On The Number of Unlabeled Bipartite Graphs
dc.contributor.author | Atmaca, Abdullah | |
dc.contributor.author | Oruc, Yavuz A | |
dc.date.accessioned | 2017-04-10T18:11:27Z | |
dc.date.available | 2017-04-10T18:11:27Z | |
dc.date.issued | 2016 | |
dc.description | This paper describes a result that has been obtained in joint work with Abdullah Atmaca of Bilkent University, Ankara, Turkey | en_US |
dc.description.abstract | Let $I$ and $O$ denote two sets of vertices, where $I\cap O =\Phi$, $|I| = n$, $|O| = r$, and $B_u(n,r)$ denote the set of unlabeled graphs whose edges connect vertices in $I$ and $O$. It is shown that the following two-sided equality holds. $\displaystyle \frac{\binom{r+2^{n}-1}{r}}{n!} \le |B_u(n,r)| \le 2\frac{\binom{r+2^{n}-1}{r}}{n!} $ | en_US |
dc.identifier | https://doi.org/10.13016/M2T830 | |
dc.identifier.uri | http://hdl.handle.net/1903/19186 | |
dc.language.iso | en_US | en_US |
dc.relation.isAvailableAt | Institute for Systems Research | en_us |
dc.relation.isAvailableAt | Digital Repository at the University of Maryland | en_us |
dc.relation.isAvailableAt | University of Maryland (College Park, MD) | en_us |
dc.relation.ispartofseries | TR_2017-01; | |
dc.subject | Bipartite graph | en_US |
dc.subject | Polya's counting theorem | |
dc.subject | unlabeled graph | |
dc.title | On The Number of Unlabeled Bipartite Graphs | en_US |
dc.type | Other | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OnNumberOfUnlabeledBipartiteGraphsLUBound_1.pdf
- Size:
- 500.34 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main Article