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On The Number Of Unlabeled Bipartite Graphs

Abdullah Atmaca∗ and A. Yavuz Oruç†

Abstract

Let I and O denote two sets of vertices, where I ∩ O = Φ, |I| = n, |O| = r, and Bu(n, r) denote
the set of unlabeled graphs whose edges connect vertices in I and O. It is shown that the following
two-sided equality holds. (

r+2n−1
r

)
n!

≤ |Bu(n, r)| ≤ 2

(
r+2n−1

r

)
n!

(1)
where n < r.

1 Introduction

This work was motivated in part by a counting problem that arises in the representation of calls in
interconnection networks [1]. It has also been investigated in connection with the enumeration of
unlabeled bipartite graphs and binary matrices[2]. Let (I,O,E) denote a graph with two disjoint
sets of vertices, I, called left vertices and a set of vertices, O, called right vertices, where each edge
in E connects a left vertex with a right vertex. We let n = |I|, r = |O|, and refer to such a graph as
an (n, r)-bipartite graph. Let G1 = (I,O,E1) and G2 = (I,O,E2) be two (n, r)-bipartite graphs,
and α : I → I and β : O → O be both bijections. The pair (α, β) is an isomorphism between
G1 and G2 provided that ((α(v1), β(v2)) ∈ E2 if and only if (v1, v2) ∈ E1, ∀v1 ∈ I, ∀v2 ∈ O. It is
easy to establish that this mapping induces an equivalence relation, and partitions the set of 2nr

(n, r)-bipartite graphs into equivalence classes. This equivalence relation captures the fact that the
vertices in I and O are unlabeled, and so each class of (n, r)-bipartite graphs can be represented by
any one of the graphs in that class without identifying the vertices in I and O. Let Bu(n, r) denote
any set of (n, r)-bipartite graphs that contains exactly one such graph from each of the equivalence
classes of (n, r)-bipartite graphs induced by the isomorphism we defined. It is easy to see that
determining |Bu(n, r)| amounts to an enumeration of non-isomorphic (n, r)-bipartite graphs that
will henceforth be referred to as unlabeled (n, r)-bipartite graphs.

In [2], Harrison used Pólya’s counting theorem to obtain an expression to compute the number
of non-equivalent n × r binary matrices. This expression contains a nested sum, in which one
sum is carried over all partitions of n while the other is carried over all partitions of r, where the
argument of the nested sum involves factorial, exponentiation and greatest common divisor (gcd)
computations. He further established that this formula also enumerates the number of unlabeled
(n, r)-bipartite graphs, i.e., |Bu(n, r)|. A number of results indirectly related to Harrison’s work
and our result appeared in the literature [3, 4, 5, 6]. In particular, the set Bu(n, r) in our work
coincides with the set of bicolored graphs described in Section 2 in [3]. Whereas [3] provides a
counting polynomial for the number of bicolored graphs, we focus on the asymptotic behavior of
|Bu(n, r)| in this paper. Counting polynomials for other families of bipartite graphs were also
reported in [4]. Likewise, [5, 6] provide generating functions for related bipartite graph counting
problems without an asymptotic analysis as provided in this paper. The species and category
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theory approach in [6] leads to a summation formula for the number of unlabeled bipartite graphs
with v vertices. This formula is similar to the expression in (8) in [2] except that the latter formula
counts the number of unlabeled bipartite graphs whose vertices are divided into two disjoint sets
as in the model that is used in this paper. As such, for fixed n and r, the set Bu(n, r) forms a
subset of the set of unlabeled bipartite graphs with v vertices that are counted in [5, 6], where
v = n + r. It should also be mentioned that some results on asymptotic enumeration of certain
families of bipartite graphs (binary matrices) have been reported (see for example, [7, 8, 9, 10]).
To the best of our knowledge, our work provides the first asymptotic enumeration of unlabelled
bipartite graphs.

That |Bu(1, r)| = r + 1 trivially holds. Exact closed form expressions for |Bu(n, r)| for n = 2,
n = 3, and any integer r > n are also given elsewhere[11]. The main result of this paper is the
proof of the two-sided inequality given in (1).

Let Sn denote the symmetric group of permutations of degree n acting on set N = {1, 2, · · · , n}.
Suppose that the n! permutations in Sn are indexed by 1, 2, · · · , n! in some arbitrary, but fixed
manner. The cycle index polynomial of Sn is defined as follows([12],see p.35, Eqn. 2.2.1):

ZSn(x1, x2, · · · , xn) =
1

n!

n!∑
m=1

n∏
k=1

x
pm,k
k (2)

where pm,k denotes the number of cycles of length k in the disjoint cycle representation of the mth

permutation in Sn, and
∑n

k=1 kpm,k = n,∀m = 1, 2, · · · , n!.

Let Sn×Sr denote the direct product of symmetric groups Sn and Sr acting on N = {1, 2, · · · , n}
and R = {1, 2, · · · , r}, respectively, where n and r are positive integers such that n < r. It can
be inferred from Harrison ([13],Lemma 4.1 and Theorem 4.2) that the cycle index polynomial of
Sn × Sr is given by [13]

ZSn×Sr(x1, x2, · · · , xnr) = ZSn(x1, x2, · · · , xn) � ZSr(x1, x2, · · · , xr), (3)

where � is a particular polynomial multiplication that distributes over ordinary addition, and in
which the multiplication Xm

⊙
Xt of two product terms1, Xm = x

pm,1
1 x

pm,2
2 · · ·xpm,nn and Xt =

x
qt,1
1 x

qt,2
2 · · ·xqt,rr in ZSn and ZSr , respectively, is defined as2

Xm

⊙
Xt =

n∏
k=1

r∏
j=1

x
pm,kqt,jgcd(k,j)

lcm(k,j) . (4)

Harrison further proved that [2]:

|Bu(n, r)| = ZSn×Sr(2, 2, .., 2︸ ︷︷ ︸
nr

) (5)

when3 n 6= r.

We need one more fact that can be found in Harary ([12], p.36) in order to compute the stated
lower and upper bound in (1):

ZSr(x1, x2, . . . . . . , xr) =
1

r

r∑
i=1

xiZSr−i(x1, x2, . . . . . . , xr−i) (6)

where ZS0() = 1.

1Note that we will not display the zero powers of x1, x2, · · · in a cycle index polynomial. We will use the same
convention for all other cycle index polynomials throughout the paper.

2The lcm(a,b) and gcd(a,b) denote least common multiple and greatest common divisor of a and b.
3As noted in [2], n = r case involves a different cycle index polynomial. Bounding |Bu(n, n)| will be considered

separately at the end of the paper.
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2 The Lower Bound for |Bu(n, r)|
From (3) and (5) we know that

|Bu(n, r)| =ZSn×Sr(2, 2, . . . , 2), (7)

=[ZSn(x1, x2, · · · , xn) � ZSr(x1, x2, · · · , xr)](2, 2, . . . , 2). (8)

One of the terms in ZSn(x1, x2, · · · , xn) is 1
n!(x

n
1 ) and it is associated with the identity permutation

in Sn. Using this fact, we find

|Bu(n, r)| =ZSn×Sr(2, 2, . . . , 2), (9)

=[ZSn(x1, x2, · · · , xn) � ZSr(x1, x2, · · · , xr)](2, 2, . . . , 2), (10)

=

[(
1

n!
(xn1 + . . .)

)
� ZSr(x1, x2, · · · , xr)

]
(2, 2, . . . , 2), (11)

=

[(
1

n!
xn1

)
� ZSr(x1, x2, . . . , xr)

]
(2, 2, . . . , 2) + . . . , (12)

=
1

n!

{[
xn1 �

1

r!

r!∑
t=1

r∏
j=1

x
qt,j
j

]
(2, 2, ..., 2)

}
+ . . . , (13)

=
1

n!

{[ 1

r!

r!∑
t=1

xn1
⊙ r∏

j=1

x
qt,j
j

]
(2, 2, ..., 2)

}
+ . . . , (14)

=
1

n!

{[ 1

r!

r!∑
t=1

r∏
j=1

x
nqt,jgcd(1,j)

lcm(1,j)

]
(2, 2, ..., 2)

}
+ . . . , (15)

=
1

n!

{[ 1

r!

r!∑
t=1

r∏
j=1

x
nqt,j
j

]
(2, 2, ..., 2)

}
+ . . . , (16)

=
1

n!

{
1

r!

r!∑
t=1

r∏
j=1

2nqt,j

}
+ . . . , (17)

=
1

n!

{
1

r!

r!∑
t=1

r∏
j=1

(2n)qt,j

}
+ . . . , (18)

=
1

n!

{
ZSr(2

n, 2n, . . . , 2n)

}
+ . . . . (19)

This proves
|Bu(n, r)| ≥ 1

n!
ZSr(2

n, 2n, . . . , 2n). (20)

Proposition 1.

ZSr(2
n, 2n, . . . , 2n) =

(
r + 2n − 1

r

)
Proof. Using (6), we have

rZSr(2
n, 2n, . . . , 2n) =

r∑
i=1

2nZSr−i(2
n, 2n, . . . , 2n), (21)

and
(r − 1)ZSr−1(2n, 2n, . . . , 2n) =

r−1∑
i=1

2nZSr−1−i(2
n, 2n, . . . , 2n). (22)

Subtracting the second equation from the first one gives
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rZSr(2
n, 2n, . . . , 2n)− (r − 1)ZSr−1(2n, 2n, . . . , 2n) = 2nZSr−1(2n, 2n, . . . , 2n), (23)

rZSr(2
n, 2n, . . . , 2n) = (r + 2n − 1)ZSr−1(2n, 2n, . . . , 2n), (24)

ZSr(2
n, 2n, . . . , 2n) = (

r + 2n − 1

r
)ZSr−1(2n, 2n, . . . , 2n). (25)

Expanding the last equation inductively, we obtain

ZSr(2
n, 2n, . . . , 2n) = (

r + 2n − 1

r
)(
r + 2n − 2

r − 1
)ZSr−2(2n, 2n, . . . , 2n), (26)

ZSr(2
n, 2n, . . . , 2n) = (

r + 2n − 1

r
)(
r + 2n − 2

r − 1
)(
r + 2n − 3

r − 2
)ZSr−3(2n, 2n, . . . , 2n), (27)

ZSr(2
n, 2n, . . . , 2n) = (

r + 2n − 1

r
)(
r + 2n − 2

r − 1
)(
r + 2n − 3

r − 2
) . . . (

2n

1
)ZS0(). (28)

Noting that ZS0() = 1, and combining the product terms together, we obtain

ZSr(2
n, 2n, . . . , 2n) =

(
r + 2n − 1

r

)
. (29)

Combining Proposition 1 with (20) proves the lower bound:

Theorem 1.

|Bu(n, r)| ≥ 1

n!
ZSr(2

n, 2n, . . . , 2n) ≥
(
r+2n−1

r

)
n!

. (30)

3 An Upper Bound for |Bu(n, r)|
We first note that |Bu(1, r)| = r + 1 =

(
r+21−1

r

)
/1! ≤ 2

(
r+21−1

r

)
/1!. Hence the upper bound that is

claimed in the abstract holds for n = 1. Proving that it also holds for n ≥ 2 requires a more careful
analysis of the terms in

ZSn(x1, x2, · · · , xn) � ZSr(x1, x2, · · · , xr). (31)

We first express ZSn(x1, x2, · · · , xn) as

ZSn(x1, x2, . . . , xn) = ZSn [1] + ZSn [2] + . . .+ ZSn [n!], (32)
where

ZSn [1] =
1

n!
xn1 (33)

ZSn [2] =
1

n!
xn−21 x2 (34)

The first term is associated with the identity permutation and the second term is associated with
any one of the permutations in which all but two of the elements in N = 1, 2, · · · , n are fixed to
themselves. The remaining ZSn [i] = 1

n!

∏n
k=1 x

pi,k
k , 3 ≤ i ≤ n! terms represent all the other product

terms in the cycle index polynomial of Sn with no particular association with the permutations in
Sn. Similarly, we set ZSr(x1, x2, . . . , xr) = 1

r!

∑r!
t=1

∏r
j=1 x

qt,j
j without identifying the actual product

terms with any particular permutation in Sr.

The following equations obviously hold as the sum of the lengths of all the cycles in any cycle
disjoint representation of a permutation in Sn and Sr must be n and r, respectively.

n∑
k=1

kpi,k = n, 1 ≤ i ≤ n!, (35)

r∑
j=1

jqt,j = r, 1 ≤ t ≤ r! (36)

Now we can proceed with the computation of the upper bound for |Bu(n, r)|. First, we note
that
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|Bu(n, r)| =ZSn×Sr(2, 2, 2, . . . , 2), (37)

= [ZSn(x1, x2, . . . , xn) � ZSr(x1, x2, · · · , xr)] (2, 2, . . . , 2), (38)

= [(ZSn [1] + ZSn [2] + . . .+ ZSn [n!]) � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2), (39)

= [ZSn [1] � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2) + [ZSn [2] � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2)

+ . . .+ [ZSn [n!] � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2). (40)

The first term in (40) is directly computed from Proposition 1. Thus, it suffices to upper bound
each of the remaining terms in (40) to upper bound |Bu(n, r)|. This will be established by proving
[ZSn [2] � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2) ≥ [ZSn [i] � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2),∀i, 3 ≤ i ≤
n!. We first need some preliminary facts.

Lemma 1. For all i, 1 ≤ i ≤ n!,

[ZSn [i] � ZSr(x1, x2, . . . , xr)](2, . . . , 2) = 1
n!ZSr(2

∑n
k=1 pi,kgcd(k,1), . . . , 2

∑n
k=1 pi,kgcd(k,r)). (41)

Proof.

[ZSn [i] � ZSr(x1, x2, . . . , xr)](2, 2, . . . , 2) =

 1

n!

n∏
k=1

x
pi,k
k �

 1

r!

r!∑
t=1

r∏
j=1

x
qt,j
j

 (2, 2, . . . , 2), (42)

=

 1

n!r!

r!∑
t=1

n∏
k=1

x
pi,k
k

⊙ r∏
j=1

x
qt,j
j

 (2, 2, . . . , 2), (43)

=

 1

n!r!

r!∑
t=1

r∏
j=1

n∏
k=1

x
pi,kqt,jgcd(k,j)

lcm(k,j)

 (2, 2, . . . , 2), (44)

=
1

n!r!

r!∑
t=1

r∏
j=1

n∏
k=1

2pi,kqt,jgcd(k,j), (45)

=
1

n!

 1

r!

r!∑
t=1

r∏
j=1

(2
∑n
k=1 pi,kgcd(k,j))qt,j

 , (46)

=
1

n!
ZSr(2

∑n
k=1 pi,kgcd(k,1), . . . , 2

∑n
k=1 pi,kgcd(k,r)). (47)

Corollary 1.

[ZSn [2] � ZSr(x1, x2, . . . , xr)](2, . . . , 2) = 1
n!ZSr(2

n−1, 2n, 2n−1, 2n, . . .). (48)

Proof. By definition, p2,1 = n − 2, p2,2 = 1, p2,k = 0, 3 ≤ k ≤ n. Substituting these into the last
equation in Lemma 1 proves the statement.

Lemma 2. ∑n
k=1 pi,k ≤ n− 1, ∀i, 2 ≤ i ≤ n!. (49)

Proof. Recall from (35) that
∑n

k=1 kpi,k = n, ∀i, 1 ≤ i ≤ n!. Hence
∑n

k=1 pi,k = n−
∑n

k=1(k−1)pi,k,
and so the maximum value of

∑n
k=1 pi,k occurs when

∑n
k=1(k − 1)pi,k is minimized. Furthermore,

at least one of pi,k,∀i, 2 ≤ i ≤ n! must be ≥ 1 for some k ≥ 2 since none of the permutations we
consider is the identity. Thus,

∑n
k=1(k − 1)pi,k ≥ 1 and the statement follows.

Lemma 3. If
∑n

k=1 pi,kgcd(k, α + 1) = n, then
∑n

k=1 pi,kgcd(k, α) ≤ n− 1, ∀i, 2 ≤ i ≤ n! and for
any integer α ≥ 2.

Proof. If
∑n

k=1 pi,kgcd(k, α+ 1) = n as stated in the lemma, then we must have gcd(k, α+ 1) = k
where pi,k ≥ 1, ∀i, 2 ≤ i ≤ n!. Therefore k ≤ α+ 1. Now if k = α+ 1, then trivially gcd(k, α) < k.
On the other hand if k < α+1, then α+1 must be a multiple of k. Therefore, α can not be a multiple
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of k for any k ≥ 2. At this point we find that gcd(k, α) < k, ∀k, 2 ≤ k ≤ n. Since as in the previous
lemma, none of the permutations we consider is the identity, at least one of pi,k, ∀i, 2 ≤ i ≤ n! must
be ≥ 1 for some k ≥ 2 and so we conclude that

∑n
k=1 pi,kgcd(k, α) ≤ n− 1.

Lemma 4. ZSr(2
n−1, 2n, . . .) ≥ ZSr−1(2n−1, 2n, . . .), for 2 ≤ n.

Proof. Using (6), we get

rZSr(2
n−1, 2n, . . .) =

r−β1∑
odd i

2n−1ZSr−i(2
n−1, 2n, . . .) +

r−β2∑
even i

2nZSr−i(2
n−1, 2n, . . .), (50)

where β1 = 1, β2 = 0 if r is even and β1 = 0, β2 = 1 if r is odd. Similarly, for r − 1,

(r − 1)ZSr−1(2n−1, 2n, . . .) =

r−1−β2∑
odd i

2n−1ZSr−1−i(2
n−1, 2n, . . .)+

r−1−β1∑
even i

2nZSr−1−i(2
n−1, 2n, . . .). (51)

Subtracting 51 from 50 gives

rZSr(2
n−1, 2n, . . .)− (r − 1)ZSr−1(2n−1, 2n, . . .)

=

r−β2∑
even i

2nZSr−i(2
n−1, 2n, . . .)−

r−1−β2∑
odd i

2n−1ZSr−1−i(2
n−1, 2n . . .)

+

r−β1∑
odd i

2n−1ZSr−i(2
n−1, 2n, . . .)−

r−1−β1∑
even i

2nZSr−1−i(2
n−1, 2n, . . .), (52)

rZSr(2
n−1, 2n, . . .)− (r − 1)ZSr−1(2n−1, 2n, . . .)

=

r−β2∑
even i

2n−1ZSr−i(2
n−1, 2n, . . .) + 2n−1ZSr−1(2n−1, 2n, . . .)−

r−1−β1∑
even i

2n−1ZSr−1−i(2
n−1, 2n, . . .), (53)

rZSr(2
n−1, 2n, . . .) = (r − 1 + 2n−1)ZSr−1(2n−1, 2n . . .)

+ 2n−1

(
r−β2∑
even i

ZSr−i(2
n−1, 2n, . . .)−

r−1−β1∑
even i

ZSr−1−i(2
n−1, 2n, . . .)

)
. (54)

We now prove the lemma by induction on r.

Basis r = 1. By (6), ZS1(2n−1) = 2n−1ZS0() = 2n−1. So we have ZS1(2n−1) = 2n−1 ≥ ZS0() = 1
for 2 ≤ n.

Induction Step. Suppose that the lemma holds from 1 to r−1. That is, ZSr−i −ZSr−i−1 ≥ 0, 1 ≤
i ≤ r − 1. Now if r is even then the difference of the two sums in (54) becomes (ZSr−2 − ZSr−3) +
(ZSr−4−ZSr−5) . . .+(ZS2−ZS1)+ZS0 , which is clearly ≥ 0 by the induction hypothesis. Therefore,

rZSr(2
n−1, 2n, . . .) ≥ (r − 1 + 2n−1)ZSr−1(2n−1, 2n, . . .), (55)

ZSr(2
n−1, 2n, . . .) ≥ ZSr−1(2n−1, 2n, . . .), n ≥ 2. (56)

On the other hand, if r is odd then the difference of the two sums in the same equation becomes
(ZSr−2 − ZSr−3) + (ZSr−4 − ZSr−5) . . . + (ZS2 − ZS1) + (ZS1 − ZS0), which is again ≥ 0, and the
statement follows in this case as well.

We now are ready to prove that

[ZSn[2] � ZSr(x1, x2, . . . , xr)](2,. . . ,2)≥ [ZSn [i] � ZSr(x1, x2, . . . , xr)](2,. . . ,2),∀i, 2 ≤ i≤n!.
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Theorem 2.

[ZSn [2] � ZSr(x1, x2, . . . , xr)](2, 2, . . . , 2) ≥ [ZSn [i] � ZSr(x1, x2, . . . , xr)](2, 2, . . . , 2) (57)

∀i, 2 ≤ i ≤ n! and ∀n, n < r.
Proof. Using Lemma 1 and Corollary 1 it suffices to show that

ZSr(2
n−1, 2n, . . .) ≥ ZSr(2

∑n
k=1 pi,kgcd(k,1), . . . , 2

∑n
k=1 pi,kgcd(k,r)). (58)

We prove the statement by induction on r.

Basis: (r = 1). By (6), ZS1(2n−1) = 2n−1ZS0() = 2n−1. Similarly, by (6), ZS1(2
∑n
k=1 pi,kgcd(k,1)) =

2
∑n
k=1 pi,kgcd(k,1)ZS0() = 2

∑n
k=1 pi,k . Given that

∑n
k=1 pi,k ≤ n− 1 by Lemma 2, we have 2

∑n
k=1 pi,k ≤

2n−1, and hence the statement holds in this case.

Induction Step: First, by (6),

ZSr(2
n−1, 2n, . . .) =

1

r


2n−1ZSr−1(2n−1, 2n, . . .)
+2nZSr−2(2n−1, 2n, . . .)

+2n−1ZSr−3(2n−1, 2n, . . .)
...

+2βZS0()

 , (59)

where β = n if r is even and β = n− 1 if r is odd. Similarly,

ZSr(2
∑n
k=1 pi,kgcd(k,1), . . . , 2

∑n
k=1 pi,kgcd(k,r)) =

1

r


2
∑n
k=1 pi,kgcd(k,1)ZSr−1(2

∑n
k=1 pi,kgcd(k,1), . . .)

+2
∑n
k=1 pi,kgcd(k,2)ZSr−2(2

∑n
k=1 pi,kgcd(k,1), . . .)

+2
∑n
k=1 pi,kgcd(k,3)ZSr−3(2

∑n
k=1 pi,kgcd(k,1), . . .)

...

+2
∑n
k=1 pi,kgcd(k,r)ZS0()


(60)

Subtracting (60) from (59), we have

ZSr(2
n−1, 2n, . . .)− ZSr(2

∑n
k=1 pi,kgcd(k,1), . . . , 2

∑n
k=1 pi,kgcd(k,r))

=
1

r


2n−1ZSr−1(2n−1, 2n, . . .)
+2nZSr−2(2n−1, 2n, . . .)

+2n−1ZSr−3(2n−1, 2n, . . .)
...

+2βZS0()

−
1

r


2
∑n
k=1 pi,kgcd(k,1)ZSr−1(2

∑n
k=1 pi,kgcd(k,1), 2

∑n
k=1 pi,kgcd(k,2), . . .)

+2
∑n
k=1 pi,kgcd(k,2)ZSr−2(2

∑n
k=1 pi,kgcd(k,1), 2

∑n
k=1 pi,kgcd(k,2), . . .)

+2
∑n
k=1 pi,kgcd(k,3)ZSr−3(2

∑n
k=1 pi,kgcd(k,1), 2

∑n
k=1 pi,kgcd(k,2), . . .)

...

+2
∑n
k=1 pi,kgcd(k,r)ZS0()


(61)

Thus, it suffices to show that the right hand side of the above equation is ≥ 0, or

2n−1ZSr−1(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kgcd(k,1)ZSr−1(2

∑n
k=1 pi,kgcd(k,1), 2

∑n
k=1 pi,kgcd(k,2), . . .)

+2nZSr−2(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kgcd(k,2)ZSr−2(2

∑n
k=1 pi,kgcd(k,1), 2

∑n
k=1 pi,kgcd(k,2), . . .

+2n−1ZSr−3(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kgcd(k,3)ZSr−3(2

∑n
k=1 pi,kgcd(k,1), 2

∑n
k=1 pi,kgcd(k,2), . . .)

...

+2βZS0()− 2
∑n
k=1 pi,kgcd(k,r)ZS0() ≥ 0.

(62)

Now by induction hypothesis, (58) holds for 1, 2, · · · , r − 1. Thus, (62) can be replaced by
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2n−1ZSr−1(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kgcd(k,1)ZSr−1(2n−1, 2n, . . .)

+2nZSr−2(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kgcd(k,2)ZSr−2(2n−1, 2n, . . .)

+2n−1ZSr−3(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kgcd(k,3)ZSr−3(2n−1, 2n, . . .)
...

+2βZS0()− 2
∑n
k=1 pi,kgcd(k,r)ZS0() ≥ 0.

(63)

Moreover, invoking Lemma 2 gives

2n−1ZSr−1(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kgcd(k,1)ZSr−1(2n−1, 2n . . .)

≥ 2n−1ZSr−1(2n−1, 2n, . . .)− 2n−1ZSr−1(2n−1, 2n, . . .) = 0. (64)

Hence the difference in the first line in (63) ≥ 0, and therefore it is sufficient to show that

2nZSr−2(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kgcd(k,2)ZSr−2(2n−1, 2n, . . .)

+2n−1ZSr−3(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kgcd(k,3)ZSr−3(2n−1, 2n, . . .)
...

+2βZS0()− 2
∑n
k=1 pi,kgcd(k,r)ZS0() ≥ 0.

(65)

To prove this inequality, we will combine four terms in pairs of consecutive lines for the remaining
r − 1 lines by considering two cases. If r is odd then β = n − 1 and no extra line remains in this
pairing. Thus, for all even α, 2 ≤ α ≤ r − 1, it suffices to prove

2nZSr−α(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kgcd(k,α)ZSr−α(2n−1, 2n . . .),

+2n−1ZSr−α−1(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kgcd(k,α+1)ZSr−α−1(2n−1, 2n . . .) ≥ 0.

(66)

or,

2nZSr−α(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kkZSr−α(2n−1, 2n . . .)

+2n−1ZSr−α−1(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kgcd(k,α+1)ZSr−α−1(2n−1, 2n . . .) ≥ 0.

(67)

Now if
∑n

k=1 pi,kgcd(k, α+ 1) ≤ n− 1, then

2nZSr−α(2n−1, 2n, . . .)− 2
∑n
k=1 pi,kkZSr−α(2n−1, 2n, . . .)

+2n−1ZSr−α−1(2n−1, 2n, . . .)− 2n−1ZSr−α−1(2n−1, 2n, . . .) ≥
2nZSr−α(2n−1, 2n, . . .)− 2nZSr−α(2n−1, 2n, . . .)

+2n−1ZSr−α−1(2n−1, 2n, . . .)− 2n−1ZSr−α−1(2n−1, 2n, . . .) = 0.
(68)

On the other hand, if
∑n

k=1 pi,kgcd(k, α + 1) = n, then we prove (66) by noting that∑n
k=1 pi,kgcd(k, α) ≤ n− 1 by Lemma 3. Thus,

2nZSr−α(2n−1, 2n, . . .)− 2n−1ZSr−α(2n−1, 2n, . . .) (69)

+ 2n−1ZSr−α−1(2n−1, 2n, . . .)− 2nZSr−α−1(2n−1, 2n, . . .)

= 2n−1ZSr−α(2n−1, 2n, . . .)− 2n−1ZSr−α−1(2n−1, 2n, . . .)

2n−1
[
ZSr−α(2n−1, 2n, . . .)− ZSr−α−1(2n−1, 2n, . . .)

]
(70)

Now by Lemma 4, ZSr−α(2n−1, 2n, . . .) ≥ ZSr−α−1(2n−1, 2n, . . .) and the statement is proved for
odd r, n < r. For even r, the last line in (65) is left out in the pairing of consecutive lines and
β = n. In this case we have 2nZS0() − 2

∑n
k=1 pi,kgcd(k,r)ZS0() ≥ 2nZS0() − 2

∑n
k=1 pi,kkZS0() =

2nZS0()− 2nZS0() = 0 and the statement follows.
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Theorem 3.

[ZSn [2] � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2) ≤
(
r+2n−1

r

)
n!(n!− 1)

. (71)

where 2 ≤ n < r.
Proof. By Corollary 1

[ZSn [2] � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2) =
1

n!
ZSr(2

n−1, 2n, . . .). (72)

Thus, to prove the theorem, it is sufficient to show
1

n!
ZSr(2

n−1, 2n, 2n−1, 2n, . . .) ≤
(
r+2n−1

r

)
n!(n!− 1)

(73)

where 2 ≤ n < r.

Now, using (6), we get

rZSr(2
n−1, 2n, . . .) =

r−β1∑
odd i

2n−1ZSr−i(2
n−1, 2n, . . .) +

r−β2∑
even i

2nZSr−i(2
n−1, 2n, . . .) (74)

where β1 = 1, β2 = 0 if r is even and β1 = 0, β2 = 1 if r is odd. Similarly, for r − 2,

(r − 2)ZSr−2(2n−1, 2n, . . .) =

r−2−β1∑
odd i

2n−1ZSr−2−i(2
n−1, 2n, . . .) +

r−2−β2∑
even i

2nZSr−2−i(2
n−1, 2n, . . .).

(75)
Subtracting (75) from (74) gives

rZSr(2
n−1, 2n, . . .)− (r − 2)ZSr−2(2n−1, 2n, . . .)

= 2n−1ZSr−1(2n−1, 2n, . . .) + 2nZSr−2(2n−1, 2n, . . .), (76)

rZSr(2
n−1, 2n, . . .) = 2n−1ZSr−1(2n−1, 2n, . . .) + (r − 2 + 2n)ZSr−2(2n−1, 2n, . . .), (77)

ZSr(2
n−1, 2n, . . .) =

1

r

[
2n−1ZSr−1(2n−1, 2n, . . .) + (r − 2 + 2n)ZSr−2(2n−1, 2n, . . .)

]
. (78)

We will use induction on r and the recurrence given in (78) to prove this inequality.

Basis. Case r = 3: Recall that

ZSn [2] =
1

n!
xn−21 x2, (79)

ZS3(x1, x2, x3) =
1

3!
(x31 + 3x1x2 + 2x3). (80)

Thus,

[ZSn [2] � ZS3(x1, x2, x3)] (2, 2, . . . , 2)

=

[
1

n!
(xn−21 x2) �

1

3!
(x31 + 3x1x2 + 2x3)

]
(2, 2, . . . , 2), (81)

=
1

3!n!

[
(xn−21 x2)

⊙
x31 + (xn−21 x2)

⊙
(3x1x2) + (xn−21 x2)

⊙
2x3

]
(2, 2, . . . , 2), (82)

=
1

3!n!

[
x
3(n−2)
1 x32 + 3xn−21 x2x

n−2
2 x22 + 2xn−23 x6

]
(2, 2, . . . , 2), (83)

=
1

3!n!

[
23n−3 + 3× 22n−1 + 2n

]
≤
(
r+2n−1

r

)
n!(n!− 1)

. (84)

for n = 2 and r = 3.
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Case r = 4. In this case we have

[ZSn [2] � ZS4(x1, x2, x3, x4)] (2, . . . , 2)

=

[
1

n!
(xn−21 x2) �

1

4!
(x41 + 6x21x2 + 3x22 + 8x1x3 + 6x4)

]
(2, . . . , 2), (85)

=
1

4!n!

[
(xn−21 x2)

⊙
x41 + (xn−21 x2)

⊙
(6x21x2) + (xn−21 x2)

⊙
3x22

+ (xn−21 x2)
⊙

(8x1x3) + (xn−21 x2)
⊙

6x4

]
(2, . . . , 2), (86)

=
1

4!n!

[
x
4(n−2)
1 x42 + 6x

2(n−2)
1 xn−22 x22x

2
2 + 3x

2(n−2)
1 x42 + 8xn−21 xn−23 x2x6 + 6xn−24 x24

]
(2, . . . , 2),

(87)

=
1

4!n!

[
24n−4 + 6× 23n−2 + 3× 22n + 8× 22n−2 + 6× 2n

]
, (88)

=
1

4!n!

[
24n−4 + 6× 23n−2 + 5× 22n + 6× 2n

]
. (89)

Now, given that r = 4, the only possible values of n are 2 and 3. If n = 2 then:

[ZSn [2] � ZS4(x1, x2, x3, x4)] (2, 2, . . . , 2) =
1

4!n!

[
24n−4 + 6× 23n−2 + 5× 22n + 6× 2n

]
, (90)

=
1

4!2!

[
24 + 6× 24 + 5× 24 + 6× 22

]
, (91)

=
16 + 96 + 80 + 24

4!2!
= 4.5, (92)

≤
(
r+2n−1

r

)
n!(n!− 1)

=

(
7
4

)
2!(2!− 1)

=
35

2
= 17.5. (93)

On the other hand, if n = 3 then:

[ZSn [2] � ZS4(x1, x2, x3, x4)] (2, 2, . . . , 2) =
1

4!n!

[
24n−4 + 6× 23n−2 + 5× 22n + 6× 2n

]
, (94)

=
1

4!3!

[
28 + 6× 27 + 5× 26 + 6× 23

]
, (95)

=
256 + 768 + 320 + 48

4!3!
=

29

3
, (96)

≤
(
r+2n−1

r

)
n!(n!− 1)

=

(
11
4

)
3!(3!− 1)

=
330

30
= 11. (97)

Induction Step: Suppose that (73) holds for all values from 3 to r−1. Using the recurrence given
in (78) and the induction hypothesis for r − 1 and r − 2 we get:

1

n!
ZSr(2

n−1, 2n, . . .) =
1

n!r

[
2n−1ZSr−1(2n−1, 2n, . . .) + (r − 2 + 2n)ZSr−2(2n−1, 2n, . . .)

]
, (98)

=
2n−1

n!r
ZSr−1(2n−1, 2n, . . .) +

r − 2 + 2n

n!r
ZSr−2(2n−1, 2n, . . .), (99)

≤ 2n−1

r

(
r+2n−2
r−1

)
n!(n!− 1)

+
r − 2 + 2n

r

(
r+2n−3
r−2

)
n!(n!− 1)

, (100)
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≤ 2n−1

n!(n!− 1)r

(r + 2n − 2)!

(r − 1)!(2n − 1)!
+
r − 2 + 2n

n!(n!− 1)r

(r + 2n − 3)!

(r − 2)!(2n − 1)!
, (101)

≤ 2n−1

n!(n!− 1)r

(r + 2n − 2)!

(r − 1)!(2n − 1)!
+

(r − 1)(r + 2n − 2)!

n!(n!− 1)r!(2n − 1)!
, (102)

1

n!
ZSr(2

n−1, 2n, . . .) ≤ (r + 2n − 2)!(r + 2n−1 − 1)

n!(n!− 1)r!(2n − 1)!
≤ (r + 2n − 2)!(r + 2n − 1)

n!(n!− 1)r!(2n − 1)!
, (103)

≤ (r + 2n − 1)!

n!(n!− 1)r!(2n − 1)!
=

1

n!(n!− 1)

(
r + 2n − 1

r

)
, (104)

≤ 1

n!(n!− 1)

(
r + 2n − 1

r

)
. (105)

This completes the proof.

Combining Theorems 2 and 3 concludes the upper bound calculation.

Theorem 4. |Bu(n, r)| ≤ 2(r+2n−1
r )
n! .

Proof.
|Bu(n, r)| = ZSn×Sr(2, 2, . . . , 2), (106)

= [ZSn(x1, x2, . . . , xn) � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2), (107)

= [(ZSn [1] + ZSn [2] + . . .+ ZSn [n!]) � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2), (108)

= [(ZSn [1]) � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2) + [(ZSn [2]) � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2)

+ . . .+ [(ZSn [n!]) � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2), (109)

≤ [(ZSn [1]) � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2) + [(ZSn [2]) � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2)

+ . . .+ [(ZSn [2]) � ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2), (110)

≤
(
r+2n−1

r

)
n!

+ (n!− 1)

(
r+2n−1

r

)
n!(n!− 1)

=
2
(
r+2n−1

r

)
n!

. (111)

Remark 1. It should be mentioned that, if r < n, using the relation |Bu(n, r)| = |Bu(r, n)| gives

|Bu(n, r)| ≤ 2

(
n+2r−1

n

)
r!

. (112)

Likewise, if r < n, Theorem 1 and |Bu(n, r)| = |Bu(r, n)| together imply

|Bu(n, r)| ≥
(
n+2r−1

n

)
r!

. (113)

Furthermore, if r = n, using the cycle index representation of bi-colored graphs provided in Section
3 in [3] and Theorem 1 gives

|Bu(n, n)| ≥
(
n+2n−1

n

)
2n!

. (114)

The Z ′ term in the cycle index representation of bi-colored graphs in [3] prevents us from deriving
an upper bound for |Bu(n, n)| that is a constant multiple of the lower bound in this case. On the
other hand, an obvious upper bound for |Bu(n, n)| can be derived by setting r = n + 1 in the
inequality in Theorem 4.

Appendix:

Table 1 lists ln |Bu(n, r)| along with the natural logarithms of lower and upper bounds for 1 ≤ n <
r ≤ 15.
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      n      r 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
1.09861
1.09861
1.79176

1.38629
1.38629
2.07944

1.60944
1.60944
2.30259

1.79176
1.79176
2.48491

1.94591
1.94591
2.63906

2.07944
2.07944
2.77259

2.19722
2.19722
2.89037

2.30259
2.30259
2.99573

2.3979
2.3979
3.09104

2.48491
2.48491
3.17805

2.56495
2.56495
3.2581

2.63906
2.63906
3.3322

2.70805
2.70805
3.4012

2.77259
2.77259
3.46574

2
2.30259
2.56495
2.99573

2.83321
3.09104
3.55535

3.3322
3.52636
4.02535

3.73767
3.91202
4.43082

4.09434
4.2485
4.78749

4.40672
4.55388
5.10595

4.70048
4.82831
5.39363

4.96284
5.0814
5.65599

5.20401
5.31321
5.89715

5.42495
5.52943
6.1203

5.63479
5.7301
6.32794

5.82895
5.91889
6.52209

6.01127
6.09582
6.70441

3
4.00733
4.46591
4.70048

4.8828
5.24702
5.57595

5.65599
5.95584
6.34914

6.34914
6.59851
7.04229

6.97728
7.18841
7.67089

7.55276
7.73368
8.24617

8.08364
8.24012
8.77678

8.57622
8.71276
9.26936

9.03575
9.1562
9.7289

9.46653
9.57345
10.1597

9.872
9.96754
10.5651

10.255
10.3409
10.9481

4
6.4708
6.9594
7.16395

7.72356
8.08641
8.41671

8.86869
9.14238
9.56184

9.92471
10.1349
10.6179

10.9056
11.0692
11.5987

11.8219
11.9512
12.515

12.6821
12.7855
13.3752

13.493
13.5767
14.1861

14.2603
14.3287
14.9534

14.9885
15.045
15.6816

15.6816
15.7287
16.3748

5
9.87164
10.2603
10.5648

11.5633
11.826
12.2565

13.1474
13.3276
13.8406

14.6391
14.7645
15.3322

16.0501
16.1388
16.7432

17.3899
17.4535
18.083

18.6662
18.7124
19.3593

19.8854
19.9195
20.5785

21.053
21.0784
21.7461

22.1736
22.1927
22.8667

6
14.3253
14.5771
15.0185

16.5086
16.6637
17.2017

18.588
18.6849
19.2811

20.5759
20.6372
21.269

22.482
22.5215
23.1752

24.3146
24.3403
25.0078

26.0804
26.0974
26.7736

27.7852
27.7965
28.4783

29.4338
29.4415
30.127

7
19.9011
20.0463
20.5942

22.6165
22.6996
23.3097

25.2339
25.282
25.927

27.7633
27.7915
28.4564

30.2128
30.2295
30.906

32.5895
32.5995
33.2827

34.8992
34.9053
35.5924

37.147
37.1507
37.8401

8
26.6393
26.7201
27.3324

29.9164
29.9604
30.6096

33.102
33.1261
33.7952

36.2043
36.2177
36.8975

39.2304
39.2378
39.9235

42.186
42.1902
42.8792

45.0764
45.0788
45.7696

9
34.5644
34.6096
35.2575

38.4241
38.4479
39.1173

42.1988
42.2114
42.892

45.8953
45.902
46.5885

49.5197
49.5233
50.2128

53.0769
53.0789
53.7701

10
43.693
43.7187
44.3861

48.1502
48.1635
48.8434

52.5284
52.5353
53.2216

56.8335
56.837
57.5266

61.0705
61.0723
61.7636

11
54.0381
54.0528
54.7312

59.1036
59.1111
59.7967

64.0955
64.0993
64.7886

69.0189
69.0208
69.712

12
65.6106
65.6191
66.3038

71.2925
71.2968
71.9856

76.9056
76.9078
77.5988

13
78.4205
78.4254
79.1137

84.7251
84.7275
85.4182

14
92.4768
92.4797
93.17

Table 1: Exact values of ln |Bu(n, r)|, 1 ≤ n < r ≤ 15, and natural logarithms of lower and upper
bounds.
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