Biology Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/13
Browse
Recent Submissions
Item Neural correlates of perceptual plasticity in the auditory midbrain and thalamus(2024-08-28) Ying, Rose; Stolzberg, Daniel J; Caras, Melissa LHearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the spectral and temporal sensitivity of auditory cortical (ACX) neurons support many aspects of perceptual plasticity, the contribution of subcortical auditory regions to this process is less understood. Here, we recorded single- and multi-unit activity from the central nucleus of the inferior colliculus (ICC) and the ventral subdivision of the medial geniculate nucleus (MGV) of Mongolian gerbils under two different behavioral contexts: as animals performed an amplitude modulation (AM) detection task and as they were passively exposed to AM sounds. Using a signal detection framework to estimate neurometric sensitivity, we found that neural thresholds in both regions improved during task performance, and this improvement was driven by changes in firing rate rather than phase locking. We also found that ICC and MGV neurometric thresholds improved as animals learn to detect small AM depths during a multi-day perceptual training paradigm. Finally, we reveal that in the MGV, but not the ICC, context-dependent enhancements in AM sensitivity grow stronger during perceptual training, mirroring prior observations in the ACX. Together, our results suggest that the auditory midbrain and thalamus contribute to changes in sound processing and perception over rapid and slow timescales.Item Data for: Competing adaptations maintain non-adaptive variation in a wild cricket population(2024) Rayner, Jack; Eichenberger, Franca; Bainbridge, Jessica; Zhang, Shangzhe; Zhang, Xiao; Yusuf, Leeban; Balenger, Susan; Gaggiotti, Oscar; Bailey, NathanItem Null model analyses are not adequate to summarize strong associations: Rebuttal to Ulrich et al. (2022)(Wiley, 2023-10-21) Mainali, Kumar P.; Slud, EricWe recently developed a novel metric of association in pairwise co-occurrence data (Mainali et al., 2022) to address fundamental flaws in traditional indices, as elaborately discussed and conclusively shown in our published paper. Our new metric, the maximum likelihood estimator (MLE) alpha-hat of a statistical parameter alpha, quantifies the degree of association between species occupancy at ecological sites, and it is insensitive to the species prevalences and number of sites. In contrast, we showed that classic indices of co-occurrence (Jaccard, Simpson, Sørensen–Dice) can be highly sensitive to fixed margins of contingency tables, estimating wildly variable degrees of association and even reversing the direction of association for tables with different margins but the same degree-of-association alpha.Item Genetic tools for the study of the mangrove killifish, Kryptolebias marmoratus, an emerging vertebrate model for phenotypic plasticity(Wiley, 2023-08-08) Li, Cheng-Yu; Boldt, Helena; Parent, Emily; Ficklin, Jax; James, Althea; Anlage, Troy J.; Boyer, Lena M.; Pierce, Brianna R.; Siegfried, Kellee R.; Harris, Matthew P.; Haag, Eric S.Kryptolebias marmoratus (Kmar), a teleost fish of the order Cyprinodontiformes, has a suite of unique phenotypes and behaviors not observed in other fishes. Many of these phenotypes are discrete and highly plastic—varying over time within an individual, and in some cases reversible. Kmar and its interfertile sister species, K. hermaphroditus, are the only known self-fertile vertebrates. This unusual sexual mode has the potential to provide unique insights into the regulation of vertebrate sexual development, and also lends itself to genetics. Kmar is easily adapted to the lab and requires little maintenance. However, its internal fertilization and small clutch size limits its experimental use. To support Kmar as a genetic model, we compared alternative husbandry techniques to maximize recovery of early cleavage-stage embryos. We find that frequent egg collection enhances yield, and that protease treatment promotes the greatest hatching success. We completed a forward mutagenesis screen and recovered several mutant lines that serve as important tools for genetics in this model. Several will serve as useful viable recessive markers for marking crosses. Importantly, the mutant kissylips lays embryos at twice the rate of wild-type. Combining frequent egg collection with the kissylips mutant background allows for a substantial enhancement of early embryo yield. These improvements were sufficient to allow experimental analysis of early development and the successful mono- and bi-allelic targeted knockout of an endogenous tyrosinase gene with CRISPR/Cas9 nucleases. Collectively, these tools will facilitate modern developmental genetics in this fascinating fish, leading to future insights into the regulation of plasticity.Item Organization of orbitofrontal-auditory pathways in the Mongolian gerbil(Wiley, 2023-07-21) Ying, Rose; Hamlette, Lashaka; Nikoobakht, Laudan; Balaji, Rakshita; Miko, Nicole; Caras, Melissa L.Sound perception is highly malleable, rapidly adjusting to the acoustic environment and behavioral demands. This flexibility is the result of ongoing changes in auditory cortical activity driven by fluctuations in attention, arousal, or prior expectations. Recent work suggests that the orbitofrontal cortex (OFC) may mediate some of these rapid changes, but the anatomical connections between the OFC and the auditory system are not well characterized. Here, we used virally mediated fluorescent tracers to map the projection from OFC to the auditory midbrain, thalamus, and cortex in a classic animal model for auditory research, the Mongolian gerbil (Meriones unguiculatus). We observed no connectivity between the OFC and the auditory midbrain, and an extremely sparse connection between the dorsolateral OFC and higher order auditory thalamic regions. In contrast, we observed a robust connection between the ventral and medial subdivisions of the OFC and the auditory cortex, with a clear bias for secondary auditory cortical regions. OFC axon terminals were found in all auditory cortical lamina but were significantly more concentrated in the infragranular layers. Tissue-clearing and lightsheet microscopy further revealed that auditory cortical-projecting OFC neurons send extensive axon collaterals throughout the brain, targeting both sensory and non-sensory regions involved in learning, decision-making, and memory. These findings provide a more detailed map of orbitofrontal-auditory connections and shed light on the possible role of the OFC in supporting auditory cognition.Item Orbitofrontal Cortex Modulates Auditory Cortical Sensitivity and Sound Perception in Mongolian gerbils(Current Biology, 2024) Macedo-Lima, Matheus; Hamlette, Lashaka Sierra; Caras, Melissa L.Sensory perception is dynamic, quickly adapting to sudden shifts in environmental or behavioral context. Though decades of work have established that these dynamics are mediated by rapid fluctuations in sensory cortical activity, we have a limited understanding of the brain regions and pathways that orchestrate these changes. Neurons in the orbitofrontal cortex (OFC) encode contextual information, and recent data suggest that some of these signals are transmitted to sensory cortices. Whether and how these signals shape sensory encoding and perceptual sensitivity remains uncertain. Here, we asked whether the OFC mediates context-dependent changes in auditory cortical sensitivity and sound perception by monitoring and manipulating OFC activity in freely moving Mongolian gerbils of both sexes under two behavioral contexts: passive sound exposure and engagement in an amplitude modulation (AM) detection task. We found that the majority of OFC neurons, including the specific subset that innervate the auditory cortex, were strongly modulated by task engagement. Pharmacological inactivation of the OFC prevented rapid context-dependent changes in auditory cortical firing, and significantly impaired behavioral AM detection. Our findings suggest that contextual information from the OFC mediates rapid plasticity in the auditory cortex and facilitates the perception of behaviorally relevant sounds.Item Impaired Focal Adhesion Kinase-Grb2 Interaction during Elevated Activity in Hippocampal Neurons(MDPI, 2015-07-10) Murase, SachikoExcitatory/inhibitory imbalances are implicated in many neurological disorders. Previously, we showed that chronically elevated network activity induces vulnerability in neurons due to loss of signal transducer and activator of transcription 3 (STAT3) signaling in response to the impairment of the serine/threonine kinase, extracellular-signal-regulated kinases 1/2 (Erk1/2) activation. However, how phosphorylation of Erk1/2 decreases during elevated neuronal activity was unknown. Here I show the pErk1/2 decrease induced by 4-aminopyridine (4-AP), an A-type potassium channel inhibitor can be blocked by a broad-spectrum matrix-metalloproteinase (MMP) inhibitor, FN-439. Surface expression levels of integrin β1 dramatically decrease when neurons are challenged by chronically elevated activity, which is reversed by FN-439. Treatment with 4-AP induces degradation of focal adhesion kinase (FAK), the mediator of integrin signaling. As a result, interactions between FAK and growth factor receptor-bound protein 2 (Grb2), the adaptor protein that mediates Erk1/2 activation by integrin, are severely impaired. Together, these data suggest the loss of integrin signaling during elevated activity causes vulnerability in neurons.Item Membrane Affinity of Platensimycin and Its Dialkylamine Analogs(MDPI, 2015-08-04) Rowe, Ian; Guo, Min; Yasmann, Anthony; Cember, Abigail; Sintim, Herman O.; Sukharev, SergeiMembrane permeability is a desired property in drug design, but there have been difficulties in quantifying the direct drug partitioning into native membranes. Platensimycin (PL) is a new promising antibiotic whose biosynthetic production is costly. Six dialkylamine analogs of PL were synthesized with identical pharmacophores but different side chains; five of them were found inactive. To address the possibility that their activity is limited by the permeation step, we calculated polarity, measured surface activity and the ability to insert into the phospholipid monolayers. The partitioning of PL and the analogs into the cytoplasmic membrane of E. coli was assessed by activation curve shifts of a re-engineered mechanosensitive channel, MscS, in patch-clamp experiments. Despite predicted differences in polarity, the affinities to lipid monolayers and native membranes were comparable for most of the analogs. For PL and the di-myrtenyl analog QD-11, both carrying bulky sidechains, the affinity for the native membrane was lower than for monolayers (half-membranes), signifying that intercalation must overcome the lateral pressure of the bilayer. We conclude that the biological activity among the studied PL analogs is unlikely to be limited by their membrane permeability. We also discuss the capacity of endogenous tension-activated channels to detect asymmetric partitioning of exogenous substances into the native bacterial membrane and the different contributions to the thermodynamic force which drives permeation.Item Supplementary materials for Plasmodium vivax antigen candidate prediction improves with the addition of Plasmodium falciparum data(2023) Chou, Renee Ti; Ouattara, Amed; Takala-Harrison, Shannon; Cummings, Michael P.Intensive malaria control and elimination efforts have led to substantial reductions in malaria incidence over the past two decades. However, the reduction in Plasmodium falciparum malaria cases has led to a species shift in some geographic areas, with P. vivax predominating in many areas outside of Africa. Despite its wide geographic distribution, P. vivax vaccine development has lagged far behind that for P. falciparum, in part due to the inability to cultivate P. vivax in vitro, hindering traditional approaches for antigen identification. In a prior study, we have used a positive-unlabeled random forest (PURF) machine learning approach to identify P. falciparum antigens for consideration in vaccine development efforts. Here we integrate systems data from P. falciparum (the better-studied species) to improve PURF models to predict potential P. vivax vaccine antigen candidates. We further show that inclusion of known antigens from the other species is critical for model performance, but the inclusion of unlabeled proteins the other species can result in misdirection of the model toward predictors of species classification, rather than antigen identification. Beyond malaria, incorporating antigens from a closely related species may aid in vaccine development for emerging pathogens having few or no known antigens.Item Genomic Characterization of a B Chromosome in Lake Malawi Cichlid Fishes(MDPI, 2018-12-05) Clark, Frances E.; Conte, Matthew A.; Kocher, Thomas D.B chromosomes (Bs) were discovered a century ago, and since then, most studies have focused on describing their distribution and abundance using traditional cytogenetics. Only recently have attempts been made to understand their structure and evolution at the level of DNA sequence. Many questions regarding the origin, structure, function, and evolution of B chromosomes remain unanswered. Here, we identify B chromosome sequences from several species of cichlid fish from Lake Malawi by examining the ratios of DNA sequence coverage in individuals with or without B chromosomes. We examined the efficiency of this method, and compared results using both Illumina and PacBio sequence data. The B chromosome sequences detected in 13 individuals from 7 species were compared to assess the rates of sequence replacement. B-specific sequence common to at least 12 of the 13 datasets were identified as the “Core” B chromosome. The location of B sequence homologs throughout the genome provides further support for theories of B chromosome evolution. Finally, we identified genes and gene fragments located on the B chromosome, some of which may regulate the segregation and maintenance of the B chromosome.Item Distribution and Community Assembly of Trees Along an Andean Elevational Gradient(MDPI, 2019-09-05) Worthy, Samantha J.; Jiménez Paz, Rosa A.; Pérez, Álvaro J.; Reynolds, Alex; Cruse-Sanders, Jennifer; Valencia, Renato; Barone, John A.; Burgess, Kevin S.Highlighting patterns of distribution and assembly of plants involves the use of community phylogenetic analyses and complementary traditional taxonomic metrics. However, these patterns are often unknown or in dispute, particularly along elevational gradients, with studies finding different patterns based on elevation. We investigated how patterns of tree diversity and structure change along an elevation gradient using taxonomic and phylogenetic diversity metrics. We sampled 595 individuals (36 families; 53 genera; 88 species) across 15 plots along an elevational gradient (2440–3330 m) in Ecuador. Seventy species were sequenced for the rbcL and matK gene regions to generate a phylogeny. Species richness, Shannon–Weaver diversity, Simpson’s Dominance, Simpson’s Evenness, phylogenetic diversity (PD), mean pairwise distance (MPD), and mean nearest taxon distance (MNTD) were evaluated for each plot. Values were correlated with elevation and standardized effect sizes (SES) of MPD and MNTD were generated, including and excluding tree fern species, for comparisons across elevation. Taxonomic and phylogenetic metrics found that species diversity decreases with elevation. We also found that overall the community has a non-random phylogenetic structure, dependent on the presence of tree ferns, with stronger phylogenetic clustering at high elevations. Combined, this evidence supports the ideas that tree ferns have converged with angiosperms to occupy the same habitat and that an increased filtering of clades has led to more closely related angiosperm species at higher elevations.Item Cooperativity and Steep Voltage Dependence in a Bacterial Channel(MDPI, 2019-09-11) Lin, Shang H.; Chang, Kai-Ti; Cherian, Nuval; Wu, Benjamin; Phee, Hyo; Cho, Christy; Colombini, MarcoThis paper reports on the discovery of a novel three-membrane channel unit exhibiting very steep voltage dependence and strong cooperative behavior. It was reconstituted into planar phospholipid membranes formed by the monolayer method and studied under voltage-clamp conditions. The behavior of the novel channel-former, isolated from Escherichia coli, is consistent with a linearly organized three-channel unit displaying steep voltage-gating (a minimum of 14 charges in the voltage sensor) that rivals that of channels in mammalian excitable membranes. The channels also display strong cooperativity in that closure of the first channel permits the second to close and closure of the second channel permits closure of the third. All three have virtually the same conductance and selectivity, and yet the first and third close at positive potentials whereas the second closes at negative potentials. Thus, is it likely that the second channel-former is oriented in the membrane in a direction opposite to that of the other two. This novel structure is named “triplin.” The extraordinary behavior of triplin indicates that it must have important and as yet undefined physiological roles.Item Interactions with a Complex Microbiota Mediate a Trade-Off between the Host Development Rate and Heat Stress Resistance(MDPI, 2020-11-13) Slowinski, Samuel; Ramirez, Isabella; Narayan, Vivek; Somayaji, Medha; Para, Maya; Pi, Sarah; Jadeja, Niharika; Karimzadegan, Siavash; Pees, Barbara; Shapira, MichaelAnimals and plants host diverse communities of microorganisms, and these microbiotas have been shown to influence host life history traits. Much has been said about the benefits that host-associated microbiotas bestow on the host. However, life history traits often demonstrate tradeoffs among one another. Raising Caenorhabditis elegans nematodes in compost microcosms emulating their natural environment, we examined how complex microbiotas affect host life history traits. We show that soil microbes usually increase the host development rate but decrease host resistance to heat stress, suggesting that interactions with complex microbiotas may mediate a tradeoff between host development and stress resistance. What element in these interactions is responsible for these effects is yet unknown, but experiments with live versus dead bacteria suggest that such effects may depend on bacterially provided signals.Item Fisher vs. the Worms: Extraordinary Sex Ratios in Nematodes and the Mechanisms that Produce Them(MDPI, 2021-07-15) Van Goor, Justin; Shakes, Diane C.; Haag, Eric S.Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two “seminal” contributions of G. A. Parker.Item Apical Sperm Hook Morphology Is Linked to Sperm Swimming Performance and Sperm Aggregation in Peromyscus Mice(MDPI, 2021-09-01) Hook, Kristin A.; Wilke, Lauren M.; Fisher, Heidi S.Mammals exhibit a tremendous amount of variation in sperm morphology and despite the acknowledgement of sperm structural diversity across taxa, its functional significance remains poorly understood. Of particular interest is the sperm of rodents. While most Eutherian mammal spermatozoa are relatively simple cells with round or paddle-shaped heads, rodent sperm are often more complex and, in many species, display a striking apical hook. The function of the sperm hook remains largely unknown, but it has been hypothesized to have evolved as an adaptation to inter-male sperm competition and thus has been implicated in increased swimming efficiency or in the formation of collective sperm movements. Here we empirically test these hypotheses within a single lineage of Peromyscus rodents, in which closely related species naturally vary in their mating systems, sperm head shapes, and propensity to form sperm aggregates of varying sizes. We performed sperm morphological analyses as well as in vitro analyses of sperm aggregation and motility to examine whether the sperm hook (i) morphologically varies across these species and (ii) associates with sperm competition, aggregation, or motility. We demonstrate inter-specific variation in the sperm hook and then show that hook width negatively associates with sperm aggregation and sperm swimming speed, signifying that larger hooks may be a hindrance to sperm movement within this group of mice. Finally, we confirmed that the sperm hook hinders motility within a subset of Peromyscus leucopus mice that spontaneously produced sperm with no or highly abnormal hooks. Taken together, our findings suggest that any adaptive value of the sperm hook is likely associated with a function other than inter-male sperm competition, such as interaction with ova or cumulous cells during fertilization, or migration through the complex female reproductive tract.Item Chronic Monocular Deprivation Reveals MMP9-Dependent and -Independent Aspects of Murine Visual System Plasticity(MDPI, 2022-02-23) Murase, Sachiko; Robertson, Sarah E.; Lantz, Crystal L.; Liu, Ji; Winkowski, Daniel E.; Quinlan, Elizabeth M.The deletion of matrix metalloproteinase MMP9 is combined here with chronic monocular deprivation (cMD) to identify the contributions of this proteinase to plasticity in the visual system. Calcium imaging of supragranular neurons of the binocular region of primary visual cortex (V1b) of wild-type mice revealed that cMD initiated at eye opening significantly decreased the strength of deprived-eye visual responses to all stimulus contrasts and spatial frequencies. cMD did not change the selectivity of V1b neurons for the spatial frequency, but orientation selectivity was higher in low spatial frequency-tuned neurons, and orientation and direction selectivity were lower in high spatial frequency-tuned neurons. Constitutive deletion of MMP9 did not impact the stimulus selectivity of V1b neurons, including ocular preference and tuning for spatial frequency, orientation, and direction. However, MMP9−/− mice were completely insensitive to plasticity engaged by cMD, such that the strength of the visual responses evoked by deprived-eye stimulation was maintained across all stimulus contrasts, orientations, directions, and spatial frequencies. Other forms of experience-dependent plasticity, including stimulus selective response potentiation, were normal in MMP9−/− mice. Thus, MMP9 activity is dispensable for many forms of activity-dependent plasticity in the mouse visual system, but is obligatory for the plasticity engaged by cMD.Item New Sex Chromosomes in Lake Victoria Cichlid Fishes (Cichlidae: Haplochromini)(MDPI, 2022-04-30) Kocher, Thomas D.; Behrens, Kristen A.; Conte, Matthew A.; Aibara, Mitsuto; Mrosso, Hillary D. J.; Green, Elizabeth C. J.; Kidd, Michael R.; Nikaido, Masato; Koblmüller, StephanAfrican cichlid fishes harbor an extraordinary diversity of sex-chromosome systems. Within just one lineage, the tribe Haplochromini, at least 6 unique sex-chromosome systems have been identified. Here we focus on characterizing sex chromosomes in cichlids from the Lake Victoria basin. In Haplochromis chilotes, we identified a new ZW system associated with the white blotch color pattern, which shows substantial sequence differentiation over most of LG16, and is likely to be present in related species. In Haplochromis sauvagei, we found a coding polymorphism in amh that may be responsible for an XY system on LG23. In Pundamilia nyererei, we identified a feminizing effect of B chromosomes together with XY- and ZW-patterned differentiation on LG23. In Haplochromis latifasciatus, we identified a duplication of amh that may be present in other species of the Lake Victoria superflock. We further characterized the LG5-14 XY system in Astatotilapia burtoni and identified the oldest stratum on LG14. This species also showed ZW differentiation on LG2. Finally, we characterized an XY system on LG7 in Astatoreochromis alluaudi. This report brings the number of distinct sex-chromosome systems in haplochromine cichlids to at least 13, and highlights the dynamic evolution of sex determination and sex chromosomes in this young lineage.Item Triplin: Functional Probing of Its Structure and the Dynamics of the Voltage-Gating Process(MDPI, 2022-11-09) Colombini, Marco; Barnes, Kevin; Chang, Kai-Ti; Younis, Muhsin H.; Aguilella, Vicente M.Gram-negative bacteria have a large variety of channel-forming proteins in their outer membrane, generally referred to as porins. Some display weak voltage dependence. A similar trimeric channel former, named Triplin, displays very steep voltage dependence, rivaling that responsible for the electrical excitability of mammals, and high inter-subunit cooperativity. We report detailed insights into the molecular basis for these very unusual properties explored at the single-molecule level. By using chemical modification to reduce the charge on the voltage sensors, they were shown to be positively charged structures. Trypsin cleavage of the sensor eliminates voltage gating by cleaving the sensor. From asymmetrical addition of these reagents, the positively charged voltage sensors translocate across the membrane and are, thus, responsible energetically for the steep voltage dependence. A mechanism underlying the cooperativity was also identified. Theoretical calculations indicate that the charge on the voltage sensor can explain the rectification of the current flowing through the open pores if it is located near the pore mouth in the open state. All results support the hypothesis that one of the three subunits is oriented in a direction opposite to that of the other two. These properties make Triplin perhaps the most complex pore-forming molecular machine described to date.Item Incorporating multidimensional behavior into a risk management tool for a critically endangered and migratory species(Wiley, 2023-05-19) Barbour, Nicole; Shillinger, George L.; Gurarie, Eliezer; Hoover, Aimee L.; Gaspar, Philippe; Temple-Boyer, Julien; Candela, Tony; Fagan, William F.; Bailey, HelenConservation of migratory species exhibiting wide-ranging and multidimensional behaviors is challenged by management efforts that only utilize horizontal movements or produce static spatial–temporal products. For the deep-diving, critically endangered eastern Pacific leatherback turtle, tools that predict where turtles have high risks of fisheries interactions are urgently needed to prevent further population decline. We incorporated horizontal–vertical movement model results with spatial–temporal kernel density estimates and threat data (gear-specific fishing) to develop monthly maps of spatial risk. Specifically, we applied multistate hidden Markov models to a biotelemetry data set (n = 28 leatherback tracks, 2004–2007). Tracks with dive information were used to characterize turtle behavior as belonging to 1 of 3 states (transiting, residential with mixed diving, and residential with deep diving). Recent fishing effort data from Global Fishing Watch were integrated with predicted behaviors and monthly space-use estimates to create maps of relative risk of turtle–fisheries interactions. Drifting (pelagic) longline fishing gear had the highest average monthly fishing effort in the study region, and risk indices showed this gear to also have the greatest potential for high-risk interactions with turtles in a residential, deep-diving behavioral state. Monthly relative risk surfaces for all gears and behaviors were added to South Pacific TurtleWatch (SPTW) (https://www.upwell.org/sptw), a dynamic management tool for this leatherback population. These modifications will refine SPTW's capability to provide important predictions of potential high-risk bycatch areas for turtles undertaking specific behaviors. Our results demonstrate how multidimensional movement data, spatial–temporal density estimates, and threat data can be used to create a unique conservation tool. These methods serve as a framework for incorporating behavior into similar tools for other aquatic, aerial, and terrestrial taxa with multidimensional movement behaviors.Item Central projections of auditory nerve fibers in the western rat snake (Pantherophis obsoletus)(Wiley, 2023-05-28) Han, Dawei; Carr, Catherine E.Despite the absence of tympanic middle ears, snakes can hear. They are thought to primarily detect substrate vibration via connections between the lower jaw and the inner ear. We used the western rat snake (Pantherophis obsoletus) to determine how vibration is processed in the brain. We measured vibration-evoked potential recordings to reveal sensitivity to low-frequency vibrations. We then used tract tracing combined with immunohistochemistry and Nissl staining to describe the central projections of the papillar branch of the VIIIth nerve. Applications of biotinylated dextran amine to the basilar papilla (homologous to the organ of Corti of mammals) labeled bouton-like terminals in two first-order cochlear nuclei, a rostrolateral nucleus angularis (NA) and a caudomedial nucleus magnocellularis (NM). NA formed a distinct dorsal eminence, consisted of heterogenous cell types, and was parvalbumin positive. NM was smaller and poorly separated from the surrounding vestibular nuclei. NM was distinguished by positive calbindin label and included fusiform and round cells. Thus, the atympanate western rat snake shares similar first-order projections to tympanate reptiles. Auditory pathways may be used for detecting vibration, not only in snakes but also potentially in atympanate early tetrapods.