Optimal Architectures for Multidimensional Transforms.

dc.contributor.authorChakrabarti, Chaitalien_US
dc.contributor.authorJaJa, Joseph F.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:41:18Z
dc.date.available2007-05-23T09:41:18Z
dc.date.issued1988en_US
dc.description.abstractMultidimensional transforms have widespread applications in computer vision, pattern analysis and image processing. The only existing optimal architecture for computing multidimensional DFT on data of size n = Nd requires very large rotator units of area O(n^2) and pipeline-time O(log n). In this paper we propose a family of optimal architectures with areatime trade-offs for computing multidimensional transforms. The large rotator unit is replaced by a combination of a small rotator unit, a transpose unit and a block rotator unit. The combination has an area of O(N^(d+2a)) and a pipeline time of O(N^(d/2-a)log n), for 0 < a < d/2. We apply this scheme to design optimal architectures for two-dimensional DFT, DHT and DCT. The computation is made efficient by mapping each of the one-dimensional transforms involved into two dimensions.en_US
dc.format.extent597273 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/4770
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1988-39en_US
dc.titleOptimal Architectures for Multidimensional Transforms.en_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_88-39.pdf
Size:
583.27 KB
Format:
Adobe Portable Document Format