Quantum Computing with Josephson Junction Circuits
dc.contributor.advisor | Anderson, James R | en_US |
dc.contributor.advisor | Wellstood, Frederick C | en_US |
dc.contributor.author | Xu, Huizhong | en_US |
dc.contributor.department | Physics | en_US |
dc.contributor.publisher | Digital Repository at the University of Maryland | en_US |
dc.contributor.publisher | University of Maryland (College Park, Md.) | en_US |
dc.date.accessioned | 2004-10-09T05:19:14Z | |
dc.date.available | 2004-10-09T05:19:14Z | |
dc.date.issued | 2004-08-27 | en_US |
dc.description.abstract | This work concerns the study of Josephson junction circuits in the context of their usability for quantum computing. The zero-voltage state of a current-biased Josephson junction has a set of metastable quantum energy levels. If a junction is well isolated from its environment, it will be possible to use the two lowest states as a qubit in a quantum computer. I first examine the meaning of isolation theoretically. Using a master equation, I analyzed the effect of dissipation on escape rates and suggested a simple method, population depletion technique, to measure the relaxation time. Using a stochastic Bloch equation to analyze microwave resonance shapes, I found a relation between current noise induced decoherence and the noise spectrum. I then analyze and test a few qubit isolation schemes, including resistive isolation, inductor-capacitor (LC) isolation, and inductor-junction (LJ) isolation. I found the resistive isolation scheme has a severe heating problem. Macroscopic quantum tunneling and energy level quantization were observed in the LC isolated junction qubits at 25 mK. Relaxation times of 4-12 ns and spectroscopic coherence times of 1-3 ns were obtained for these LC isolated qubits. I measured a relaxation time of 50 ns and a spectroscopic coherence time of 5-8 ns for the LJ isolated junction qubit. Both times are much longer than those of the LC isolated qubits. Rabi oscillations were also observed on this sample with a decay time of around 10 ns. Using microwave spectroscopy techniques, I probed quantum phenomena in a coupled macroscopic three-qubit system that is comprised of two Nb/AlOx/Nb Josephson junctions and an LC resonator. The measured spectrum at 25 mK in the frequency range 4-15 GHz agrees well with quantum mechanical calculations, consistent with the existence of entangled states between the three degrees of freedom. These entangled states and a first-order strong coupling between two junction qubits open the possibility of using a resonator as a data bus for information storage and manipulation in a multi-qubit system. The measurements also demonstrate spectroscopy is a powerful tool and can be used to study a composite system with many qubits. | en_US |
dc.format.extent | 4782556 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/1903/1885 | |
dc.language.iso | en_US | |
dc.subject.pqcontrolled | Physics, Condensed Matter | en_US |
dc.title | Quantum Computing with Josephson Junction Circuits | en_US |
dc.type | Dissertation | en_US |
Files
Original bundle
1 - 1 of 1