Density properties of Euler characteristic -2 surface group, PSL(2,R) character varieties.

dc.contributor.advisorGoldman, William Men_US
dc.contributor.authorDelgado, Robert Anthony Earleen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2009-07-02T05:30:36Z
dc.date.available2009-07-02T05:30:36Z
dc.date.issued2009en_US
dc.description.abstractIn 1981, Dr. William Goldman proved that surface group representations into PSL(2,R) admit hyperbolic structures if and only if their Euler class is maximal in the Milnor-Wood interval. Furthermore the mapping class group of the prescribed surface acts properly discontinuously on its set of extremal representations into PSL(2,R). However, little is known about either the geometry of, or the mapping class group action on, the other connected components of the space of surface group representations into PSL(2,R). This article is devoted to establishing a few results regarding this.en_US
dc.format.extent576998 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/9099
dc.language.isoen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledHyperbolic Geometryen_US
dc.subject.pquncontrolledModuli Spaceen_US
dc.subject.pquncontrolledrepresentationen_US
dc.subject.pquncontrolledSurface groupen_US
dc.titleDensity properties of Euler characteristic -2 surface group, PSL(2,R) character varieties.en_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Delgado_umd_0117E_10173.pdf
Size:
563.47 KB
Format:
Adobe Portable Document Format