isaacs, Rufus; Rendon, Dalila; Rogers, Mary; Rothwell, Nikki; Sial, Ashfaq A.; Walton, Vaughn M.; Hamby, Kelly A.
    Spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly of Asian origin, has emerged as a devastating pest of small and stone fruits throughout the United States. Tolerance for larvae is extremely low in fresh market fruit, and management is primarily achieved through repeated applications of broad-spectrum insecticides. These applications are neither economically nor environmentally sustainable, and can limit markets due to insecticide residue restrictions, cause outbreaks of secondary pests, and select for insecticide resistance. Sustainable integrated pest management programs include cultural control tactics and various nonchemical approaches for reducing pest populations that may be useful for managing D. suzukii. This review describes the current state of knowledge and implementation for different cultural controls including preventative tactics such as crop selection and exclusion as well as strategies to reduce habitat favorability (pruning; mulching; irrigation), alter resource availability (harvest frequency; sanitation), and lower suitability of fruit postharvest (cooling; irradiation). Because climate, horticultural practices, crop, and market underlie the efficacy, feasibility, and affordability of cultural control tactics, the potential of these tactics for D. suzukii management is discussed across different production systems.