A Review of Metastable Beta Titanium Alloys

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2018-06-30

Advisor

Citation

Kolli, R.P.; Devaraj, A. A Review of Metastable Beta Titanium Alloys. Metals 2018, 8, 506.

Abstract

In this article, we provide a broad and extensive review of beta titanium alloys. Beta titanium alloys are an important class of alloys that have found use in demanding applications such as aircraft structures and engines, and orthopedic and orthodontic implants. Their high strength, good corrosion resistance, excellent biocompatibility, and ease of fabrication provide significant advantages compared to other high performance alloys. The body-centered cubic (bcc) β-phase is metastable at temperatures below the beta transus temperature, providing these alloys with a wide range of microstructures and mechanical properties through processing and heat treatment. One attribute important for biomedical applications is the ability to adjust the modulus of elasticity through alloying and altering phase volume fractions. Furthermore, since these alloys are metastable, they experience stress-induced transformations in response to deformation. The attributes of these alloys make them the subject of many recent studies. In addition, researchers are pursuing development of new metastable and near-beta Ti alloys for advanced applications. In this article, we review several important topics of these alloys including phase stability, development history, thermo-mechanical processing and heat treatment, and stress-induced transformations. In addition, we address recent developments in new alloys, phase stability, superelasticity, and additive manufacturing.

Notes

Rights