A Networked Dataflow Simulation Environment for Signal Processing and Data Mining Applications
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
In networked signal processing systems, dataflow graphs can be used to
describe the processing on individual network nodes. However, to analyze the
correctness and performance of these systems, designers must understand
the interactions across these individual "node-level'' dataflow graphs --- as
they communicate across the network --- in addition to the characteristics of
the individual graphs.
In this thesis, we present a novel simulation environment, called the
NS-2 -- TDIF SIMulation environment (NT-SIM). NT-SIM provides integrated co-simulation of networked systems and combines the
network analysis capabilities provided by the Network Simulator (ns) with
the scheduling capabilities of a dataflow-based framework, thereby providing
novel features for more comprehensive simulation of networked signal
processing systems.
Through a novel integration of advanced tools for network and dataflow graph
simulation, our NT-SIM environment allows comprehensive simulation and analysis
of networked systems. We present two case studies that concretely demonstrate
the utility of NT-SIM in the contexts of a heterogeneous signal processing and
data mining system design.