# Physics Research Works

## Permanent URI for this collection

## Browse

### Recent Submissions

- ItemEntangled Harmonic Oscillators and Space-Time Entanglement(MDPI, 2016-06-28) Başkal, Sibel; Kim, Young S.; Noz, Marilyn E.The mathematical basis for the Gaussian entanglement is discussed in detail, as well as its implications in the internal space-time structure of relativistic extended particles. It is shown that the Gaussian entanglement shares the same set of mathematical formulas with the harmonic oscillator in the Lorentz-covariant world. It is thus possible to transfer the concept of entanglement to the Lorentz-covariant picture of the bound state, which requires both space and time separations between two constituent particles. These space and time variables become entangled as the bound state moves with a relativistic speed. It is shown also that our inability to measure the time-separation variable leads to an entanglement entropy together with a rise in the temperature of the bound state. As was noted by Paul A. M. Dirac in 1963, the system of two oscillators contains the symmetries of the 𝑂(3,2) de Sitter group containing two 𝑂(3,1) Lorentz groups as its subgroups. Dirac noted also that the system contains the symmetry of the 𝑆𝑝(4) group, which serves as the basic language for two-mode squeezed states. Since the 𝑆𝑝(4) symmetry contains both rotations and squeezes, one interesting case is the combination of rotation and squeeze, resulting in a shear. While the current literature is mostly on the entanglement based on squeeze along the normal coordinates, the shear transformation is an interesting future possibility. The mathematical issues on this problem are clarified.
- ItemLoop Representation of Wigner’s Little Groups(MDPI, 2017-06-23) Başkal, Sibel; Kim, Young S.; Noz, Marilyn E.Wigner’s little groups are the subgroups of the Lorentz group whose transformations leave the momentum of a given particle invariant. They thus define the internal space-time symmetries of relativistic particles. These symmetries take different mathematical forms for massive and for massless particles. However, it is shown possible to construct one unified representation using a graphical description. This graphical approach allows us to describe vividly parity, time reversal, and charge conjugation of the internal symmetry groups. As for the language of group theory, the two-by-two representation is used throughout the paper. While this two-by-two representation is for spin-1/2 particles, it is shown possible to construct the representations for spin-0 particles, spin-1 particles, as well as for higher-spin particles, for both massive and massless cases. It is shown also that the four-by-four Dirac matrices constitute a two-by-two representation of Wigner’s little group.
- ItemEinstein’s E = mc2 Derivable from Heisenberg’s Uncertainty Relations(MDPI, 2019-11-09) Başkal, Sibel; Kim, Young S.; Noz, Marilyn E.Heisenberg’s uncertainty relation can be written in terms of the step-up and step-down operators in the harmonic oscillator representation. It is noted that the single-variable Heisenberg commutation relation contains the symmetry of the 𝑆𝑝(2) group which is isomorphic to the Lorentz group applicable to one time-like dimension and two space-like dimensions, known as the 𝑂(2,1) group. This group has three independent generators. The one-dimensional step-up and step-down operators can be combined into one two-by-two Hermitian matrix which contains three independent operators. If we use a two-variable Heisenberg commutation relation, the two pairs of independent step-up, step-down operators can be combined into a four-by-four block-diagonal Hermitian matrix with six independent parameters. It is then possible to add one off-diagonal two-by-two matrix and its Hermitian conjugate to complete the four-by-four Hermitian matrix. This off-diagonal matrix has four independent generators. There are thus ten independent generators. It is then shown that these ten generators can be linearly combined to the ten generators for Dirac’s two oscillator system leading to the group isomorphic to the de Sitter group 𝑂(3,2) , which can then be contracted to the inhomogeneous Lorentz group with four translation generators corresponding to the four-momentum in the Lorentz-covariant world. This Lorentz-covariant four-momentum is known as Einstein’s 𝐸=𝑚𝑐2.
- ItemIntegration of Dirac’s Efforts to Construct a Quantum Mechanics Which is Lorentz-Covariant(MDPI, 2020-08-01) Kim, Young S.; Noz, Marilyn E.The lifelong efforts of Paul A. M. Dirac were to construct localized quantum systems in the Lorentz covariant world. In 1927, he noted that the time-energy uncertainty should be included in the Lorentz-covariant picture. In 1945, he attempted to construct a representation of the Lorentz group using a normalizable Gaussian function localized both in the space and time variables. In 1949, he introduced his instant form to exclude time-like oscillations. He also introduced the light-cone coordinate system for Lorentz boosts. Also in 1949, he stated the Lie algebra of the inhomogeneous Lorentz group can serve as the uncertainty relations in the Lorentz-covariant world. It is possible to integrate these three papers to produce the harmonic oscillator wave function which can be Lorentz-transformed. In addition, Dirac, in 1963, considered two coupled oscillators to derive the Lie algebra for the generators of the 𝑂(3,2) de Sitter group, which has ten generators. It is proven possible to contract this group to the inhomogeneous Lorentz group with ten generators, which constitute the fundamental symmetry of quantum mechanics in Einstein’s Lorentz-covariant world.
- ItemWeyl Curvature Hypothesis in Light of Quantum Backreaction at Cosmological Singularities or Bounces(MDPI, 2021-11-07) Hu, Bei-LokThe Weyl curvature constitutes the radiative sector of the Riemann curvature tensor and gives a measure of the anisotropy and inhomogeneities of spacetime. Penrose’s 1979 Weyl curvature hypothesis (WCH) assumes that the universe began at a very low gravitational entropy state, corresponding to zero Weyl curvature, namely, the Friedmann–Lemaître–Robertson–Walker (FLRW) universe. This is a simple assumption with far-reaching implications. In classical general relativity, Belinsky, Khalatnikov and Lifshitz (BKL) showed in the 70s that the most general cosmological solutions of the Einstein equation are that of the inhomogeneous Kasner types, with intermittent alteration of the one direction of contraction (in the cosmological expansion phase), according to the mixmaster dynamics of Misner (M). How could WCH and BKL-M co-exist? An answer was provided in the 80s with the consideration of quantum field processes such as vacuum particle creation, which was copious at the Planck time (10−43 s), and their backreaction effects were shown to be so powerful as to rapidly damp away the irregularities in the geometry. It was proposed that the vaccum viscosity due to particle creation can act as an efficient transducer of gravitational entropy (large for BKL-M) to matter entropy, keeping the universe at that very early time in a state commensurate with the WCH. In this essay I expand the scope of that inquiry to a broader range, asking how the WCH would fare with various cosmological theories, from classical to semiclassical to quantum, focusing on their predictions near the cosmological singularities (past and future) or avoidance thereof, allowing the Universe to encounter different scenarios, such as undergoing a phase transition or a bounce. WCH is of special importance to cyclic cosmologies, because any slight irregularity toward the end of one cycle will generate greater anisotropy and inhomogeneities in the next cycle. We point out that regardless of what other processes may be present near the beginning and the end states of the universe, the backreaction effects of quantum field processes probably serve as the best guarantor of WCH because these vacuum processes are ubiquitous, powerful and efficient in dissipating the irregularities to effectively nudge the Universe to a near-zero Weyl curvature condition.