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Abstract

Background: The human genome contains variants ranging in size from small single nucleotide polymorphisms
(SNPs) to large structural variants (SVs). High-quality benchmark small variant calls for the pilot National Institute of
Standards and Technology (NIST) Reference Material (NA12878) have been developed by the Genome in a Bottle
Consortium, but no similar high-quality benchmark SV calls exist for this genome. Since SV callers output highly
discordant results, we developed methods to combine multiple forms of evidence from multiple sequencing
technologies to classify candidate SVs into likely true or false positives. Our method (svclassify) calculates annotations
from one or more aligned bam files from many high-throughput sequencing technologies, and then builds a one-class
model using these annotations to classify candidate SVs as likely true or false positives.

Results: We first used pedigree analysis to develop a set of high-confidence breakpoint-resolved large deletions. We
then used svclassify to cluster and classify these deletions as well as a set of high-confidence deletions from the 1000
Genomes Project and a set of breakpoint-resolved complex insertions from Spiral Genetics. We find that likely SVs
cluster separately from likely non-SVs based on our annotations, and that the SVs cluster into different types of
deletions. We then developed a supervised one-class classification method that uses a training set of random non-SV
regions to determine whether candidate SVs have abnormal annotations different from most of the genome. To test
this classification method, we use our pedigree-based breakpoint-resolved SVs, SVs validated by the 1000 Genomes
Project, and assembly-based breakpoint-resolved insertions, along with semi-automated visualization using svviz.

Conclusions: We find that candidate SVs with high scores from multiple technologies have high concordance with
PCR validation and an orthogonal consensus method MetaSV (99.7 % concordant), and candidate SVs with low scores
are questionable. We distribute a set of 2676 high-confidence deletions and 68 high-confidence insertions with high
svclassify scores from these call sets for benchmarking SV callers. We expect these methods to be particularly useful for
establishing high-confidence SV calls for benchmark samples that have been characterized by multiple technologies.

Background
The human genome contains variants ranging in size
from small single nucleotide polymorphisms (SNPs) to
large structural variants (SVs). SVs include variations
such as novel sequence insertions, deletions, inversions,
mobile-element insertions, tandem duplications, inter-
spersed duplications and translocations. In general, SVs
include deletions and insertions larger than 50 base pairs
(bps), while smaller insertions or deletions are referred

to as indels, though the threshold of 50 bps is somewhat
arbitrary and based on the fact that different bioinfor-
matics methods are usually used to detect SVs vs. small
indels and SNPs. SVs have long been implicated in
phenotypic diversity and human diseases [1]; however,
identifying all SVs in a whole genome with high-confidence
has proven elusive. Recent advances in next-generation se-
quencing (NGS) technologies have facilitated the analysis
of SVs in unprecedented detail, but these methods tend to
give highly non-overlapping results [2]. In this work, we
calculate “annotations” from features in the reads in and
around candidate SVs, and we then develop methods to
evaluate candidate SVs based on evidence from multiple
NGS technologies.
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NGS offers unprecedented capacity to detect many
types of SVs on a genome-wide scale. Many bioinformat-
ics algorithms are available for detecting SVs using NGS
including depth of coverage (DOC), paired-end mapping
(PEM), split-read, junction-mapping, and assembly-
based methods [2]. DOC approaches identify regions
with abnormally high or low coverage as potential copy
number variants. Hence, DOC methods are limited to
detecting only deletions and duplications but not other
types of SVs, and they have more power to detect larger
events and deletions. PEM methods evaluate the span
and orientation of paired-end reads. Read pairs map far-
ther apart around deletions and closer around insertions,
and orientation inconsistencies indicate potential inver-
sions or tandem duplications. Split reads are used to
identify SVs by identifying reads whose alignments to
the reference genome are split in two parts and contain
the SV breakpoint. Junction-mapping methods map poorly
mapped, soft-clipped or unmapped reads to junction se-
quences around known SV breakpoints to identify SVs.
Assembly-based methods first perform a de novo assembly,
and then the assembled genome is compared to the refer-
ence genome to identify all types of SVs. By combining
various approaches to detect SVs, it is possible to overcome
the limitations of individual approaches in terms of the
types and sizes of SVs that they are able to detect, but still
difficult to determine which are true [3–5].
Numerous methods have been developed to find can-

didate SVs using NGS, but clinical adoption of human
genome sequencing requires methods with known ac-
curacy. The Genome in a Bottle Consortium (GIAB) is
developing well-characterized whole-genome reference
materials for assessing variant-call accuracy and under-
standing biases. Recently GIAB released high-confidence
SNP, indel, and homozygous reference genotypes for
Coriell DNA sample NA12878, which is also National
Institute of Standards and Technology (NIST) Reference
Material 8398 available at https://www-s.nist.gov/
srmors/view_detail.cfm?srm=8398 [6]. In this work, we
developed methods to integrate evidence of SVs in mapped
sequencing reads from multiple sequencing technologies.
We used unsupervised machine learning to determine the
characteristics of the different SV types, and we used One
Class Classification to classify candidate SVs as likely true
positives, false positives, or ambiguous. Using these
methods, we classified three independently established “val-
idated” call sets containing large deletions or insertions.
Our classification methods use the machine learning

technique One Class Classification (OCC) [7, 8]. In con-
trast to the more common two-class models that have
two training sets (e.g., positives and negatives), one-class
methods have only a single training set and try to iden-
tify sites unlike the training set. In our OCC methods,
the algorithm tries to identify a region, R, of the

annotation space that contains a specified, large propor-
tion (e.g. 95 % or 99 %) of the non-SVs. Sites that have
annotations falling outside R are classified as SVs. In es-
sence, these are outliers relative to the non-SVs. For
selecting R, only a representative set of non-SVs is re-
quired for the training. In our model, we use random
genomic coordinates as our one class because random
coordinates are unlikely to be near true SV breakpoints.
For our one-class model, we only include annotations
that are likely to indicate a SV if they differ from random
coordinates for a defined set of parameters (e.g., read
clipping, pair distance, and coverage). We do not include
annotations like mapping quality that may not always
distinguish SVs from non-SVs because atypical values
may also indicate random regions of the genome that
are difficult to sequence. We do not use a two class ma-
chine learning model because our potential training SV
call sets are primarily easier-to-detect mid-size deletions
and insertions and are not representative of all types of
deletions, insertions, or other SV types, which is an im-
portant assumption of two-class models. Therefore, a two
class model trying to differentiate our SV sets from ran-
dom genomic coordinates can do a very good job separat-
ing these two sets, but the model is likely to misclassify
other candidate SVs not in the “Validated/assembled” call
sets (e.g., duplications, deletions in difficult parts of the
genome, etc.). Because our one-class model does not rely
on biased “Validated/assembled” call sets, we expect our
one-class model to be more generalizable to other types of
SVs by selecting annotations for which atypical values are
usually associated with SVs.
Our methods, which classify based on evidence from

multiple technologies, are complementary to the recently
published MetaSV method [5], which integrates SVs using
multiple bioinformatics methods, and the Parliament
method [9], which generates candidate SVs using multiple
technologies and bioinformatics methods, and then uses a
PacBio/Illumina hybrid assembly to determine whether the
candidate SVs are likely to be true. Similar to Parliament,
in the characterization of the performance of the LUMPY
tool [3], the authors developed a high-confidence set that
had breakpoints supported by long reads from PacBio or
Moleculo. In addition to using svviz [10] to visualize and
determine the number of reads supporting the alternate,
we also combine the support from multiple sequencing
technologies in a robust machine learning model.

Results and discussion
To assess the utility of our classification methods, we
compiled four whole genome sequencing datasets for
Coriell DNA sample NA12878 (Table 1). We used two
deletion call sets from Personalis and the 1000 Genomes
Project totaling 3082 unique deletions, as well as 70 as-
sembly-based breakpoint-resolved insertions. Moreover, we
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generated several likely non-SV call sets with different size
distributions and sequence contexts (Table 2). We first gen-
erated annotations for the candidate SV and non-SV call sets
from the four sequencing datasets. We used hierarchical
clustering to show that SVs generally cluster separately from
non-SVs using these annotations, and that SVs cluster into
several different types of deletions. We used one class classi-
fication methods to classify calls as high-confidence SVs or
uncertain. To confirm the accuracy of the high-confidence
SVs, we present PCR validation results for the Personalis de-
letions as well as a comparison to mother-father-daughter
trio consensus-based calls from MetaSV [5].

Annotations are generated from multiple technologies for
candidate SVs
To assess the evidence for any candidate SV without the
need to design primers for validation experiments, we
developed svclassify to quantify annotations of aligned
reads inside and around each SV (Fig. 1). We generated 85
to 180 annotations (Additional file 1: Table S1, Additional
file 2: Table S2, Additional file 3: Table S3, Additional file 4:
Table S4) for each of the SV calls as well as likely non-SV
regions from four aligned sequence datasets for NA12878
using svclassify. Some of the annotations, such as depth of
coverage (Fig. 2), could clearly distinguish most Personalis
“Gold” deletions from random regions by themselves.

Although annotations such as coverage can be used by
themselves to classify most Personalis deletions, additional
annotations increase confidence that the deletion is real
and not an artifact (e.g., low coverage due to extreme GC
content). In addition, other annotations are necessary to
classify other types of SVs like inversions and insertions
that may not have abnormal coverage. Therefore, we devel-
oped unsupervised and one-class supervised machine
learning models to combine information from many anno-
tations for clustering and classification (Fig. 3).
For annotations for one-class classification, we included

the coverage inside the SV region (M_Cov, LM_Cov, and
RM_Cov) because coverage should be directly propor-
tional to copy number. We included soft-clipping in the
flanking regions because we usually expect only part of
reads to map when they cross the SV breakpoints. We
included insert size in the flanking regions because we ex-
pect insert size to be larger than normal for deletions and
smaller than normal for insertions. We included the
proportion discordantly mapped reads because this can
indicate either a large insert size or a mobile element in-
sertion. We included the proportion of reads for which
the other end is not mapped because this could indicate a
novel insertion. For PacBio, we included the difference be-
tween inserted and deleted bases because the reads were
often sufficiently long to be mapped across a deleted or

Table 1 Description of NGS data sets from Coriell DNA sample NA12878

Source Platform Coverage Read length Paired-end

Platinum Genomesa Illumina HiSeq 200 100 Yes

Broad Instituteb Illumina HiSeq 50 250 Yes

Mount Sinai, NYc PacBio 12 1 kb – 10 kb No

Illuminad Moleculo 30 1.5 kb – 15 kb No

Data sources:
ahttp://www.illumina.com/platinumgenomes/
bftp://ftp.broadinstitute.org/pub/crd/NA12878_clones/
cftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_na12878_pacbio/
dftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/NA12878/moleculo

Table 2 Description of SV validated/assembled sets from Coriell DNA sample NA12878

Source # of SVs # of unique SVs Size distribution

Personalis deletions 2306 2292 50 to 158654 bps

Personalis validated deletions 39 39 49 to 9163 bps

Personalis non-validated deletions 5 5 52 to 7557 bps

1000 Genomes deletions [13] 2685 1825 49 to 212899 bps

Deduplicated deletions 3082 3082 49 to 158654 bps

Spiral Genetics insertions 70 70 207 to 3865 bps

Random regions 4000 4000 50 to 997527 bps

Random regions (size distribution matching to Personalis) 2306 2306 50 to 158654 bps

Long interspersed nuclear elements 497 497 12 to 6401 bps

Long terminal repeat elements 498 498 11 to 7511 bps

Short interspersed nuclear elements 496 496 36 to 335 bps
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inserted region and abnormally high insertion or deletion
rate can indicate an insertion or a deletion event.
For clustering, we included additional annotations that

may not distinguish true SVs from non-SVs but could be
helpful for clustering different types of true SVs. For ex-
ample, low mapping quality might indicate a homozygous
deletion, a mobile element deletion, or a biased non-SV
region. Also, SV size could be useful to cluster different
types of SVs. Abnormally low or high coverage in the
flanking regions could indicate imprecise breakpoints,
regions with bias, or a much larger SV encompassing the
region. We also only used for clustering the reference-
specific or sample-specific annotations like RepeatMasker
regions, GC content, and number of heterozygous and
homozygous SNPs. We did not include these in the one-
class model because they are not technology-specific, so
they could not simply be used as part of our heuristics
requiring evidence from multiple technologies.

Hierarchical cluster analysis separates random regions
from multiple SV types
To understand the types of SV calls in the validated/
assembled deletion sets and how they segregate from

random genomic regions, we first performed unsuper-
vised machine learning using hierarchical clustering
with a manually selected subset of 11 to 35 annota-
tions from svclassify, depending on the technology
(Additional file 1: Table S1, Additional file 2: Table S2,
Additional file 3: Table S3, Additional file 4: Table S4).
This subset of annotations was chosen to reduce the
number of annotations used in the model to those
that we expected to be most important for clustering
calls into different categories. We decided to focus
our analyses on eight major clusters, which are visualized
as a tree (dendrogram) in Fig. 4a and with multidimen-
sional scaling in Figs. 4b and 4c. Five of the clusters (1, 2,
3, 6, 7) were predominantly (98.5 %) SVs, two clusters (4
and 5) were predominantly (98.9 %) non-SVs, and one
cluster (8) was 40 % SVs and 60 % non-SVs. The label (SV
or non-SV) associated with each site was not provided to
the clustering method, and yet the clusters showed a good
separation of SVs from non-SVs based entirely on the
annotation values. To ensure the 4000 random regions
sufficiently represented non-SVs, we also generate random
regions matching the size distribution of the Personalis
deletions, as well as random SINEs, LINEs, and LTRs. It is
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L M-SV coordinates R

Fig. 1 Annotations are generated for each SV for five different regions in and around the SV: Left flanking region (L), Left middle flanking region
(LM), Middle regions based on SV coordinates (M), Right middle flanking region (RM), and Right flanking region (R)
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Fig. 2 Depth of coverage distribution for Personalis deletion calls (PlatGen_M_Cov) and random regions (PlatGen_Random_4000_M_Cov). See
original data at https://plot.ly/337/~parikhhm/
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Fig. 3 Flowchart of analytical approach to classify candidate SVs into likely true or false positives. The subset of 35 annotations was chosen for
Illumina paired-end data (fewer for PacBio and moleculo data) to reduce the number of annotations used in the model to those that we expected to
be most important for clustering calls into different categories. The one-class model uses only the 4000 random sites for training, and it assumes that
sites with annotations unlike most of these random sites are more likely to be SVs
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plots. (a) The horizontal dotted red line shows the cut-off at a cluster dissimilarity index of about 10000, which results in 8 clusters. The clusters
are number 1 to 8 from left to right, with 4 and 5 containing primarily non-SVs, 8 containing a mixture of SVs and non-SVs, and 1, 2, 3, 6, and 7
containing different types of deletions (see Table 4). (b-c) Multidimensional scaling plots for visualizing the 8 clusters. We use a 3 dimensional
representation of the data space which associates 3 MDS coordinates to each site, one for each dimension. (b) Plot of MDS-2 against MDS-1,
which clearly separates Cluster 6 (mainly SVs with inaccurate breakpoints). (c) Plot of MDS-3 against MDS-1, in which the different types of SVs
are generally well-separated from each other and from non-SVs
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promising that even the randomly selected SINEs, LINEs,
and LTRs generally segregate with the random genomic
regions even though they are from regions of the genome
that are difficult to map.
We further compared the annotations of these 8 clusters

to understand whether they represent different categories
of SVs and random regions. Clusters 4 and 5 contain close
to 99 % non-SVs, but Cluster 4 generally contains larger
sites than Cluster 5. Cluster 8 is a mix of 60 % non-SVs and
40 % SVs, and sites in Cluster 8 generally have a coverage
between the normal coverage and half the normal coverage,
and more sites have lower mapping quality, repetitive se-
quence, and high or low GC content. Further subdivisions
of Cluster 8 might divide the true SVs from non-SVs.
98.5 % of sites in Clusters 1, 2, 3, 6, and 7 are from the

Personalis and 1000 Genomes Gold sets, but the clusters
contain different types of SVs. Clusters 1, 2, 3, and 6
generally contain reads with lower mapping quality inside
the SV, though the low mapping quality could arise from a
variety of sources (e.g., repetitive regions that are falsely
called SVs, true heterozygous or homozygous deletions of
repetitive elements like Alu elements, or true homozygous
deletions that contain some incorrectly mapped reads
inside the deletion). Clusters 2 and 3 appear to be true
deletions of Alu elements, since sites in these clusters are
~300 bps, are annotated as SINEs, LINEs, or LTRs by
RepeatMasker, have high GC content, and have low

mapping quality. Cluster 2 sites are primarily heterozy-
gous Alu deletions since they have about half the typical
coverage, and Cluster 3 sites are primarily homozygous
Alu deletions and a small fraction of other homozygous
deletions because they contain less than half the typical
coverage. All 655 sites in Cluster 1 are from Personalis
and 1000 Genomes, and appear to be mostly larger homo-
zygous deletions (half are larger than 2000 bps), and they
have lower than half the normal coverage, low mapping
quality, and more discordantly mapped reads. 86 % of sites
in Cluster 6 are from 1000 Genomes and appear likely to
represent mostly true homozygous deletions with impre-
cise breakpoints that are too narrow, since the left and
right flanking regions, in addition to the region inside the
putative SV, have low coverage less than half the typical
coverage. 97.4 % of sites in Cluster 7 are from Personalis
and 1000 Genomes, and they appear to be predominantly
heterozygous deletions in relatively easier parts of the
genome with high mapping quality. These results are
summarized in Table 3.
More sophisticated versions of our clustering approach

are available. Parametric approaches include Gaussian
mixture modeling, but there are also nonparametric
mixture modeling approaches available. However, ex-
ploratory analyses showed that at best only a marginal
improvement is realized using such more advanced
methods for our datasets.

Table 3 Analysis of 8 clusters from hierarchical cluster analysis, including the numbers of sites from each call set and a description
of the predominant types of sites in each cluster

Cluster 4000
Random

Personalis
Random

Random
LINEs

Random
LTRs

Random
SINEs

Personalis
deletions

1000
Genomes
deletions

Total Proportion that
are deletions

Description

1 0 0 0 0 0 371 284 655 1.000 Mostly large, true homozygous
deletions

2 0 0 0 0 2 432 237 671 0.997 Heterozygous Alu deletions

3 1 1 1 0 0 705 402 1110 0.997 Homozygous Alu deletions

4 2397 455 38 28 16 9 28 2971 0.012 Large, likely non-SVs. Generally
in easy-to-sequence regions

5 1073 1351 352 378 279 1 33 3467 0.010 Smaller, likely non-SVs. Generally
in easy-to-sequence regions

6 17 2 1 0 0 3 138 161 0.876 Likely true large homozygous
deletions with inaccurate
breakpoints so that the true
deletion is larger than the
called region

7 14 16 2 2 4 624 811 1473 0.974 Mostly true heterozygous
deletions in easier-to-sequence
regions

8 498 481 103 90 195 161 752 2280 0.400 Mix of non-SVs and SVs in more
difficult regions with coverage
between the normal coverage
and half the normal coverage

Total 4000 2306 497 498 496 2306 2685 12788 0.390
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One-class classification of candidate SVs using L1 distance
integrates information from multiple technologies
We next developed a one-class classification model to
classify candidate sites as high-confidence SVs or uncer-
tain. This one-class model uses only the 4000 random
sites for training, and it assumes that sites with annota-
tions unlike most of these random sites are more likely
to be SVs. As shown in Additional file 5: Table S5, we
only used a subset of the annotations from the unsuper-
vised hierarchical clustering because atypical values for
some annotations (e.g., mapping quality or SV size) do
not necessarily indicate that an SV exists in this location
(see the section above about annotations for why these
annotations were selected). The number of annotations
used ranged from 7 for PacBio to 30 for Illumina paired-
end because certain annotations like insert size do not
apply to all technologies (Additional file 1: Table S1,

Additional file 2: Table S2, Additional file 3: Table S3,
Additional file 4: Table S4).
Results from the L1 distance one-class classification

are summarized using ROC curves. Five different ROC
curves are shown in Fig. 5a-5b, one from each classifier
using one of the four data sets and one classifier based
on all datasets combined. The classifier based on all
datasets combined performs the best with PlatGen (200x
Illumina) alone being a close second. ROC curves for
the ensemble classifiers, based on the four L1 classifiers
using each of the four data sets separately, are shown in
Fig. 5c-5d. Four different ensemble classifiers are consid-
ered based on four different ways of combining the re-
sults from the individual classifiers. A typical ensemble
classifier will classify a site as SV if k or more of the in-
dividual classifiers make an SV call. Here k can be 1, 2,
3, or 4. The results show that using k = 3 provides the
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Fig. 5 ROC curves for One-class classification using the L1 Distance, treating the 4000 Random regions as negatives and the Personalis or 1000
Genomes calls as positives. (a) ROC curves for one-class models for each dataset separately and for all combined for the Personalis validated deletion
calls. (b) ROC curves for one-class models for each dataset separately and for all combined for the 1000 Genomes validated deletion calls. (c) ROC
curves for one-class model requiring 1 or more, 2 or more, 3 or more, or all 4 technologies to have high classification scores for the Personalis validated
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deletions) and the vertical axis shows the corresponding true positive rate (assuming all the validated/assembled calls are true). See original data at
https://plot.ly/345/~parikhhm/, https://plot.ly/353/~parikhhm/, https://plot.ly/361/~parikhhm/, and https://plot.ly/369/~parikhhm/
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best ensemble classifier with k = 2 being a close second.
Performance is similar for the k = 3 classifier and all
datasets combined, and we use k = 3 for our final results
because we expect requiring evidence from 3 datasets
will be more robust. For k = 3, we calculated the propor-
tion ρ of random sites that are closer to the center than
each candidate site. We stratified candidate sites into
those with ρ < 0.68, 0.68 < ρ < 0.9, 0.9 < ρ < 0.99, or ρ >
0.99, as shown in Table 4.
To confirm our choice of 4000 random regions for

training, we compared the scores of the 4000 random
regions to the 2306 different random regions with a size
profile matching the Personalis SVs. We found that the
distributions of scores were very similar, with 23 of 2306
Personalis random regions having ρ > 0.99, close to the
1 % expected. Similarly, 11 of 1491 random SINE, LINE,
and LTR regions had ρ > 0.99, close to the 1 % expected.
To assess the performance of the classifier on random
regions, we also found the distribution of ρ scores for
the random Personalis regions when assessed against the
4000 random regions, and the distribution of scores was
flat as expected (see Additional file 6: Figure S1).

One-class classification of candidate SVs using SVM gives
similar results to L1 classifier
To compare to an alternative distance measure and
method for one-class classification, we also developed a
one-class SVM model. We found that results were
generally similar between the L1 one-class results and
the SVM one-class results in terms of ROC curves
(Additional file 7: Figure S2, Additional file 8: Figure
S3, Additional file 9: Figure S4, and Additional file
10: Figure S5). Additional file 11: Table S6 gives the
concordance/discordance matrix for predictions from
the L1 and SVM one-class classifications for selected
values of ρ. Agreement between the two methods is
84 % with ρ > 0.99, 98 % with ρ > 0.95 and 99 % with
ρ > 0.9, on Personalis validated/assembled set. The
high agreement between SVM and L1 at ρ > 0.95 sug-
gests that our one class classification method is ro-
bust to the type of model. We further examined the 7

sites consistently identified with only SVM and 1 site con-
sistently identified with only L1 that had low ρ (0.6 > ρ >
0.5) with one method and ρ > 0.9 with the other method.
We found that these were from difficult regions of the
genome, such as telomeres, high coverage regions, and
low mapping quality regions, so they are filtered from
our final high-confidence calls. However, similar com-
parisons of predictions on 1000 Genome set with L1
and SVM ensemble classifiers suggest that the L1
classifier has better efficiency in predictions on 1000
Genome set and better agreement on different technolo-
gies. Therefore we use the simpler L1 method.

Manual inspection of one-class results verifies accuracy of
our classifier
We randomly selected a subset of sites from each call
set in each selected ρ value range from Table 4 for man-
ual inspection. In general, Personalis and 1000 Genomes
sites with high ρ values were very likely accurate and
mostly homozygous, while sites with lower ρ appeared
to be questionable, small, and/or heterozygous. Most of
the Spiral Genetics insertions had very high ρ, indicating
a true SV is likely in the region.
For Personalis, we inspected 20 randomly selected sites

with ρ > 0.99, and all appeared to be accurate (Additional
file 12: Table S7). Only 5 of the 20 sites appeared likely to
be heterozygous, since homozygous deletions generally
are more different from random regions than hetero-
zygous deletions. 4 out of 5 heterozygous sites had
0.99 < ρ < 0.999, whereas all 15 homozygous deletions
had ρ > 0.999 except for one small 52-bp deletion. 13
of the homozygous deletions had ρ > 0.9999. Also, all 10
of the randomly selected Personalis sites with 0.9 < ρ <
0.99 were likely to be true heterozygous deletions, and
none were homozygous (Additional file 13: Table S8).
There were only 8 sites with ρ < 0.9 in the Personalis set
(Additional file 14: Table S9), and these were a mixture of
likely true but very small deletions and other potential de-
letions that were difficult to determine whether they were
true or artifacts since they were only supported by a small

Table 4 Number of sites from each candidate call set that have k = 3 L1 Classification scores in each range, where the score is the
proportion ρ of random sites that are closer to the center than each candidate site. These numbers are after filtering sites for which
the flanking regions have low mapping quality or high coverage

Filtered <0.68 0.68-0.9 0.9-0.97 0.97-0.99 0.99-0.997 0.997-0.999 >0.999

Random Personalis 229 3025 501 177 65 3 0 0

Personalis Gold 106 8 10 44 414 409 1302 13

Personalis Validated 3 0 0 0 10 7 19 0

Personalis Non-validated 0 1 0 0 3 0 1 0

1000 Genomes 382 56 103 257 714 388 780 5

Spiral Gen Insertions 1 0 0 0 12 16 41 0

Deduplicated Deletions 195 45 61 145 675 513 1434 14
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number of reads. Therefore, we do not include these calls
with ρ < 0.9 in our final high-confidence set.
For 1000 Genomes, we similarly inspected 20 ran-

domly selected sites with ρ > 0.99, and all appeared to be
accurate except for one in a low complexity region,
which had few supporting reads in svviz. Only 4 (20 %)
of the sites with ρ > 0.99 had ρ > 0.9999, in contrast to
65 % of the Personalis calls. 3 of the 4 sites with ρ >
0.9999 were likely to be homozygous deletions. One
likely true heterozygous deletion had ρ > 0.999, and the
remaining 15 sites with 0.99 < ρ < 0.999 appeared likely to
be true heterozygous deletions except for one in a low com-
plexity region (Additional file 15: Table S10). Also, 7 of the
9 randomly selected 1000 Genomes sites with 0.9 < ρ < 0.99
were likely to be true heterozygous deletions, and none
were homozygous (Additional file 16: Table S11). The other
2 sites contained 17 % and 58 % low complexity sequence
and 68 % and 66 % GC content, and they appeared likely to
be erroneous calls since no reads aligned to the alternate al-
lele for any technology using svviz (except for a single
moleculo read for one of the sites). 7 of the 8 randomly se-
lected 1000 Genomes sites with 0.7 < ρ < 0.9 were smaller
than 100 bps, 6 were likely to be true heterozygous dele-
tions, and none were homozygous (Additional file 17: Table
S12). 5 of the 7 randomly selected 1000 Genomes sites with
ρ < 0.7 were smaller than 110 bps and were possibly true
heterozygous deletions, and none were homozygous
(Additional file 18: Table S13). In general, the 1000
Genomes calls have lower ρ scores than the Persona-
lis calls because the Personalis calls contain a higher
fraction of homozygous deletions, fewer very small
deletions, and are all breakpoint-resolved.
All of the complex insertions from Spiral Genetics had

ρ > 0.97, indicating that they are likely to be true SVs.
Upon manual inspection of the svviz results (Additional
file 19: Table S14), 29 had evidence in all 4 technologies
for a homozygous insertion, 29 had evidence in all 4
technologies for a heterozygous insertion, and 8 were in-
consistent in terms of zygosity across the 4 technologies.
The reason for the discordance between technologies for
the 8 discordant sites is not always clear, but it appears that
some are likely to be real SVs with different breakpoints.
For example, an insertion is called at 1:3,418,563 with a
length of 352 bp, but appeared likely to be much larger.
Most candidate sites with ρ > 0.9 appear to be true,

but a few of the manually inspected sites appeared to be
inaccurate or to have incorrect breakpoints. Therefore,
we further refined our final call set by using svviz to
map reads to the reference or predicted alternate alleles,
and we included only sites with at least 3 reads sup-
porting the alternate allele in at least 3 of the 4 data-
sets. This filtered 13 % percent of the calls, leaving
2676 deletions and 68 insertions for which we have
high confidence. These calls are publicly available at ftp://

ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_
Manuscript, and we will continue to update these with
additional call sets as we further develop our methods.

PCR validates high-confidence SVs
To obtain estimates of accuracy of the Personalis dele-
tion calls, we performed experimental validation for
some of the calls. Only 44 of 2350 calls met the criteria
for designing primers, 3 primer pairs failed, and in one
case we were unable to make a call. We were able to val-
idate 38 of Personalis’ deletions with exact breakpoints
(including 3 within 1 bps) out of the 40 deletions that
we could test. A 39th case was off by 44 bps on one side
and the last case was a false positive call. All homozy-
gous calls (6) were confirmed by the validation. Only 10
out of 21 heterozygous calls had the correct zygosity call.
Of the heterozygous calls with incorrect zygosity, 7 were
actually homozygous, 1 could not be determined by the
validation and 1 was not a deletion. The remaining cases
did not have a zygosity call, of which 9 were homozygous
and 7 were heterozygous. All of the validated calls had ρ >
0.97. 4 of the 5 sites that could not be PCR-validated also
had ρ > 0.97. The fifth site (chr9:8860664–8875135), which
was the only likely false positive, had ρ = 0.01 and is
bounded by approximately 350 bp regions that only differ
by a 9 bp indel.

Trio analysis with MetaSV confirms most high-confidence
SVs
Given the rate of de novo mutation is low [11], most SVs
of an individual are expected to be Mendelian consistent.
We went on to assess the quality of our high-confidence
SVs by validating it with trio analysis, involving the child
(NA12878), her father (NA12891) and her mother
(NA12892). Sequences were retrieved from the Illumina
Platinum Genomes repository with an average sequencing
depth of approximately 50x. MetaSV [5], a recently pub-
lished SV caller integrating multiple orthogonal SV detec-
tion algorithms, was used to generate three call sets for the
trio individuals. For highest quality, only deletion
calls > =100 bps were considered. Calls detected by
two or more algorithms in MetaSV with different de-
tection methods were deemed as PASS and regarded
as high-quality [5, 12]. There were 13639, 34565, and
32482 deletion calls for NA12878, NA12891, and
NA12892 respectively, of which 2671, 2714, and 2640
were PASS calls.
To validate the 2676 high-confidence deletion SVs from

svclassify, we selected the 2348 deletions > = 100 bps and
matched them with the Bina call sets. We used a 50 % re-
ciprocal overlapping strategy for the matching. A call from
svclassify was deemed as “validated” if one of the following
criteria was met: Level (1) detected in any of the two par-
ents from the Bina call sets; Level (2) detected in the child
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as a PASS from the Bina call sets; and Level (3) reported
and validated in previous literatures on the child [13]. As
shown on Additional file 20: Figure S6, 98 % of the
high-confidence deletions were confirmed by the Level 1
validation, i.e., also detected in the parents. There were an
additional 0.2 % confirmed by the Level 2 validation, i.e.,
detected by at least two orthogonal algorithms. Level 3
validation confirmed an extra 1.5 %, resulting in a total
validation rate of 99.7 %. The extremely high validation
rate indicates high quality of the high-confidence SV call
set from svclassify.

Performance of svclassify with 30x coverage dataset
To understand the effect of downsampling on the classi-
fication accuracy, we performed downsampling of the
Platinum Genomes BAM file to 30x mean coverage. As
shown on Additional file 21: Figure S7, even with 30x
coverage, at a 5 % false positive rate, > 97 % of the Per-
sonalis calls were classified as true positives, but this is
lower than the >99 % of calls classified as true positives
at a 5 % false positive rate with 200x coverage.

Conclusions
High-confidence SV and non-SV calls are needed for
benchmarking SV callers. To establish high-confidence,
methods are needed to combine multiple types of infor-
mation from multiple sequencing technologies to form
robust high-confidence SV and non-SV calls. Therefore,
in this work we developed methods to classify SVs as
high-confidence based on annotations calculated for
multiple datasets. Our classification method gives the
highest scores to SVs that are insertions or large homo-
zygous deletions, and have accurate breakpoints. Dele-
tions smaller than 100-bps often have low scores with
our method, so other methods like svviz are likely to
give better results for very small SVs. Homozygous dele-
tions generally receive the highest scores because they
have annotations most unlike random regions of the
genome. Breakpoint-resolved deletions generally receive
higher scores because reads near the breakpoint have
distinct characteristics such as clipping and insert size
that our method uses to classify SVs. We produce a set
of 2676 high-confidence deletions and 68 high-confidence
insertions with evidence from 3 or more sequencing data
sets. These sets of SVs are likely biased towards easier re-
gions of the genome and do not contain more difficult
types of SVs. However, they can be used as an initial
benchmark for sensitivity for deletions and insertions in
easier regions of the genome.
In this work, we use data from multiple whole genome

sequencing technologies to develop high-confidence SVs
for benchmarking, and it is important to understand
strengths and weaknesses of this approach. Alternative
approaches might include targeted experimental validation

and simulation of SV events. For Reference Materials that
are characterized by multiple high-coverage whole genome
sequencing technologies, we expect our approach to work
well, though it may still be useful to confirm some SVs
with targeted methods. It is sometimes difficult or impos-
sible to target SVs in difficult regions of the genome, so it
is important to understand that this type of confirmation
may not help assess the accuracy of the most difficult SVs.
Similarly, simulated SVs in random regions of the genome
may not represent the true locations of SVs, which can
often occur in challenging regions of the genome and may
have sequencing errors that are not simulated. While SVs
with more accurate breakpoints are more likely to have
high scores with our method, one or both breakpoints may
be inaccurate for some high-confidence SVs, and even
when accurate it is often possible to represent SVs in mul-
tiple ways in repetitive regions. It is also critical to under-
stand that the high-confidence SVs in this manuscript
likely represent a subset of SVs biased towards those that
are easier to detect and are generally moderate sized inser-
tions and deletions. In addition, although multiple SV cal-
lers and analysis groups generated the candidate calls, they
may be biased towards existing callers and short-read data.
Therefore, sensitivity measured with respect to our high-
confidence SVs or most other high-confidence SVs is likely
an overestimate of the sensitivity of any method for all SVs
in the genome. Further work is needed to develop more
comprehensive high-confidence SV call sets.
The motivation for building the one-class model using

random regions rather than true SVs is that we do not
have unbiased sets of true SVs that we could use for
training. Unfortunately, current “true SV” call sets tend
to be biased towards types of SVs that are easier to call
and in easier regions of the genome. For example, a
model based on moderate-sized deletions is unlikely to
be useful for insertions, duplications, large or small dele-
tions, or SVs in more difficult parts of the genome. A
one-class model based on true SVs also may result in
overfitting, which is mitigated by using random regions
because the model is generated independent of the true
SVs used in validation. A limitation of using random re-
gions is that they may not perfectly represent false positive
SVs that are generated by callers. Further work will be
needed to understand the profiles of false positive SVs and
how they compare to random regions, since we did not
have sufficient false positives to test this in this work.
The primary goal of this work is to develop methods

to form high-confidence SV calls from candidates gener-
ated from multiple technologies and calling methods.
However, future work might also examine using these
methods to classify candidate SV calls from multiple cal-
lers using a single technology. The utility of svclassify in
this case would be to generate and use consistent annota-
tions for all candidate SVs. While multiple technologies
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are likely to result in more robust classifications, even a
single technology often separates most of our high-
confidence SVs from random regions.
Our unsupervised clustering methods also show prom-

ise for classifying candidate SVs into different types and
potentially classifying more difficult types of SVs. Seven
of the eight clusters obtained from an unsupervised hier-
archical cluster analysis using L1 distances were rela-
tively pure clusters consisting of either mostly SVs or
mostly non-SVs. The overall successful separation of the
SVs from the non-SVs by the unsupervised analysis sug-
gests that the annotations for SVs and non-SVs occupy
more or less disjoint regions in the data space. Since
each cluster contains a different type of SV or non-SV,
future work might include further investigation of these
clusters and sub-clusters to understand their meaning.
In addition, we plan to apply these clustering methods
to additional types of SVs and develop more sophisti-
cated classification methods that would place new candi-
date SVs in one of these categories of different types of
true or false positive SVs.
We plan for the methods developed in this work to

form a basis for developing high-confidence SV and
non-SV calls for the well-characterized NIST RMs being
developed by the GIAB. In this work, we apply these
methods to produce a set of high-confidence deletions
and insertions with evidence from multiple sequencing
datasets, and we plan to continue to develop these
methods to be applied to more difficult types of SVs in
more difficult regions of the genome. We also plan to in-
corporate calls from methods merging multiple callers,
such as MetaSV [5]. For example, there were 456 high-
quality MetaSV PASS calls for NA12878 which were also
Mendelian consistent. Finally, we hope to incorporate
statistics from other tools, such as Parliament [9] and
svviz [10], in our machine learning models.

Methods
Data sets
Four whole-genome sequencing data sets (Table 1) were
used to develop methods to classify candidate SVs into
true positives and false positives for Coriell DNA sample
NA12878. Two data sets were generated using short-read
sequencing technologies, and two other data sets were
generated using long-read sequencing technologies. For
the Platinum Genomes 2x100bps HiSeq data, raw reads
were mapped to the National Center for Biotechnology
Information (NCBI) build 37 using the Burrows-Wheeler
Aligner (BWA) “bwa mem” v.0.7.5a with default parame-
ters [14]. For Illumina HiSeq (read length = 250 bps), Pac-
Bio, and Moleculo whole-genome sequencing data sets,
aligned bam files were publicly available and were used
directly in this study.

SV validated/assembled sets
Three validated/assembled SV sets (Table 2) totaling
5035 deletions and 70 insertions were derived from
Coriell DNA sample NA12878.

(A) Personalis deletions calls were derived based on
pedigree analysis, which included 16 members of the
family.
To be included in the validated/assembled set, the
following conditions had to be met:
(1) Deletion must have been detected in at least one

NA12878 sample.
(2) Deletion must have been detected in at least 2

other samples in the pedigree with exact
breakpoint matches.

The Personalis gold data set was further refined by
experimental validations. Primers were designed
based on following criteria:
(1) Each primer maps no more than 3 times in

genome.
(2) Require unique polymerase chain reaction (PCR)

product in genome.
(3) (3) 400–800 bps product size.
(4) Pad 100 bps around each deletion junction.
For small deletions (<200 bps) a single primer pair
was designed that straddled the deletion. For large
deletions (>1500 bps) two primer pairs were
designed around each reference breakpoint junction.
Site specific PCR amplification and high depth
MiSeq shotgun sequencing followed by manual
inspection of the alignments was used to validate all
the deletions. Sanger sequencing was used when we
were not able confirm the deletion with MiSeq. For
3 deletions (2:104186941–104187136, 7:13022102–
13028550, and 14:80106289–80115049) this was
done because we did not see any junction reads.

(B) The 1000 Genomes Project validated/assembled
contains the set of validation deletion calls found in
the genome of NA12878 by the 1000 Genomes
Project pilot phase [13, 15]. These deletion calls
were validated by assembly or by other independent
technologies such as array comparative genomic
hybridization, sequence capture array, superarray,
or PCR.

(C) Spiral Genetics’ Anchored Assembly was performed
whole read overlap assembly on corrected, unmapped
reads to detect structural variants using Illumina
2x100bps HiSeq whole-genome sequencing data set.
Sequencing errors were corrected by counting k-mers.
Low count k-mers were discarded as erroneous. The
set of high scoring, or true k-mers was used to
construct a de Bruijn graph representing an error-free
reconstruction of the true read sequences. Each read
was corrected by finding the globally optimum base
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substitution(s) so that it aligned to the graph with no
mismatches and differed by the smallest base quality
score from the original read. Of these corrected reads,
those that did not match the reference exactly were
assembled into a discontiguous read overlap graph to
capture sequence variation from the reference.
Variants were mapped to human reference coordi-
nates (NCBI build 37) by walking the read overlap
graph in both directions until an “anchor” read,
where a continuous 65 bps matches the reference,
denoted the beginning and end of each variant.
Where a variant had more than one anchor,
pairing information was used to determine the
correct location of the anchor. We used 70 calls
from the “Insertions” output, all of which were
complex insertions (i.e., a set of reference bases
was replaced by a larger number of bases).

Deduplicated deletions
Any overlapping deletions within the validated/assem-
bled SV sets were discarded because they may represent
compound heterozygous SVs or imprecise or inaccurate
SVs. This deduplication resulted in 2336 unique Personalis
deletion calls and 1825 unique 1000 Genomes deletion
calls (Table 2). Bedtools’ intersect function was used to
screen overlap between these two datasets (Additional file
22: Table S15). Merged deduplicated deletion calls were
generated by keeping all the 2336 unique Personalis dele-
tion calls and merging with 746 non-overlapping 1000
Genomes deletion calls with minimum overlap required to
be 1 bp, which resulted 3082 deduplicated deletion calls.

Random region non-SV call sets
In addition, five sets of likely non-SVs were generated: 2
random and 3 from repetitive regions of the genome
(Table 2) as follows:

(1) 4000 random regions were generated with a uniform
size distribution on a log scale from 50 bps to
997527 bps. Start sites were chosen randomly using the
Generate Random Genomic Coordinates script in R
(https://github.com/usnistgov/SVClassify/blob/master/
code/Generate_Random_Genomic_Coordinates.R).

(2) 2306 random regions were generated with a size
distribution matching the calls from the pedigree-
based Personalis deletions call set. Start sites were
chosen randomly using the Generate Random Genomic
Coordinates script in R (https://github.com/usnistgov/
SVClassify/blob/master/code/
Generate_Random_Genomic_Coordinates.R).

(3) 497 long interspersed nuclear elements (LINEs)
were randomly selected from a list of LINEs from
the University of California, Santa Cruz (UCSC)
Genome Browser’s RepeatMasker Track.

(4) 498 long terminal repeat elements (LTRs) were
randomly selected from a list of LTRs from the
UCSC Genome Browser’s RepeatMasker Track.

(5) 496 short interspersed nuclear elements (SINEs)
were randomly selected from a list of SINEs from
the UCSC Genome Browser’s RepeatMasker
Track.

svclassify
The svclassify tool was developed to quantify annota-
tions of aligned reads inside and around each SV (Fig. 1).
It was written using the Perl programming language
employing SAMtools (version 0.1.19-44428 cd) [16] and
BEDTools (version 2.17.0) [17] to calculate parameters
such as coverage, paired-end distance, soft clipped reads,
mapping quality, numbers of discordant paired-ends
reads, numbers of heterozygous and homozygous SNP
genotype calls, percentage of the GC-content, percent-
age of the repeats and low complexity DNA sequence
bases, and mapping quality. svclassify requires the fol-
lowing inputs: a BAM file of aligned reads, a list of SVs,
homozygous and heterozygous SNP genotype calls, a list
of repeats from the UCSC Genome Browser’s Repeat-
Masker Track and a reference genome. BAM files can
come from any aligner. The user can specify the size for
the flanking regions. svclassify also includes partially
mapped reads to the L, LM, M, RM, or R regions for cal-
culations. The insert size is calculated as the end-to-end
distance between the reads (length of both reads + dis-
tance separating the reads). Because PacBio reads have
high insertion and deletion error rates, Del (the mean of
deleted bases of the reads) and Ins (the mean of inserted
bases of the reads) were normalized by subtracting
the mean Del (0.0428) and Ins (0.0948) per read
length of 4000 random regions. For exploratory ana-
lyses, svclassify generates 85 to 180 annotations for
each SV from each dataset, depending on sequencing
technology (Additional file 5: Table S5 and Additional
file 23: Table S16). For our unsupervised and one
class analyses, we used only subsets of these annota-
tions that we expected to give the best results. These
subsetted annotations are given in the csv files (Additional
file 1: Table S1, Additional file 2: Table S2, Additional file
3: Table S3, Additional file 4: Table S4).

Data analysis
The results from svclassify were subjected to two types
of analyses – (1) Unsupervised Learning based on a hier-
archical cluster analysis using the L1 distance (also called
Manhattan distance), and (2) One Class Classification
using the L1 distance or support vector machines (SVM)
using a carefully selected set of 4000 non-SVs.
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Unsupervised learning
Data values for each variable (characteristic) used in the
analysis were first transformed using an inverse hyper-
bolic sine transformation [18]. This transformation uses
the following function.

y ¼ sinh−1 xð Þ ¼ loge x þ sqrt x2 þ 1
� �� �

This function is often used as an alternative to the
logarithmic transformation. It has the advantage that
zero or negative values of x do not cause problems. Gen-
erally speaking it is quite similar to a standard logarith-
mic transformation except near and below zero. Next,
all variables were standardized by subtracting the mean
and dividing by the standard deviation. All further work
was done using these transformed data.
A hierarchical cluster analysis was performed with all

7797 random sites, 5035 deletion sites, and 70 insertion
sites (see Table 2), using L1 distance as the distance func-
tion rather than Euclidean distance [19] since Manhattan
distance is less influenced by outliers within the non-SV
class. The Ward method was used for clustering [20]. A
classical multidimensional scaling (MDS) analysis was
carried out to help visualize the spatial locations of
the clusters [21]. For a given positive integer k, the MDS
algorithm determines a k-dimensional representation of
the data space such that the distances between pairs of
data points in the original data space are preserved as best
as possible. We used k = 3 in our analysis to facilitate
visualization. We used the OneClassPlusSVM.R script.
This script is available at https://github.com/usnistgov/
SVClassify/.

One-class classification using L1 distance
The set of 4000 random sites representing the class of
likely non-SVs with a size range of 50 bps to 997527 bps
were used for training the one-class classifier. First, a
separate classifier was developed using data from each
sequencing technology for these 4000 sites. The classifier
was based on the empirical distribution of L1 distances
of each of the 4000 sites from the mean M for the 4000
sites. For these likely non-SVs, a threshold value tp was
determined such that a proportion ρ of the 4000 L1 dis-
tances were less than or equal to tp. The region R is then
defined as the set of all points in the transformed data
space whose L1 distance from the mean M is less than
or equal to tp. When there are only two annotations
measured for each site, this region takes the shape of a
rhombus. In the high dimensional data space the shape
of the region R is a multidimensional rhombus. The
classification rule is as follows. Given any new site,
calculate its L1 distance from M. If it is greater than
tp classify it as a SV. Otherwise call it a non-SV. Five
classifiers were developed one for each of the four

sequencing technologies and one using the com-
bined data. We used the Unsupervised.R script. This
script is available at https://github.com/usnistgov/
SVClassify/.

One-class classification using one-class SVM
Support Vector Machines (SVM) [22] are generally used
for supervised learning when it is desired to develop a
classification rule for classifying sites into two or more
classes. Different versions of SVMs have been developed
for one-class classification [23, 24]. We use the version
proposed by Schölkopf et al. just as in the case of L1
one-class classification discussed above, we develop five
classifiers based on data from each of the four sequen-
cing technologies and a classifier based on the combined
data from all four sequencing technologies to distinguish
SVs from random regions and SVs from validated/assem-
bled sets. In this analysis, a different data transform method
was applied to each annotation. First, for each annotation
we defined the deviation directions of interest compared to
the reference distribution of SVs from the random regions
to define outliers. According to the defined directions of de-
viations, we transformed the data so that the range of each
annotation satisfies the required condition of one-class
SVM. i.e. for each annotation, the larger the directional
deviation was, the closer to 0 the transformed value
was. One-class SVM implemented with e1071 package
of the Comprehensive R Archive Network was trained
by the transformed data of 4000 random regions to de-
fine linear class boundaries that may discriminate true
SVs from randomly generated SVs. The proportion of
SVs in the training set identified as outliers (false posi-
tive rate) 1-p was approximately controlled by a factor
ν in the training algorithm defined by the authors
(Additional file 24). We used the OneClassPlusSVM.R
script. This script is available at https://github.com/
usnistgov/SVClassify/.

Ensemble classifiers
Above, an L1 classifier was developed separately for data
from each of the four sequencing datasets. A fifth classi-
fier was developed by combining annotations from all
four datasets into a single model. Rather than combining
the datasets, we can combine the four classifiers using
an idea referred to as ensemble learning. We consider
ensemble classifiers that are based on declaring a new
site to be a SV provided at least k of the individual clas-
sifiers predict the site as a SV. We can do this for k = 1,
2, 3, 4. These ensemble classifiers arising from the four
L1 classifiers were investigated and their performances
are reported in the results section. A similar process was
repeated for the one-class SVM classifier. As the class
boundaries developed with one-class SVM could have
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intersections, in one-class SVM analysis, for each SV, we
recorded the smallest true negative rate of the training
that lead to a classifier defines this SV as one from the
random regions, as an equivalent to the proportion ρ
used for the L1 classifiers.
We chose k = 3 from the L1 classifier to produce our

final high-confidence SVs, since we expect classifications
based on evidence from multiple datasets are more likely
to be robust. Candidate SV sites from Personalis, 1000
Genomes, and Spiral Genetics as well as Random Genome
sites were stratified into sites with varying levels of evidence
for an SV using the L1 classifier. To exclude difficult regions
in which our classifier may give misleading results, we first
excluded sites with Platinum Genomes coverage > 300 in
the left and right flanking regions (~1.5 times the mean
coverage, so these may be inside duplicated regions), as well
as sites with Platinum Genomes mean mapping quality <
30 in the left or right flanking regions. We used the One-
ClassPlusSVM.R script. This script is available at https://
github.com/usnistgov/SVClassify/.

Manual inspection of SVs
To understand the accuracy of our classifier, we manually
inspected a subset of the sites from each call set. Specific-
ally, we inspected all 17 random sites with ρ > 0.99 to de-
termine if these might be real SVs. We also randomly
selected 20 sites each from Personalis and 1000 Genomes
with ρ > 0.99, and 10 sites from Personalis and 1000 Ge-
nomes with ρ < 0.68, 0.68 < ρ < 0.90, and 0.90 < ρ < 0.99 (or
we inspected all sites if there were fewer than 10 in any
category). Manual inspection was performed using the
GeT-RM project browser (http://www.ncbi.nlm.nih.gov/
variation/tools/get-rm/browse/), the integrative genomics
viewer (IGV) (version 2.3.23 (26)) [25] and svviz (version
1.0.9; https://github.com/svviz/svviz) [10]. We selected the
following tracks on GeT-RM Browser for manual inspec-
tions: GRCh37.p13 (GCF_000001405.25) Alternate Loci
and Patch Alignments, GRC Curation Issues mapped to
GRCh37.p13, Repeats identified by RepeatMasker, 1000
Genomes Phase 1 Strict Accessibility Mask, dbVar ClinVar
Large Variations, dbVar 1000 Genomes Consortium Phase
3 (estd214), NIST-GIAB v.2.18 abnormal allele balance,
NIST-GIAB v.2.18 calls with low mapping quality or high
coverage, NIST-GIAB v.2.18 evidence of systematic se-
quencing errors, NIST-GIAB v.2.18 local alignment prob-
lems, NIST-GIAB v.2.18 low coverage, NIST-GIAB v.2.18
no call from HaplotypeCaller, NIST-GIAB v.2.18 regions
likely have paralogs in the 1000 Genomes decoy, NIST-
GIAB v.2.18 regions with structural variants in dbVar for
NA12878, NIST-GIAB v.2.18 Simple Repeats from
RepeatMasker, NIST-GIAB v.2.18 support from < 3 data-
sets after arbitration, NIST-GIAB v.2.18 uncertain regions
due to low coverage/mapping quality. We observed cover-
age of the regions, numbers of soft-clipped reads, numbers

of reads with deletions relative to the reference genome
and numbers of SNPs/indels in the regions from Moleculo
and PacBio aligned bam files using IGV.

svviz
svviz (version 1.0.9; https://github.com/svviz/svviz) was
used to visualize all four whole-genome sequencing data
sets to see if there is support for a given structural vari-
ant [10]. It uses a realignment process to identify reads
supporting the reference allele, reads supporting the
structural variant (or alternate allele), and reads that are
not informative one way or the other (ambiguous). svviz
batch mode was used with default parameters to calcu-
late summary statistics for SVs and non-SVs. In addition,
inserted sequences were included as an input for svviz
for Spiral Genetics’ insertions calls. For PacBio sequen-
cing data, svviz’s “pacbio” optional parameter was used
to retain lower quality alignments as support for the ref-
erence and alternate alleles since PacBio sequencing has
a relatively high error rate. svviz’s commands, input files
and output files are provided in svviz.zip.

Trio and curated call sets
Read sequences for the trio analysis were downloaded
from the Illumina Platinum Genomes project (http://
www.illumina.com/platinumgenomes/) deposited at the
European Nucleotide Archive (http://www.ebi.ac.uk/ena/
data/view/ERP001960). The study accession was PRJEB3381
and the sample accessions were SAMEA1573618
for NA12878, SAMEA1573615 for NA12891, and
SAMEA1573616 for NA12892. Sequences were
aligned with BWA-MEM version 0.7.12. Deletion calls
were reported by MetaSV [5] version 0.3 integrating
Pindel [26] version 0.2.5a8, CNVnator [27] version 0.3,
BreakDancer [28] version 1.4.5, and BreakSeq [29, 30]
version 2.0-alpha. The curated, validated call set was
generated from the 1000 Genomes Project [12], resulting
in a set of 2406 calls which were previously reported for
NA12878.

30x coverage dataset
We have performed down-sampling of the Platinum Ge-
nomes BAM file to 30x (which is 15 % of the 200x data)
by using samtools (version 0.1.19-44428 cd) (samtools
view -s 0.15) which reflects a typical sequencing project
(e.g. Illumina HiSeq, 100 bp paired end reads with 30x
coverage).

Availability of supporting data
The data supporting the results of this article can be down-
loaded at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/
svclassify_Manuscript/Supplementary_Information/.
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