svclassify: a method to establish benchmark structural variant calls

dc.contributor.authorParikh, Hemang
dc.contributor.authorMohiyuddin, Marghoob
dc.contributor.authorLam, Hugo Y. K.
dc.contributor.authorIyer, Hariharan
dc.contributor.authorChen, Desu
dc.contributor.authorPratt, Mark
dc.contributor.authorBartha, Gabor
dc.contributor.authorSpies, Noah
dc.contributor.authorLosert, Wolfgang
dc.contributor.authorZook, Justin M.
dc.contributor.authorSalit, Marc
dc.date.accessioned2021-08-17T14:30:05Z
dc.date.available2021-08-17T14:30:05Z
dc.date.issued2016-01-16
dc.description.abstractThe human genome contains variants ranging in size from small single nucleotide polymorphisms (SNPs) to large structural variants (SVs). High-quality benchmark small variant calls for the pilot National Institute of Standards and Technology (NIST) Reference Material (NA12878) have been developed by the Genome in a Bottle Consortium, but no similar high-quality benchmark SV calls exist for this genome. Since SV callers output highly discordant results, we developed methods to combine multiple forms of evidence from multiple sequencing technologies to classify candidate SVs into likely true or false positives. Our method (svclassify) calculates annotations from one or more aligned bam files from many high-throughput sequencing technologies, and then builds a one-class model using these annotations to classify candidate SVs as likely true or false positives. We first used pedigree analysis to develop a set of high-confidence breakpoint-resolved large deletions. We then used svclassify to cluster and classify these deletions as well as a set of high-confidence deletions from the 1000 Genomes Project and a set of breakpoint-resolved complex insertions from Spiral Genetics. We find that likely SVs cluster separately from likely non-SVs based on our annotations, and that the SVs cluster into different types of deletions. We then developed a supervised one-class classification method that uses a training set of random non-SV regions to determine whether candidate SVs have abnormal annotations different from most of the genome. To test this classification method, we use our pedigree-based breakpoint-resolved SVs, SVs validated by the 1000 Genomes Project, and assembly-based breakpoint-resolved insertions, along with semi-automated visualization using svviz. We find that candidate SVs with high scores from multiple technologies have high concordance with PCR validation and an orthogonal consensus method MetaSV (99.7 % concordant), and candidate SVs with low scores are questionable. We distribute a set of 2676 high-confidence deletions and 68 high-confidence insertions with high svclassify scores from these call sets for benchmarking SV callers. We expect these methods to be particularly useful for establishing high-confidence SV calls for benchmark samples that have been characterized by multiple technologies.en_US
dc.description.urihttps://doi.org/10.1186/s12864-016-2366-2
dc.identifierhttps://doi.org/10.13016/vsvk-iv9z
dc.identifier.citationParikh, H., Mohiyuddin, M., Lam, H.Y.K. et al. svclassify: a method to establish benchmark structural variant calls. BMC Genomics 17, 64 (2016).en_US
dc.identifier.urihttp://hdl.handle.net/1903/27613
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.isAvailableAtCollege of Computer, Mathematical & Natural Sciencesen_us
dc.relation.isAvailableAtPhysicsen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectEnsemble Classifieren_US
dc.subjectRandom Regionen_US
dc.subjectDeletion Callen_US
dc.subjectSpiral Geneticen_US
dc.subjectSmall Single Nucleotide Polymorphismen_US
dc.titlesvclassify: a method to establish benchmark structural variant callsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s12864-016-2366-2.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
Description: