Quantum Computing with Josephson Junction Circuits
Files
Publication or External Link
Date
Authors
Citation
DRUM DOI
Abstract
This work concerns the study of Josephson junction circuits in the context of their usability for quantum computing. The zero-voltage state of a current-biased Josephson junction has a set of metastable quantum energy levels. If a junction is well isolated from its environment, it will be possible to use the two lowest states as a qubit in a quantum computer.
I first examine the meaning of isolation theoretically. Using a master equation, I analyzed the effect of dissipation on escape rates and suggested a simple method, population depletion technique, to measure the relaxation time. Using a stochastic Bloch equation to analyze microwave resonance shapes, I found a relation between current noise induced decoherence and the noise spectrum.
I then analyze and test a few qubit isolation schemes, including resistive isolation, inductor-capacitor (LC) isolation, and inductor-junction (LJ) isolation. I found the resistive isolation scheme has a severe heating problem. Macroscopic quantum tunneling and energy level quantization were observed in the LC isolated junction qubits at 25 mK. Relaxation times of 4-12 ns and spectroscopic coherence times of 1-3 ns were obtained for these LC isolated qubits. I measured a relaxation time of 50 ns and a spectroscopic coherence time of 5-8 ns for the LJ isolated junction qubit. Both times are much longer than those of the LC isolated qubits. Rabi oscillations were also observed on this sample with a decay time of around 10 ns.
Using microwave spectroscopy techniques, I probed quantum phenomena in a coupled macroscopic three-qubit system that is comprised of two Nb/AlOx/Nb Josephson junctions and an LC resonator. The measured spectrum at 25 mK in the frequency range 4-15 GHz agrees well with quantum mechanical calculations, consistent with the existence of entangled states between the three degrees of freedom. These entangled states and a first-order strong coupling between two junction qubits open the possibility of using a resonator as a data bus for information storage and manipulation in a multi-qubit system. The measurements also demonstrate spectroscopy is a powerful tool and can be used to study a composite system with many qubits.