Histone modifications induced by MDV infection at early cytolytic and latency phases

dc.contributor.authorMitra, Apratim
dc.contributor.authorLuo, Juan
dc.contributor.authorHe, Yanghua
dc.contributor.authorGu, Yulan
dc.contributor.authorZhang, Huanmin
dc.contributor.authorZhao, Keji
dc.contributor.authorCui, Kairong
dc.contributor.authorSong, Jiuzhou
dc.date.accessioned2021-08-24T18:11:14Z
dc.date.available2021-08-24T18:11:14Z
dc.date.issued2015-04-18
dc.description.abstractMarek’s disease (MD) is a highly contagious, lymphomatous disease of chickens induced by a herpesvirus, Marek’s disease virus (MDV) that is the cause of major annual losses to the poultry industry. MD pathogenesis involves multiple stages including an early cytolytic phase and latency, and transitions between these stages are governed by several host and environmental factors. The success of vaccination strategies has led to the increased virulence of MDV and selective breeding of naturally resistant chickens is seen as a viable alternative. While multiple gene expression studies have been performed in resistant and susceptible populations, little is known about the epigenetic effects of infection. In this study, we investigated temporal chromatin signatures induced by MDV by analyzing early cytolytic and latent phases of infection in the bursa of Fabricius of MD-resistant and –susceptible birds. Major global variations in chromatin marks were observed at different stages of MD in the two lines. Differential H3K27me3 marks were associated with immune-related pathways, such as MAP kinase signaling, focal adhesion and neuroactive ligand receptor interaction, and suggested varying degrees of silencing in response to infection. Immune-related microRNAs, e.g. gga-miR-155 and gga-miR-10b, bore chromatin signatures, which suggested their contribution to MD-susceptibility. Finally, several members of the focal adhesion pathway, e.g. THBS4 and ITGA1, showed marked concordance between gene expression and chromatin marks indicating putative epigenetic regulation in response to MDV infection. Our comprehensive analysis of chromatin signatures, therefore, revealed further clues about the epigenetic effects of MDV infection although further studies are necessary to elucidate the functional implications of the observed variations in histone modifications.en_US
dc.description.urihttps://doi.org/10.1186/s12864-015-1492-6
dc.identifierhttps://doi.org/10.13016/syog-xv0r
dc.identifier.citationMitra, A., Luo, J., He, Y. et al. Histone modifications induced by MDV infection at early cytolytic and latency phases. BMC Genomics 16, 311 (2015).en_US
dc.identifier.urihttp://hdl.handle.net/1903/27646
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.isAvailableAtCollege of Agriculture & Natural Resourcesen_us
dc.relation.isAvailableAtAnimal & Avian Sciencesen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectGrowth Hormone Receptoren_US
dc.subjectChromatin Marken_US
dc.subjectInfected Birden_US
dc.subjectControl Birden_US
dc.subjectH3K27me3 Levelen_US
dc.titleHistone modifications induced by MDV infection at early cytolytic and latency phasesen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s12864-015-1492-6.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.57 KB
Format:
Item-specific license agreed upon to submission
Description: