On The Number of Unlabeled Bipartite Graphs

dc.contributor.authorAtmaca, Abdullah
dc.contributor.authorOruc, Yavuz A
dc.date.accessioned2017-04-10T18:11:27Z
dc.date.available2017-04-10T18:11:27Z
dc.date.issued2016
dc.descriptionThis paper describes a result that has been obtained in joint work with Abdullah Atmaca of Bilkent University, Ankara, Turkeyen_US
dc.description.abstractLet $I$ and $O$ denote two sets of vertices, where $I\cap O =\Phi$, $|I| = n$, $|O| = r$, and $B_u(n,r)$ denote the set of unlabeled graphs whose edges connect vertices in $I$ and $O$. It is shown that the following two-sided equality holds. $\displaystyle \frac{\binom{r+2^{n}-1}{r}}{n!} \le |B_u(n,r)| \le 2\frac{\binom{r+2^{n}-1}{r}}{n!} $en_US
dc.identifierhttps://doi.org/10.13016/M2T830
dc.identifier.urihttp://hdl.handle.net/1903/19186
dc.language.isoen_USen_US
dc.relation.isAvailableAtInstitute for Systems Researchen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.relation.ispartofseriesTR_2017-01;
dc.subjectBipartite graphen_US
dc.subjectPolya's counting theorem
dc.subjectunlabeled graph
dc.titleOn The Number of Unlabeled Bipartite Graphsen_US
dc.typeOtheren_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OnNumberOfUnlabeledBipartiteGraphsLUBound_1.pdf
Size:
500.34 KB
Format:
Adobe Portable Document Format
Description:
Main Article