
ABSTRACT

Title of thesis: A NETWORKED DATAFLOW SIMULATION
ENVIRONMENT FOR SIGNAL PROCESSING
AND DATA MINING APPLICATIONS

Stephen Won, Master of Science, 2012

Thesis directed by: Professor Shuvra Bhattacharyya
Department of Electrical and Computer Engineering
University of Maryland at College Park

In networked signal processing systems, dataflow graphs can be used to de-

scribe the processing on individual network nodes. However, to analyze the correct-

ness and performance of these systems, designers must understand the interactions

across these individual “node-level” dataflow graphs — as they communicate across

the network — in addition to the characteristics of the individual graphs.

In this thesis, we present a novel simulation environment, called the NS-

2 – TDIF SIMulation environment (NT-SIM). NT-SIM provides integrated co-

simulation of networked systems and combines the network analysis capabilities pro-

vided by the Network Simulator (ns) with the scheduling capabilities of a dataflow-

based framework, thereby providing novel features for more comprehensive simula-

tion of networked signal processing systems.

Through a novel integration of advanced tools for network and dataflow graph

simulation, our NT-SIM environment allows comprehensive simulation and analysis

of networked systems. We present two case studies that concretely demonstrate the

utility of NT-SIM in the contexts of a heterogeneous signal processing and data

mining system design.

A NETWORKED DATAFLOW SIMULATION

ENVIRONMENT FOR SIGNAL PROCESSING
AND DATA MINING APPLICATIONS

by

Stephen Won

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2012

Advisory Committee:
Professor Shuvra Bhattacharyya, Chair/Advisor
Professor Silvina Matysiak
Professor Uzi Vishkin

c© Copyright by

Stephen Won
2012

Acknowledgments

Without the people in my life, this thesis would not be possible. I would like

to give my thanks here.

First and foremost, I would like to thank my advisor, Dr. Shuvra Bhat-

tacharyya, for his enthusiasm, advice, and financial support. From his programming

class to my years in graduate school, he has been instrumental in my professional

development through internships and research opportunities. Words cannot fully

express the appreciation I have for my advisor.

For my thesis defense, it is my pleasure to thank my advisory committee

members, Dr. Uzi Vishkin and Dr. Silvina Matysiak, for their time in serving on

my thesis committee, but also my experiences in their courses. Both of their courses

were two of the most interesting and rigorous courses that I could have experienced

in my student career.

For my graduate research, I would like to thank the members of the DSPCAD

group for their support and relaxed environment. Special thanks go out to Dr.

Chung-Ching Shen, who was instrumental in guiding the research topic of this thesis.

I would also like to thank Kishan Sudusinghe for his help in the machine learning

research. I am grateful to both Dr. Nimish Sane and Dr. William Plishker, who

assisted my undergraduate research. I am also grateful to other members of the

DSPCAD group, including George Zaki, Scott Kim, Lai-Huei Wang, Zheng Zhou,

Hsiang-Huang Wu, Shenpei Wu, and Inkeun Cho.

For my professional development, I would like to thank all my co-workers

ii

at the Air Force Research Laboratory, Army Research Laboratory, and Patuxent

River Naval Air Station. Each site gave me an experience that helped me develop

my programming and leadership skills, which were instrumental in my research. I

would like to thank Dr. Gunasekaran Seetharaman for giving me an opportunity

to experience AFRL in Rome, NY and for supporting me here in ARL and UMD.

I would also like to Dr. Susan Young for giving me guidance in research. To all

my supervisors and coworkers at Pax River, the programming experience and the

stories I listened to prepared for college in a way that no other place or person could.

For my personal sanity, I would like to thank all of my friends for the support

and fun that they have provided me during my studies. Special thanks goes to

Leonardo Apolonio, who gave me proper motivation to delve into the world of ma-

chine learning. I would also like to thank Matt Lentz, for being my graduate study

and work partner. To Mark Finkelstein, thank you for your hijinks and showing me

how important it is to constantly push the envelope. I would like to thank Elizabeth

Kenyon for answering my questions about work. To the people that I have lived

with, thank you for constantly trying to get me to experience new things.

Lastly, I wish to thank my parents, Chi and Susan Won. No words can fully

express the appreciation and gratitude that I have for them. From raising me with

a proper technical background to supporting some my crazy adventures, I dedicate

this thesis to them.

The research presented in this thesis has been sponsored in part by the US Air

Force Office of Scientific Research (AFOSR), and US Air Force Research Laboratory

(AFRL). Any opinions, findings, conclusions, or recommendations expressed in this

iii

thesis are those of the author and do not reflect the views of AFOSR or AFRL.

iv

Table of Contents

List of Figures vii

List of Abbreviations ix

1 Introduction 1

1.1 Contributions of this thesis . 2

1.2 Outline of the thesis . 4

2 Background 6

2.1 Dataflow Modeling . 6

2.2 Dataflow Interchange Format (DIF) 7

2.2.1 The DIF Package (TDP) . 7

2.3 Functional DIF . 8

2.3.1 Targeted DIF (TDIF) . 9

2.3.2 Lightweight Dataflow Environment (LIDE) 11

2.4 Network Simulator . 12

3 Related Work 14

4 Networked Dataflow Application Simulation 18

4.1 NT-SIM Application Design Framework 18

4.1.1 NL-SIM Application Design Framework 20

5 Case Study: Image Registration Sensor Network 22

5.1 Distributed Vision Sensor Systems 23

v

5.2 Actor Design . 25

5.3 Actor Separation at the Node Level 26

5.4 Network Creation . 28

5.5 Simulation of the Distributed System 30

6 Case Study: Adaptive Stream Mining 36

6.1 Support Vector Machines . 36

6.2 Actor-Level Design . 38

6.3 Subsystem Level Design . 40

6.4 Network Design . 41

6.5 Simulation of the Adaptive Stream Mining System 42

7 Conclusions and Future Work 44

Bibliography 46

vi

List of Figures

2.1 TDP-based design flow. 8

2.2 TDIF-based design flow. 12

4.1 Specifying the interaction between dataflow applications and network

simulations in NT-SIM. 19

4.2 A simple example of an NT-SIM networked application system model.

In this model, two different nodes perform the addition operation. IAs

passing information from and to the Network Object block in the ns-2

subsystem are shown as yellow actors. 20

5.1 A dataflow graph model of SIFT-based feature detection and image

registration. 24

5.2 Dataflow graph subsystem for SIFT feature detection. 27

5.3 Subsystem for image registration after SIFT feature detection. 27

5.4 The topology represented by the Tcl script for the SIFT sensor network. 31

5.5 Graphical representation of the simulated SIFT sensor network. . . . 32

5.6 Reference image used for SIFT feature detection. 33

5.7 Target image used for SIFT feature detection. 34

5.8 Resulting registered image from SIFT VSN case study using NT-SIM. 35

6.1 A simple example of classification using a linear support vector ma-

chine. Points on the boundary represent the support vectors. 37

6.2 Dataflow graph subsystem for reading in face images. 41

vii

6.3 Subsystem for SVM classification. 41

6.4 Graphical representation of the simulated face detection network. . . 43

viii

List of Abbreviations

ACM Adaptative Classifier Manager
API Application Programming Interface
ASM Adaptive Stream Mining
BDF Boolean Dataflow
CFDF Core Functional Dataflow
CSDF Cyclo-Static Synchronous Dataflow
DICE DSPCAD Integrated Command Line Environment
DIF Dataflow Interchange Format
EC Execution Context
FIFO First-In-First-Out
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
HSDF Homogeneous Synchronous Dataflow
IA Interface Actor
LIDE Lightweight Dataflow Environment
NL-SIM NS-2-LIDE Simulation
NT-SIM NS-2-TDIF Simulation
OSI Open Systems Interconnection
RANSAC Random Sample Consensus
SDF Synchronous Dataflow
SVM Support Vector Machine
TC Topological Context
TCP Transmission Control Protocol
TDIF Targeted Dataflow Interchange Format
TDP The DIF Package
UDP User Datagram Protocol

ix

Chapter 1

Introduction

Multimedia and data mining applications often require intensive stream pro-

cessing capabilities to maintain performance constraints. To increase the perfor-

mance and capabilities of the applications, diverse platforms and devices are em-

ployed, including programmable digital signal processors, microcontrollers, graphics

processing units (GPUs), and field programmable gate arrays (FPGAs). This cre-

ates heterogeneous computing environments that can utilize networks of different

computing devices. However, this leads to different programming models and devel-

opment environments, which makes programming to these environments a challeng-

ing task. To help address this challenge, dataflow models of computation can be used

to describe the signal processing or data mining functionality due to their formal

correspondence with signal flow graphs and exposure of high level computational

structure within the application.

In dataflow models of computation, applications are represented by directed

graphs known as dataflow graphs. In a dataflow graph, vertices (actors) represent

computational modules for running (firing) computational tasks and edges represent

first-in-first-out (FIFO) channels that store data values (tokens) and establish data

dependencies between actors. The actors can produce or consume tokens from their

respective output and input edges, with the firing controlled by the availability of

1

data in the input edges.

This framework allows scheduling to benefit from the dataflow graph of the ap-

plication. The process of determining the firing conditions and sequencing the actors

to share limited processing resources is called scheduling. In addition to establishing

data dependencies, scheduling can be used to exploit parallelism to improve perfor-

mance and utilize memory efficiently for buffer management. This leads to a variety

of techniques for dataflow graphs to achieve different objectives, including latency

optimization, throughput optimization, buffer management efficiency, and adaptive

scheduling flexibility (e.g., see [1, 2, 3, 4, 5, 6, 7]).

However, dataflow models are not typically applied to the networking aspects

of networked applications. Simulations involving data protocols and link conditions

are usually not represented by dataflow techniques, as such functionality involves

significant control and discrete event behavior. Co-simulators can simulate both

network conditions and application settings at each node. However, conventional

cosimulation methods do not utilize dataflow graphs for intra-node modeling of the

application. Combining this capability helps to provide complete system analysis

of networked signal processing or data mining applications without sacrificing the

benefits of dataflow-based design frameworks at the level of individual nodes.

1.1 Contributions of this thesis

In this thesis, we present a hierarchical design method to model network con-

ditions and dataflow models of signal processing and data mining applications. To

2

do this, we developed the NS-2 – TDIF SIMulation (NT-SIM) and NS-2 – LIDE

SIMulation (NL-SIM) co-simulator environments.

The NT-SIM and NL-SIM co-simulators are platform-independent tools that

integrate their respective dataflow modeling environments with Network Simulator

(ns-2) [8] to ensure deterministic actions in networked signal processing and data

mining systems. Both NT-SIM and NL-SIM allow the designer to focus on the

dataflow model at the application node level while ns-2 allows analysis of network

properties and information sharing among nodes in a distributed application. This

allows the designer to apply powerful dataflow-based optimization techniques for

signal processing systems at the network node level (e.g., see [7]), and to accurately

simulate network interactions across the optimized node-level implementations using

the state-of-the-art network simulation capabilities of ns-2.

As part of this thesis, we present two case studies. We first demonstrate our

framework on a sensor network for image registration. Image registration benefits

from a heterogeneous environment, where more compute-intensive operations can

take advantage of specialized hardware such as GPUs. Our simulation framework

helps to simulate accurate interactions between optimized node level software that

exploits the GPUs, and the network-level interactions that influence the environment

in which the nodes operate.

The second case study deals with an exploration of multiple classifiers in a data

mining application, where we are trying to detect faces from sets of input images. In

such an application, the designer may choose to deploy multiple classifiers with dif-

ferent points of operation, and have the classification method selected dynamically

3

based on input data characteristics or operational constraints. It is important to

establish deterministic behavior across different environmental conditions to ensure

the optimal performance using multiple classifiers, and the restrictions imposed by

signal processing oriented dataflow models of computation help to enhance such de-

terministic, real-time operation. With this demonstration of NL-SIM, we show how

the selection of multiple classifiers on different nodes can be performed to optimize

for different conditions. Furthermore, we show how such design considerations can

be simulated in the context of their overall network-level embedding, not just in

isolation.

Through their novel integration of capabilities for dataflow-based, intra-node

design, and accurate, efficient network-level simulation, NT-SIM and NL-SIM allow

designers of networked signal processing systems to systematically optimize imple-

mentations, and validate deterministic operation in a distributed setting.

1.2 Outline of the thesis

The rest of the thesis is organized as follows. Chapter 2 discusses background

and related work on dataflow graph modeling and network simulation. Chapter 3

introduces our co-simulation approach, and provides a formalization of the heteroge-

neous design approach for our proposed networked dataflow simulation environment.

Chapter 4 describes a case study in which we use NT-SIM for a sensor network that

is designed to perform image registration. Chapter 5 presents a second case study,

which involves networked data mining of heterogeneous machine learning classifiers

4

using NL-SIM. Finally, conclusions and future work are discussed in Chapter 6.

5

Chapter 2

Background

In this chapter, we cover background on modeling applications using dataflow

graphs, and on network simulation tools.

2.1 Dataflow Modeling

Coarse-grained dataflow graphs are widely used in the digital signal processing

(DSP) community to model DSP applications. As a result, a wide variety of dataflow

models and tools have been developed to suit various application needs (e.g., see [7]).

Dataflow modeling techniques provide rich trade-offs among expressive power, anal-

ysis potential, suitability to different types of signal flow graph structures, and

available optimization techniques [7]. Developers of dataflow based signal process-

ing applications match their applications with available dataflow models, typically

starting with consideration of basic models, such as synchronous dataflow (SDF), ho-

mogeneous synchronous dataflow (HSDF), and cyclo-static dataflow (CSDF) [9], and

moving if needed to more expressive models, such as Boolean dataflow (BDF) [10]

or enable-invoke dataflow [11].

For such an application model, we define a dataflow graph G, which is com-

prised of an ordered pair (V,E), where V is the set of actors representing compu-

tations and E is the set of directed edges representing FIFO communication links

6

between nodes that store tokens. A directed edge e = (v1, v2) ∈ E is comprised

of a source node v1 ∈ V and a sink node v2 ∈ V . Each actor can consume and

produce tokens from its respective input and output edges in a single firing, which

is controlled by the availability of tokens in the input edges.

2.2 Dataflow Interchange Format (DIF)

The dataflow description of the application can be described using the Dataflow

Interchange Format (DIF), a language used to describe the dataflow semantics of

an application [12]. DIF allows the designer to describe dataflow- related and actor-

specific information about the application at different levels of granularity and hi-

erarchy. Since dataflow semantics are platform and design tool independent, the

dataflow semantics used to describe an application can be specified uniformly in

a heterogeneous compute environment using DIF. Moreover, DIF provides syntax

to allow for platform- or tool-specific information to be captured in intermediate

representations of the application.

2.2.1 The DIF Package (TDP)

To use the semantics captured by a DIF description of an application, the DIF

package (TDP) was created. An overview of TDP is shown in Figure 2.1. TDP trans-

forms a DIF description into an internal representation where TDP’s graph utilities,

optimization engines, and other algorithms can exploit the dataflow properties of

the application. This makes TDP a suitable environment to model dataflow applica-

7

Figure 2.1: TDP-based design flow.

tions while providing interoperability with other design environments and providing

a foundation to develop and apply new dataflow-based tools. Developers benefit

from the semantics and tool suite in TDP and internal representations can readily

be converted into functional implementations with the DIF-to-C tool [12], which is

a code synthesis tool for SDF.

2.3 Functional DIF

Functional DIF [11] is a tool that provides efficient simulation and prototyping

of dataflow graph functionality and scheduling techniques. The prototyping process

in functional DIF allows the designer to not only verify the top-level operation of

8

the application, but also complete system functionality down to the actor level.

The semantic foundation for functional DIF is core functional dataflow (CFDF),

which allows the designer to specify deterministic, dynamic, dataflow applications.

In CFDF, each actor a ∈ V has a set of modes, Ma, that it can execute; an en-

able function to determine if an actor can fire at a given point in time; and an

invoke function to perform the computation associated with a given mode of actor

operation.

At any point of execution, the consumption rate of a CFDF actor input port

can is said to be satisfied if the number of tokens in the corresponding input FFO

is at least equal to the consumption rate of the actor port for the current actor

mode. A similar characteristic can be applied to the production rate (in terms of

having sufficient empty space in the output buffer) of a CFDF actor output port at

any point of the application execution. More details about the enable and invoke

functions of an actor can be found in [13].

2.3.1 Targeted DIF (TDIF)

The NT-SIM co-simulator uses TDIF to model applications at the node level.

TDIF extends the capabilities of the DIF framework with plug-ins that focus on

efficient representations onto embedded platforms [14]. Since it is based on CFDF,

TDIF is a flexible dataflow model that supports static and data-dependent dataflow

rates, which allows for different production and consumption rates across different

actor modes. If each actor only has one mode or if the consumption and production

9

rates do not vary across modes, then synchronous dataflow [9] behavior results and

static scheduling techniques can be applied. If all actors in a dataflow graph have

SDF behavior, then the enable functions need not be employed at run time since

static scheduling can be performed for the overall graph. However, for dynamic

dataflow models, the enable functions allow for flexible and efficient construction of

low-overhead dynamic or quasi-static schedulers [11, 13].

With different dataflow modeling techniques, TDIF focuses on the flexible

design of individual actors. The TDIF language describes high level, platform-

independent specifications for the interface behavior of dataflow actors using five

keywords: module, input, output, param, and mode. Module declares the actor with

a label and defines the coding (target) language used to describe actor functionality.

Input and output declare the actor input and output ports along with the associated

port names and token types, respectively. Param declares actor parameters along

with parameter names and types. Mode defines each of the set of CFDF modes

associated with an actor. The TDIF compiler then takes the overall actor interface

specification and generates an application programming interface (API) in the target

language. These generated APIs can take the form of header files in the target

language code module. Currently, the TDIF compiler supports C, CUDA, and

Verilog as target languages.

After actor compilation using TDIF, an orthogonal compilation process through

the DIF framework can take place for the application dataflow graph [14]. Separa-

tion of actor and dataflow graph specifications using DIF and TDIF allows designers

to focus on actor design using TDIF and overall application or subsystem func-

10

tionality using DIF. This separation of node and subsystem-level design enhances

the agility and efficiency of the system-level design process [15]. The DIF- and

TDIF-based design components can be combined using the TDIF synthesis engine,

where scheduling results can interact with the dataflow graph and its actors. The

top-level implementation is generated by the TDIF synthesis engine. This initial-

izes the operational contexts of the actors and their communication channels. An

operational context contains an execution context (EC), which encapsulates actor

parameters and state variables and a topological context (TC), which encapsulates

incident ports [14].

The TDIF environment and design flow are illustrated in Fig. 2.2. By following

the design methodology supported by the TDIF and DIF frameworks, application

designers can experiment with different scheduling techniques for different platforms

in a heterogeneous environment.

2.3.2 Lightweight Dataflow Environment (LIDE)

The LIDE environment is similar to the TDIF environment in that it is also

based on the CFDF model of computation. However, TDIF is designed to support

extensive automated software synthesis capabilities, whereas the focus on LIDE is to

enable efficient experimentation with and integration of different kinds of dataflow

modeling techniques with minimal constraints on specialized design tools and li-

braries. This allows for easy integration of LIDE with existing application design

frameworks [16]. In this thesis, we use LIDE to model and implement dataflow-based

11

 !"!#$%&'(!)*&

+)),-.!/$0&&

12)(2320"!/$0&&

4 56&7!089!82:&

 56&;!(32(&
 56&50"2(<2=-!"2&

12)(2320"!/$0&

+."$(&5<),2<20"!/$0&

4>!(82"2=&7!089!82:&

?$@%!(2&5<),2<20"!/$0&

4>!(82"2=&;,!A$(<:&

190B/<2&7-C(!(D&

4+."$(E656F& 23-80&G$0"2H":&

+."$(&?)2.-I.!/$0&

4> 56&7!089!82:&
> 56&G$<)-,2(&

+."$(&+;5&

?$@%!(2&?D0"*23-3&J08-02&

> 56?D0&;!.K!82&

 !"!#$%&'(!)*&+;5&

?.*2=9,2&

5<),2<20"!/$0&
4>!(82"2=&7!089!82:&

 !"#$%&#&'()"*+',#

 !"# $%&#$"-./0# ++1#

2-"'3-4"5.6"7#

89-:+).;(<+0-#

?.*2=9,2&+;5&

2-"'3-4"5.6"7#

89-:+).;(<+0-#

503"(9<20"!/$0&

F)2(!/$03&L&M2"(-.3&

Figure 2.2: TDIF-based design flow.

applications using C.

LIDE is simpler than TDIF. Each LIDE actor is comprised of four main func-

tions: the new, enable, invoke, and terminate functions. The new function defines

the inputs, outputs and parameters of an actor. The purpose of the enable and

invoke functions in LIDE is analogous to their purpose in TDIF. The terminate

function clears memory usage when an actor instance is no longer needed.

2.4 Network Simulator

The Network Simulator (ns-2) is a discrete event simulation tool for networking

research with support for the simulation of TCP, routing, and multicast protocols

over wired and wireless networks. The simulator is an object-oriented tool based

on C++ for protocol implementation and Object Tcl (OTcl) for setting up net-

12

work conditions in simulation. The ns-2 tool incorporates Tcl with classes (TclCL)

in order to allow objects and variables to exist in a split-language programming

environment [8]. This allows designers to work in a reconfigurable simulation envi-

ronment that separates the simulation primitives in C++ from the simulation design

in OTcl [17].

To incorporate end system behaviors, ns-2 contains an emulation feature, NSE,

which allows the ability to introduce the network simulator into a live network

by calling a real-time scheduler to link event execution in simulations to real-time

events [8]. This allows for evaluation of both end system and network element

behavior. End system components are exposed to packet dynamics that can be

hard to reproduce in a live network, but traceable in an emulation environment.

Network behavior can be evaluated in relation to end system traffic generation.

This allows ns-2 to be used in identifying adverse network element behaviors prior

to live network testing [17].

To interface NSE with applications in our NT-SIM environment, tap agents

and network objects are used to pass network data between NSE and TDIF. Tap

agents attach network data into simulated packets. Each tap agent is related to

a network object, which provides entry and exit points for receiving and sending

live network packet data, respectively. There are different types of network objects,

depending on the specified network protocol. The current NSE version supports the

Pcap/BPF, raw IP, and UDP protocols [8]. For the case studies presented in this

paper, we adopt the UDP protocol for communication between nodes.

13

Chapter 3

Related Work

In this chapter, we discuss related prior work and how the contribution of this

thesis helps to advance the state of the art in simulation tools for networked signal

processing systems.

The distinguishing characteristic of the proposed NT-SIM and NL-SIM co-

simulators is their basis in dataflow concepts for the node-level behavior, and ca-

pability of handling network conditions to model and simulate interactions between

node-level dataflow graph. This stands in contrast to execution-sequence based

co-simulators, which lack dataflow semantics or are restricted to static schedules

throughout the network. It also stands in contrast to hybrid system simulators

(e.g., see [18]), which focus on interactions between continuous time and discrete

time dynamics.

NMLab is a co-simulation framework between MATLAB and ns-2 [19]. NMLab

is able to simulate both the application and network by adding network modeling

features to MATLAB and automating simulated network communications below

the application level of the Open Systems Interconnection reference model (OSI

model). Network topologies are constructed using ns-2 and the communication

between MATLAB and ns-2 is established using stream sockets connecting with

the Tcl interface of ns-2. Scheduling between the two simulators is controlled by

14

ns-2’s scheduler, which synchronizes the simulation time between the application in

MATLAB and network in ns-2.

NMLab is able to provide additional functionality to network simulation by

forwarding Tcl commands to NMLab classes specified by the designer in ns-2 [19].

In contrast, NT-SIM and NL-SIM utilize the emulation capability of ns-2 to avoid

the creation of a new agent for communicating with a specific language, which then

allows for heterogeneous system design using different languages. This independence

is important for working on heterogeneous platforms — for example, C, CUDA, and

Verilog could be used together for microcontroller-, GPU-, and FPGA-based nodes,

respectively, in a networked signal processing or data mining simulation. This also

allows a real-time simulation of asynchronous events and allows the designer to

observe data collisions and node time-outs. In addition, NMLab does not enforce

the use of dataflow paradigms for network end nodes, while NT-SIM and NL-SIM

enforce the use of dataflow principles with the respective TDIF and LIDE environ-

ments, which in turn enables dataflow-based scheduling techniques and other useful

methods for analysis and optimization.

PiccSIM is a co-simulator with a graphical user interface that also integrates

MATLAB/Simulink and ns-2 [20]. The simulator is specifically designed for net-

worked control systems, where the control application is modeled using MAT-

LAB/Simulink and the network simulation is performed using ns-2. The two simu-

lation environments communicate by passing TCP packets containing XML control

messages for ns-2 and UDP packets containing simulation and synchronization data

for Simulink. Automatic code generation for the control system and network is

15

provided [20].

Similar to NMLab, PiccSIM requires the creation of a new agent for the specific

purpose of facilitating communication between ns-2 and Simulink. While PiccSIM

has the ability to act as a real-time co-simulation framework for control subsystems

and simulated networks, questions can be raised about the accuracy of simulating

asynchronous distributed systems [21]. Also in contrast to the specialized support

for model-based design in MATLAB/Simulink, dataflow capabilities provided by

TDIF and LIDE in NT-SIM and NL-SIM, respectively, offer a collection of differ-

ent types of dataflow modeling styles, and scheduling techniques [14]. In addition,

node-level scheduling in PiccSIM only supports single tasking or preemptive multi-

tasking, whereas NT-SIM and NL-SIM allow for more flexible scheduling onto single-

or multi-processor platforms. Both NT-SIM and NL-SIM also allow designers to ex-

periment with a variety of dataflow graph analysis and optimization techniques when

mapping application subsystems onto network nodes.

SystemC-NS-2 uses the simulation environments of SystemC, a C++ class

library used to create system models at different abstraction levels, and ns-2 [22].

Both are event-driven simulators with SystemC events tied to hardware-like entities

and ns-2 events associated with asynchronous changes on communication channels.

The two environments are used to produce capabilities for hardware-network co-

simulation. In ns-2, the ns sc agent is used to implement a gateway between ns-2

and SystemC. In SystemC, the new port types ns in and ns out are used to send

and receive packets from ns-2 objects [23].

The SystemC-ns-2 co-simulator is similar in some ways to the NT-SIM and

16

NL-SIM co-simulators. However, SystemC-ns-2 is primarily focused on hardware-

oriented network co-simulation, while NT-SIM and NL-SIM are focused on integrat-

ing dataflow-based, node-level modeling with network-level simulations. Although

SystemC-ns-2 can employ dataflow design techniques, NT-SIM and NL-SIM rigor-

ously enforce such techniques, and are integrated with advanced libraries of dataflow

modeling, scheduling, and synthesis techniques geared towards implementing signal

processing applications on heterogeneous platforms (e.g., see [14]).

Part of the work presented in this thesis was presented in preliminary form

in [24].

17

Chapter 4

Networked Dataflow Application Simulation

In this chapter, we present our proposed methodology for modeling applica-

tions using integrated network- and dataflow-based co-simulators.

4.1 NT-SIM Application Design Framework

NT-SIM is a co-simulation environment that supports design and implementa-

tion of networked signal processing and data mining applications on heterogeneous

platforms. This is done by simulation of end system behavior using TDIF and

network events using NSE. Fig. 4.1 illustrates the execution order and interactions

among components in the NT-SIM framework. Application behavior is specified

based on dataflow modeling principles using the TDIF framework. To interface

with the end system dataflow simulation and traffic generation for the network, the

network behavior and protocols used by the nodes are defined by the OTcl script,

and simulated by the NSE framework.

To send and receive information between NSE and TDIF, special dataflow

actors called interface actors (IAs) are used. Unlike conventional dataflow actors,

which represent functional components from an application specification, IAs are

responsible for traffic generation from TDIF-based modeling subsystems, traffic in-

jection into the NSE framework, and time synchronization between the cooperating

18

Figure 4.1: Specifying the interaction between dataflow applications and network
simulations in NT-SIM.

TDIF- and NSE-based simulation environments. A collection of IAs in a TDIF-

based dataflow subsystem effectively makes the subsystem appear as a single node

within an enclosing ns-2 network topology. This single node has a number of com-

munication points correlating with the number of IAs.

Simple examples of IAs are send and receive actors based on a client-server

relationship using the User Datagram Protocol (UDP). These send and receive actors

configure the address and port parameters for the datagram sockets before passing

and receiving data from the NSE framework, respectively. A simple example of

two-step addition taking place at two different nodes represented by two different

TDIF subsystems is shown in Fig. 4.2.

The NT-SIM architecture is designed to preserve dataflow principles provided

by the TDIF environment throughout all of the TDIF-based subsystems, including

the interactions at all of the subsystem interfaces in the IAs. The responsibility

of distributing the actors to network graph nodes lies with the designer. In the

NT-SIM framework, the system is developed in a hierarchical manner with TDIF

defining actor design, DIF specifying the dataflow graph design, and ns-2 defining

the network graph design. Edges in the dataflow graph design act as bridges between

actors. IAs act as bridges between dataflow graph subsystems that are distributed

among the different network nodes. In NT-SIM, each of the dataflow subsystems

19

Figure 4.2: A simple example of an NT-SIM networked application system model.
In this model, two different nodes perform the addition operation. IAs passing
information from and to the Network Object block in the ns-2 subsystem are shown
as yellow actors.

can be suspended as they wait for data and resumed arbitrarily while the network is

being simulated. This allows for simulation of complex and tightly-coupled feedback

patterns in the network. Using this framework, designers can model and simulate

their applications using a hierarchical, modular process.

4.1.1 NL-SIM Application Design Framework

Similar to NT-SIM, NL-SIM is a co-simulator that integrates ns-2 with an

existing dataflow environment. NL-SIM uses the LIDE framework to specify ap-

plication behavior. IAs to receive and send data are written in the LIDE design

environment to provide equivalent functionality as those in the NT-SIM framework.

Unlike NT-SIM, which uses DIF to specify dataflow subsystems, NL-SIM uses a

LIDE-C driver function since the LIDE environment has minimal dependencies with

20

the DIF framework. Like the NT-SIM environment, ns-2 is responsible for specifying

network topology and behavior in NL-SIM.

21

Chapter 5

Case Study: Image Registration Sensor Network

In this chapter, we demonstrate the utility of NT-SIM with a case study of

simulating a visual sensor network designed to perform image registration on dif-

ferent views of the same object. This case study is motivated by the rapidly de-

veloping field of distributed sensing and its application to areas such as layered

sensing, surveillance, videoconferencing, and dynamic data driven adaptive systems

(DDDAS) [25, 26, 27].

Instead of gaining knowledge about the environment through a small number

of expensive cameras, multiple low-cost cameras can be utilized to provide more

complete pictures for challenging, high-level vision tasks such as image registration

or tracking [28]. This requires the cameras to be networked together, and to perform

collaboration tasks among themselves to optimize key metrics, such as real-time

performance, power consumption, and image processing accuracy. Such metrics

generally depend on node-network interactions, and thus conventional simulation

methods, which consider only network and node characteristics in isolation, are not

sufficient. NT-SIM is able to assist in the design of such distributed sensing systems

by providing the designer with integrated capabilities to simulate algorithms and

applications at the network and node levels.

22

5.1 Distributed Vision Sensor Systems

Visual sensor networks (VSNs) are comprised of groups of networked visual

sensors with image capture, computation, and wireless communication capabilities.

To maximize the effectiveness of a VSN, collaboration among the sensors can take

place with the exchange or fusing of visual information from similar or different

perspectives of an area [28]. This allows the information to be used in tracking,

panoramas, and registration.

The scale-invariant feature transform (SIFT) [29] is an algorithm that can be

used to fuse together images from multiple cameras that are observing the same

object. SIFT uses the difference of Gaussian (DoG) approach to detect feature

keypoints at different visual scales. To highlight strong features in the images, the

eigenvalues of the Hessian matrix of the image are used to highlight reliable features

to use. Results can improve with random sample consensus (RANSAC), which

removes outliers and erroneous features detected by the algorithm. Fig. 5.1 shows

a dataflow graph model of the SIFT algorithm. Here, the SIFT algorithm is used

to register two images with different views of the same object.

Each sensor node in a VSN has to fulfill application requirements while running

under constraints involving memory, performance, data rates, and energy [30]. By

distributing actors appropriately across the network, more processing-intensive tasks

can be performed at one or more stationary systems that are connected to power

sources, while simpler tasks are handled by the sensor nodes. This allows energy on

the sensor nodes to be conserved while the computationally-intensive task of image

23

Figure 5.1: A dataflow graph model of SIFT-based feature detection and image
registration.

registration is carried out, and also helps to improve the performance of image

registration by allowing use of more powerful (less power constrained) platforms for

the registration tasks.

In our case study on a SIFT VSN, we experiment with this approach of hetero-

geneous computing and distribution-based optimization of energy and performance

for the SIFT application in a VSN. This experimentation is carried out through

mapping of the dataflow graphs for distributed signal processing onto separate net-

work nodes, configuration of IAs in TDIF for appropriate communication among

the nodes, and simulation using NT-SIM.

24

5.2 Actor Design

Each of the actors in the SIFT algorithm is modeled using the TDIF environ-

ment. For this purpose, the SIFT algorithm is broken into smaller procedural units

to be modeled with actors. At this level of NT-SIM, the actors are not assigned to

any particular nodes in a network. The focus at the actor design level of NT-SIM

is to create actors that are represented by the TDIF language. In this phase of the

design process, designers specify the target language of each actor, along with the

inputs, outputs, required parameters, and possible execution modes for the actor.

This is carried out for each actor in Fig. 5.1 to write the corresponding TDIF files

for the actors. Listing 5.1 shows the TDIF file for the SIFT descriptor actor, which

passes the SIFT descriptor to the keypoint matching, RANSAC, and rigid transfor-

mation actors. The SIFT descriptor actor represented in Listing 5.1 is specified as

a CUDA-targeted actor for GPU-based implementation.

Listing 5.1: TDIF code for the SIFT descriptor actor.

1 module CUDA sift descriptor r
2

3 output output1 sift token
4 output output2 sift token
5 output output3 sift token
6

7 input input1 oframes
8 input input2 gss
9

10 mode init
11 mode exe

To partition the dataflow graph represented in Fig. 5.1 across multiple net-

work nodes, the designer can identify desired network interface locations on the

original SIFT application graph (Fig. 5.1), and then specify send and receive IAs at

25

these graph locations with the TDIF language. This will then partition the graph,

and connect the desired points in the graphs with NSE to achieve the appropriate

connections with the simulated communication network.

As an example, Listing 5.2 shows TDIF code for sending an image from the

actor representing the capture of a target image to the network simulated by ns-

2. For simplicity and clarity in the illustration, we design the network to follow

the UDP protocol. As a result, the image-sending actor represented by Listing 5.2

takes in the address and port number as character-string parameters, and these

parameters are employed by the actor in addition to any inputs coming from other

actors in the enclosing dataflow graph subsystem.

Listing 5.2: TDIF code for sending an image to NSE via the UDP protocol.

1 module C send udp sift t img
2

3 input input image image token∗
4

5 param send addr char∗
6 param send port char∗
7

8 mode init
9 mode send

5.3 Actor Separation at the Node Level

In NT-SIM, the application that runs on each network node is represented by

a specification in the DIF language. To optimize the energy and performance of the

SIFT VSN, actors are split onto different network nodes depending on their roles in

the overall application graph. This results in multiple dataflow graph subsystems

with each subsystem corresponding to a single network node. Each of these sub-

systems can be specified using a DIF file that defines the actors as vertices and the

connections between them as edges in the associated dataflow graph.

In this case study, the actors are distributed across network nodes depending

26

on whether they perform feature detection or image registration. Fig. 5.2 shows the

dataflow graph subsystem for feature detection, and Fig. 5.3 shows the subsystem

for the registration of the reference and target image, given the SIFT descriptors of

the features located in both images.

Figure 5.2: Dataflow graph subsystem for SIFT feature detection.

Figure 5.3: Subsystem for image registration after SIFT feature detection.

Currently, the designer creates the test and schedule files for each of the

dataflow graph systems. However, the process of creating these files can be au-

tomated, and we will explore such automation in our future development of the

TDIF synthesis engine. Our current version of NT-SIM systematically integrates

the designer-provided tests and schedules into the overall network simulation, and

automates the execution of this simulation across the entire network. Thus, NT-SIM

bridges the gap between network- and dataflow-graph-level simulation in networked

signal processing systems, and provides novel capabilities into which existing and

27

newly developed dataflow scheduling techniques can be integrated to further enhance

simulation automation and design space exploration.

5.4 Network Creation

When using NT-SIM, the designer creates a Tcl script that models the network

topology on NSE to simulate the network. In order to use NSE on ns-2, the RealTime

scheduler has to be used with the simulator. Nodes are declared along with the

network objects and agents. When using the UDP protocol, each of the network

objects must declare the IP address and port number in the script. These network

objects are attached to their corresponding agents. Afterwards, the connections

between nodes can be defined, along with the bandwidth, delay, and queue behavior

for each connection.

Each agent is attached to a node. If the nodes share a common link, then

the agents are also connected. Afterwards, NSE can be run. Fig. 5.4 illustrates the

network topology used in our SIFT VSN case study. Listings 5.3 shows part of the

Tcl script used to represent the network connections in Fig. 5.4.

Listing 5.3: An excerpt from the Tcl script used to implement the connection be-
tween the reference and registration nodes in the SIFT sensor network simulation.

1 # Create RealTime simulator object
2 set ns [new Simulator]
3 $ns use−scheduler RealTime
4

5 # Define network nodes
6 set node0 [$ns node]
7 set node1 [$ns node]
8 set node2 [$ns node]
9 set node3 [$ns node]

10 set node4 [$ns node]
11 set node5 [$ns node]
12 set node6 [$ns node]
13 set node7 [$ns node]
14

15 # Introduce live UDP traffic from SIFT reference through 11000 port

28

16 set in sift r [new Network/IP/UDP]
17 $in sift r open readonly
18 $in sift r bind 127.0.0.1 11000
19 set in sift r a [new Agent/Tap]
20 $in sift r a network $in sift r
21

22 # Introduce live UDP traffic from SIFT target through 11010 port
23 set in sift t [new Network/IP/UDP]
24 $in sift t open readonly
25 $in sift t bind 127.0.0.1 11010
26 set in sift t a [new Agent/Tap]
27 $in sift t a network $in sift t
28

29 # Introduce live UDP traffic from target image through 11020 port
30 set in sift t img [new Network/IP/UDP]
31 $in sift t img open readonly
32 $in sift t img bind 127.0.0.1 11020
33 set in sift t img a [new Agent/Tap]
34 $in sift t img a network $in sift t img
35

36 # Introduce live UDP traffic from target BMP info through 11030 port
37 set in sift t bmp [new Network/IP/UDP]
38 $in sift t bmp open readonly
39 $in sift t bmp bind 127.0.0.1 11030
40 set in sift t bmp a [new Agent/Tap]
41 $in sift t bmp a network $in sift t bmp
42

43 # Define UDP network object to output SIFT reference through 12000 port
44 set out sift r [new Network/IP/UDP]
45 $out sift r open writeonly
46 $out sift r connect 127.0.0.1 12000
47 set out sift r a [new Agent/Tap]
48 $out sift r a network $out sift r
49

50 # Define UDP network object to output SIFT target through 12010 port
51 set out sift t [new Network/IP/UDP]
52 $out sift t open writeonly
53 $out sift t connect 127.0.0.1 12010
54 set out sift t a [new Agent/Tap]
55 $out sift t a network $out sift t
56

57 # Define UDP network object to output target image through 12020 port
58 set out sift t img [new Network/IP/UDP]
59 $out sift t img open writeonly
60 $out sift t img connect 127.0.0.1 12020
61 set out sift t img a [new Agent/Tap]
62 $out sift t img a network $out sift t img

29

63

64 # Define UDP network object to output SIFT target through 12030 port
65 set out sift t bmp [new Network/IP/UDP]
66 $out sift t bmp open writeonly
67 $out sift t bmp connect 127.0.0.1 12030
68 set out sift t bmp a [new Agent/Tap]
69 $out sift t bmp a network $out sift t bmp
70

71 # Connect the nodes and agents
72 $ns duplex−link $node0 $node4 30kb 5ms DropTail
73 $ns duplex−link $node1 $node5 30kb 5ms DropTail
74 $ns duplex−link $node2 $node6 2048kb 5ms DropTail
75 $ns duplex−link $node3 $node7 30kb 5ms DropTail
76 $ns attach−agent $node0 $in sift r a
77 $ns attach−agent $node1 $in sift t a
78 $ns attach−agent $node2 $in sift t img a
79 $ns attach−agent $node3 $in sift t bmp a
80 $ns attach−agent $node4 $out sift r a
81 $ns attach−agent $node5 $out sift t a
82 $ns attach−agent $node6 $out sift t img a
83 $ns attach−agent $node7 $out sift t bmp a
84 $ns connect $in sift r a $out sift r a
85 $ns connect $in sift t a $out sift t a
86 $ns connect $in sift t img a $out sift t img a
87 $ns connect $in sift t bmp a $out sift t bmp a
88

89 # Run the simulation
90 $ns run

5.5 Simulation of the Distributed System

After the actors, dataflow graph subsystems (the portions of the dataflow

graph that are mapped onto individual network nodes), and the network have been

specified, the overall system can be simulated using NT-SIM. The Tcl script for the

network is run using NSE. This allows network connections to be made between the

TDIF and ns-2 environments. Separate test and DIF files are required for each VSN

node. After the executables have been generated for each VSN node, they can be

run — concurrently with simulation of the resulting network traffic — to send and

receive data to and from NSE, respectively.

30

Figure 5.4: The topology represented by the Tcl script for the SIFT sensor network.

The output of the dataflow graph subsystem responsible for image registration

can be used for testing by comparing against known results. Fig. 5.5 illustrates the

overall simulated network for our case study on a SIFT VSN with two visual sensors

performing feature detection on captured images and a main computing node that

performs the image registration of the target and reference images. This diagram

can be viewed as an interconnection of the dataflow graph subsystems involved in

the distributed and heterogeneous signal processing configuration for the targeted

VSN application.

The SIFT sensor network is simulated on a 3GHz PC with two Intel Xeon

31

Figure 5.5: Graphical representation of the simulated SIFT sensor network.

CPUs, 3GB RAM, and an NVIDIA GTX260 GPU. The gcc version 3.4.4 and

nvcc version 3.2 compilers are used in the back end of the implementation pro-

cess.

The functional accuracy of NT-SIM was verified through simulation of the

SIFT VSN case study. End systems (network nodes) representing reference and

target image sensors that can perform feature detection were supplied with only the

reference and target image shown in Fig. 5.6 and Fig. 5.7, respectively.

NSE was run to provide the network across end systems. The node responsible

for image registration was run after NSE to start listening for outputs from the NSE

network represented by the Tcl script. Afterwards, the nodes responsible for feature

detection of the reference and target images were run. The simulation completed

32

Figure 5.6: Reference image used for SIFT feature detection.

with the output of the registered image shown in Fig. 5.8. Functional accuracy was

validated by the match between the produced, registered image and a ground-truth,

registered image provided by the simulation of the single-node SIFT algorithm shown

in Fig. 5.1. Although the current implementation of NT-SIM has only been tested

using a local machine, it can readily be extended to exploit networks of multiple

machines for simulation — e.g., by exploiting parallelism within and across the

dataflow graphs within a simulated system.

33

Figure 5.7: Target image used for SIFT feature detection.

34

Figure 5.8: Resulting registered image from SIFT VSN case study using NT-SIM.

35

Chapter 6

Case Study: Adaptive Stream Mining

We demonstrate the utility of NL-SIM with a case study of face detection

using multiple classifiers in a distributed network. This case study is motivated by

the increasing relevance of embedded systems for adaptive stream mining (ASM),

where machine learning is integrated deeply not only with performance constraints,

but also with resource constraints [31, 32, 33].

Instead of relying on a powerful system with a strong classifier, ASM systems

may use multiple, weak classifiers that can be reconfigured to different topologies

or parameters to extract more meaningful data in runtime- or memory-constrained

systems [34, 35, 36]. Such ASM systems require implementations that can systemat-

ically switch among configurations depending on the input data or the performance

constraints. Such an approach requires subsystems that can communicate efficiently

with other subsystems to coordinate responsibilities. By monitoring data and per-

formance using NL-SIM, designers can create ASM systems that address various

data and performance constraints with a given set of classifiers.

6.1 Support Vector Machines

Support vector machines (SVM) are supervised learning models that can be

used for classification purposes. A trained SVM classification model would take

input data and calculate a value, which can then be thresholded to determine the

class of the data. Conceptually, an SVM model is a representation of the training

examples as hyperplanes in space with different classes separated by the widest

gap allowed in the mapped space. The examples that are used to construct this

36

maximum margin are known as support vectors (SV). The boundary formed by the

SVs determine the classification of the input data. Fig. 6.1 shows a simple example

of a trained, linear SVM classifier used to separate data between two classes.

Figure 6.1: A simple example of classification using a linear support vector machine.
Points on the boundary represent the support vectors.

Nonlinear classification using SVMs can achieve good performance for the task

of face detection. One of the most popular kernels is the Gaussian radial basis func-

tion (RBF), defined by k(xi, xSV) = exp(−γ‖xi − xSV ‖
2), where x represents the

data point and γ is a parameter that can be configured. Along with the gamma

parameter in the Gaussian RBF kernel, an SVM model can be modified by train-

ing on a different box constraint, which is used in the training process. This box

constraint, C, is the soft margin that controls the margin by weighting the error

between the model and the data.

The process of cross-validation can be used to determine optimal parameter

37

values for each SVM based on the needs of the application. A part of the training

data is withheld while the classifier is trained on the remaining training data. By

testing on the withheld set of data, the designer can simulate the performance of the

classifier with chosen parameter values. By checking the false positive and negative

rates, the designer can estimate the best classifier to use for cases where a specific

type of accuracy is important. The number of SVs for each classifier directly affects

the runtime of the classifier.

In this case study, we experiment with three SVM classifiers designed with

different performance goals: high accuracy, low runtime, and low false positive rates.

This experimentation is carried out through mapping of the dataflow graphs of SVM

classification using the different classifiers onto separate subsystems in the ACM

actor, selection of the classifier to use based on situational goals, and simulation

using the NL-SIM environment.

6.2 Actor-Level Design

The actors in our experiments are modeled using the LIDE-C environment.

At this level of application design in NL-SIM, each of the actors are not assigned

to any particular subsystem. Instead, designers specify the inputs, outputs, pa-

rameters, and execution modes for the actor context in the new function. In the

face detection application, the main actor for the subsystems is the trained SVM

classifier. Listing 6.1 shows the actor context for the actor for SVM classification.

Listing 6.2 shows the corresponding new function.

Listing 6.1: LIDE context for the SVM classification actor.

1 struct lide c test svm context struct {
2 #include ”lide c actor context type common.h”
3

4 /∗ local variables and input data∗/
5 int num dims;
6 int num sv;

38

7 float bias;
8 float rbf sigma;
9 float ∗data;

10 float ∗alpha;
11 float ∗∗sv;
12 /∗ input and output ports ∗/
13 lide c fifo pointer input data;
14 lide c fifo pointer input svs;
15 lide c fifo pointer input alphas;
16 lide c fifo pointer output class;
17 };

Listing 6.2: LIDE code for the new function of the SVM classification.

1 lide c test svm context type ∗lide c test svm new(
2 lide c fifo pointer input data, lide c fifo pointer input svs,
3 lide c fifo pointer input alphas, lide c fifo pointer output class,
4 float bias, float rbf sigma, int num svs, int num dims) {
5 lide c test svm context type ∗context = NULL;
6 int i = 0;
7

8 context = lide c util malloc(sizeof(lide c test svm context type));
9 /∗ Function specification ∗/

10 context−>mode = LIDE C TEST SVM MODE LOAD;
11 context−>enable = (lide c actor enable function type)lide c test svm enable;
12 context−>invoke = (lide c actor invoke function type)lide c test svm invoke;
13 /∗ Constant specification ∗/
14 context−>num dims = num dims;
15 context−>num sv = num svs;
16 context−>bias = bias;
17 context−>rbf sigma = rbf sigma;
18 /∗ Data specification ∗/
19 context−>data = lide c util malloc(sizeof(float) ∗ context−>num dims);
20 context−>alpha = lide c util malloc(sizeof(float) ∗ context−>num sv);
21 context−>sv = lide c util malloc(sizeof(float∗) ∗ context−>num sv);
22 for (i = 0; i < context−>num sv; i++) {
23 ∗(context−>sv + i) = lide c util malloc(
24 sizeof(float) ∗ context−>num dims);
25 }
26 /∗ Files specification ∗/
27 context−>input data = input data;
28 context−>input svs = input svs;
29 context−>input alphas = input alphas;
30 context−>output class = output class;
31 return context;
32 }

39

To decide the actor placement at each of the network nodes, the designer

can connect the send and receive IAs at the beginning and end of each subsystem

dataflow graph. Similar to NT-SIM, these actors can specify desired network in-

terface locations on the face detection application. This partitions the graph into

nodes that can be connected with NSE to simulate connections with a communica-

tion network. The corresponding LIDE code for the sending actor is represented by

Listing 6.3.

Listing 6.3: LIDE context for sending image data via the UDP protocol.

1 struct lide c send udp context struct {
2 #include ”lide c actor context type common.h”
3 char ∗send addr;
4 int send port;
5 lide c fifo pointer in mode;
6 lide c fifo pointer in data;
7 };

6.3 Subsystem Level Design

In NL-SIM, the face detection application that runs on each network node is

represented by a driver function in the LIDE-C language. To optimize the discrimi-

nation of the face detection network, each network node contains an SVM classifier

with different performance characteristics: high accuracy, low runtime, or low false

positive rate. There is one additional node to read in the input face images and

send them to the each SVM classifier, depending on the requested operating mode.

The dataflow graphs for each subsystem in this application are similar to one

another. The main difference is in the SVM parameters and SVs to be used to

classify the images. Fig. 6.2 shows the dataflow graph subsystem for reading in the

images and Fig. 6.3 shows the subsystem for the classification of images.

Currently, the designer creates test files for each of the dataflow graph systems.

Each subsystem can only run on a simple scheduler, where each actor fires when

40

Figure 6.2: Dataflow graph subsystem for reading in face images.

Figure 6.3: Subsystem for SVM classification.

enable conditions are fulfilled. However, future versions that allow different types of

schedules to be run in the LIDE environment are being explored. Our current version

of NL-SIM integrates the tests into the overall network simulation and automates the

execution across the entire network. Thus, NL-SIM provides the same capabilities

as NT-SIM in bridging together the gap between network- and dataflow-graph-level

simulation in networked signal processing and data mining systems.

6.4 Network Design

Similar to NT-SIM, the designer creates a Tcl script to model the master-

slave network topology on NSE. The nodes communicate using the UDP protocol,

with each of the network objects declaring an IP address and port number in the

script. The connections between the nodes are matched with each other in one-to-

41

one correspondence similar to that seen in Fig. 5.4.

6.5 Simulation of the Adaptive Stream Mining System

After the actors, dataflow graph subsystems, and the network have been spec-

ified, the overall system can be simulated using NL-SIM. The Tcl script for the

network is run using NSE. This allows network connections to be made between the

LIDE and ns-2 environments. Separate test and LIDE-C driver function files are re-

quired for each node. After the executables have been generated for each node in the

face detection application, they can be run — concurrently with simulation of the

resulting network traffic — to send and receive data to and from NSE, respectively.

The output of the dataflow graph subsystem responsible for image registration

can be used for testing by comparing against known results. Fig. 6.4 illustrates the

overall simulated network for our case study on a SIFT VSN with two visual sensors

performing feature detection on captured images and a main computing node that

performs the image registration of the target and reference images. This diagram

can be viewed as an interconnection of the dataflow graph subsystems involved in

the distributed and heterogeneous signal processing configuration for the targeted

VSN application.

The face detection network application is simulated on a 3GHz PC with two

Intel Xeon CPUs and 3GB RAM. The gcc version 3.4.4 compiler is used in the

back end of the implementation process.

The functional accuracy of NL-SIM was verified through simulation of a face

from the MIT CBCL database [37]. The sample face run through each of the

classification subsystems and the resulting classification are shown within Fig. 6.4.

Functional accuracy was validated through comparisons with values attained from

SVM classification in MATLAB. Although the current implementation of NL-SIM

has been tested using a local machine, LIDE capabilities allow NL-SIM to support

42

Figure 6.4: Graphical representation of the simulated face detection network.

a network of multiple machines for simulation. Developing and experimenting with

such capabilities is a useful direction for future work.

43

Chapter 7

Conclusions and Future Work

In this thesis, we have presented design methodologies and two tools, called

NT-SIM and NL-SIM, for simulating and experimenting with networked signal pro-

cessing systems. We have shown that the NT-SIM and NL-SIM environments pro-

vide designers with a hierarchical, modular process for modeling and experimenting

with networked signal processing and data mining systems. Furthermore, NT-SIM

also provides a useful target for incorporating additional levels of automation in

the design and simulation processes. For example, protocol configurations and as-

sociated implementation details can be determined and optimized automatically by

incorporating associated IA synthesis capabilities within the TDIF synthesis engine.

Building on both co-simulators to develop such new automation and optimization

capabilities is an interesting and useful direction for future work.

We have introduced NT-SIM as a co-simulation tool that combines the dataflow

methods of TDIF and DIF for actor and dataflow graph design, respectively, and the

network simulation capabilities of NSE. We have also introduced NL-SIM as a co-

simulation tool that integrates the dataflow methods of LIDE for actor and dataflow

graph design with NSE network simulation capabilities. The resulting tools provide

useful new capabilities for flexible and accurate simulation of networked signal pro-

cessing systems. In particular, given the growing use of dataflow methods in design

and optimization of signal processing systems, it is important simulate the impact

of dataflow techniques in the context of the overall networked environment in which

they operate. The techniques and tools introduce in this thesis help to advance the

state of the art in this direction.

We have demonstrated that using the NT-SIM and NL-SIM co-simulators, a

44

designer can simulate complete, networked systems comprised of a distinct applica-

tion subsystems on each network node with actors modeled using formal dataflow-

based representations. The useful features of NT-SIM and NL-SIM include their

modular design flow, where actors are designed using the TDIF or LIDE tool, ap-

plication graphs are modeled in the DIF or LIDE framework, and the network is

represented in ns-2.

Useful directions for further development of the co-simulators include automat-

ing the separation of an application dataflow graph across a network through the

TDIF synthesis engine or LIDE environment, application of instrumentation actors

in TDIF and LIDE to encapsulate relevant network performance measurements pro-

vided by NSE, and incorporating different network protocols along with promoting

reuse of the associated protocol code as TDIF or LIDE actor library components.

45

Bibliography

[1] A. Gerasoulis and T. Yang. On the granularity and clustering of directed
acyclic task graphs. IEEE Transactions on Parallel and Distributed Systems,
pages 686–701, June 1993.

[2] V. Kianzad and S. S. Bhattacharyya. Efficient techniques for clustering and
scheduling onto embedded multiprocessors. IEEE Transactions on Parallel and
Distributed Systems, 17(7):667–680, July 2006.

[3] Y. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. Journal of the Association for Computing Ma-
chinery, 31(4):406–471, December 1999.

[4] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y. A. Li. Heteroge-
neous computing. In A. Y. Zomaya, editor, Parallel and Distributed Computing
Handbook. McGraw-Hill, 1996.

[5] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and
Synchronization. CRC Press, second edition, 2009.

[6] L. Wang, H. J. Siegel, and V. Roychowdhury. A genetic-algorithm-based ap-
proach for task matching and scheduling in heterogeneous environments. In
Proceedings of the Hetergeneous Computing Workshop, pages 72–85, April 1996.

[7] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, editors. Hand-
book of Signal Processing Systems. Springer, 2010.

[8] K. Fall and K. Varadhan. The ns Manual (formerly ns Notes and Documenta-
tion), November 2011.

[9] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the
IEEE, 75(9):1235–1245, September 1987.

[10] J. T. Buck and E. A. Lee. Scheduling dynamic dataflow graphs using the
token flow model. In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing, April 1993.

[11] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya. Func-
tional DIF for rapid prototyping. In Proceedings of the International Symposium
on Rapid System Prototyping, pages 17–23, Monterey, California, June 2008.

[12] C. Hsu, M. Ko, and S. S. Bhattacharyya. Software synthesis from the dataflow
interchange format. In Proceedings of the International Workshop on Software
and Compilers for Embedded Systems, pages 37–49, Dallas, Texas, September
2005.

46

[13] S. S. Bhattacharyya, W. Plishker, N. Sane, C. Shen, and H. Wu. Modeling and
optimization of dynamic signal processing in resource-aware sensor networks. In
Proceedings of the Workshop on Resources Aware Sensor and Surveillance Net-
works in conjunction with IEEE International Conference on Advanced Video
and Signal-Based Surveillance, pages 449–454, Klagenfurt, Austria, August
2011.

[14] C. Shen, H. Wu, N. Sane, W. Plishker, and S. S. Bhattacharyya. A design tool
for efficient mapping of multimedia applications onto heterogeneous platforms.
In Proceedings of the IEEE International Conference on Multimedia and Expo,
Barcelona, Spain, July 2011. 6 pages in online proceedings.

[15] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli.
System-level design: orthogonalization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 19, December 2000.

[16] C. Shen, W. Plishker, and S. S. Bhattacharyya. Dataflow-based design and
implementation of image processing applications. Technical Report UMIACS-
TR-2011-11, Institute for Advanced Computer Studies, University of Maryland
at College Park, 2011. http://drum.lib.umd.edu/handle/1903/11403.

[17] S. Bajaj et al. Improving simulation for network research. Technical Report
99-702b, University of Southern California, March 1999.

[18] A. Chutinan and B. H. Krogh. Computational techniques for hybrid system
verification. IEEE Transactions on Automatic Control, 48(1):64–75, 2003.

[19] O. Heimlich, R. Sailer, and L. Budzisz. NMLab: A co-simulation framework for
Matlab and ns-2. In Proceedings of the International Conference on Advances
in System Simulation, pages 152–157, 2010.

[20] T. Kohtamaki, M. Pohjola, J. Brand, and L. M. Eriksson. PiccSIM toolchain —
design, simulation and automatic implementation of wireless networked control
systems. In Proceedings of the International Conference on Networking, Sensing
and Control, pages 49–54, 2009.

[21] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed Systems:
Concepts and Design. Addison-Wesley, 2011.

[22] F. Fummi, G. Perbellini, P. Gallo, M. Poncino, S. Martini, and F. Ricciato. A
timing-accurate modeling and simulation environment for networked embedded
systems. In Proceedings of the Design Automation Conference, pages 42–47,
2003.

[23] G. Perbellini. SystemC – NS-2 co-simulation using HSN. Technical report,
Universita degli Studi di Verona, December 2005.

47

[24] S. Won, C. Shen, and S. S. Bhattacharyya. NT-SIM: A co-simulator for net-
worked signal processing applications. In Proceedings of the European Signal
Processing Conference, Bucharest, Romania, August 2012. To appear.

[25] M. Bryant, P. Johnson, B. M. Kent, M. Nowak, and S. Rogers. Layered sensing:
Its definition, attributes, and guiding principles for AFRL strategic technology
development. Technical report, Sensors Directorate, U.S. Air Force Research
Laboratory, May 2008.

[26] A. C. Sankaranarayanan, A. Veeraraghavan, and R. Chellappa. Object detec-
tion, tracking and recognition for multiple smart cameras. Proceedings of the
IEEE, 96(10):1606–1624, October 2008.

[27] F. Darema. Grid computing and beyond: The context of dynamic data driven
applications systems. Proceedings of the IEEE, 93(2):692–697, 2005.

[28] Y. Bai and H. Qi. Feature-based image comparison for semantic neighbor
selection in resource-constrained visual sensor networks. EURASIP Journal on
Image and Video Processing, 2010. doi:10.1155/2010/469563.

[29] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2):91–110, 2004.

[30] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. Wireless multimedia sensor
networks: Applications and testbeds. Proceedings of the IEEE, 96(10):1588–
1605, October 2008.

[31] M. Shah, J. Hellerstein, S. Chandrasekaran, and M. Franklin. Flux: An adap-
tive partitioning operator for continuous query systems. In Proceedings of the
International Conference on Data Engineering, 2003.

[32] M. Cherniack, H. Balakrishnan, D. Carney, U. Cetintemel, Y. Xing, and
S. Zdonik. Scalable distributed stream processing. In CIDR, 2003.

[33] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over
distributed data streams. In ACM SIGMOD, 2003.

[34] F. Fu, D. Turaga, O. Verscheure, M. van der Schaar, and L. Amini. Configuring
competing classifier chains in distributed stream mining systems. IEEE Journal
on Selected Topics in Signal Processing, 1(4):548–563, December 2007.

[35] B. Foo, D. S. Turaga, O. Verscheure, M. van der Schaar, and L. Amini. Re-
source constrained stream mining with classifier tree topologies. IEEE Signal
Processing Letters, 15:761–764, 2008.

[36] R. Ducasse, D. S. Turaga, and M. van der Schaar. Ordering of stream mining
classifiers. In Proceedings of the International Conference on Image Processing,
pages 3177–3180, 2010.

48

[37] CBCL face database #1. http://cbcl.mit.edu/software-datasets/

FaceData2.html, 2010.

49

