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1. INTRODUCTION

1.1 Motivations for work and results obtained

PSL(2,R) and PSL(2,C) act on H2 and CP1 respectively by Möbius transfor-

mations. If Σ is a closed oriented surface and

ρ : π1(Σ) −→ PSL(2,R)

is a representation, let e(ρ) be the Euler class of the flat bundle over Σ with fibre

H2, structure group PSL(2,R) and holonomy ρ. e(ρ) is a member of H2(Σ,Z) and

therefore can be thought of as an integer.

Similarly if

ρ : π1(Σ) −→ PSL(2,C)

is a representation, let w(ρ) be the top Stiefel-Whitney class of the flat bundle over

Σ with fibre CP1, structure group PSL(2,C) and holonomy ρ. w(ρ) is a member of

H2(Σ,Z/2Z) but can be thought of as an integer modulo 2.

By results of Milnor and Wood, |e(ρ)| ≤ −χ(Σ), [11], [14]. Furthermore if

χ(Σ) ≤ n ≤ −χ(Σ),

then n occurs as the Euler class of some representation,

ρ : π1(Σ) −→ PSL(2,R),



[3]. e(ρ) parameterizes the path components of Hom(π1(Σ),PSL(2,R)) [5], each of

which can be realized as a complex, rank g− 1 + e(ρ), vector bundle over Symd(Σ)

and is therefore a homotopy equivalent to Σ [9]. ρ occurs as the holonomy of a

hyperbolic structure on Σ if and only if |e(ρ)| = −χ(Σ),[3]. The mapping class

group of Σ (the group of isotopy classes of homeomorphisms of Σ) acts properly

discontinuously on this pair of components of Hom(π1(Σ),PSL(2,R)) only.

Similarly w(ρ) parameterizes the path components of Hom(π1(Σ),PSL(2,C)).

ρ : π1(Σ) −→ PSL(2,C)

occurs as the holonomy of a complex projective structure if and only if the image of

ρ is non-elementary and w(ρ) = 0, [2]. It is worth noting that when a representation,

ρ : π1(Σ) −→ PSL(2,R),

is viewed as a representation,

ρ : π1(Σ) −→ PSL(2,C),

w(ρ) = e(ρ) mod 2. Therefore there are PSL(2,R) representations that do not occur

as the holonomy of hyperbolic structures yet do occur as the holonomy of complex

projective structures on Σ.

Let k = C or R and let X = H2 or CP1 respectively.

ρ : π1(Σ) −→ PSL(2, k)

is said to admit a branched hyperbolic or complex projective structure if there is a

branched ρ-equivariant map, Dρ, from the universal cover of Σ to X. In addition to
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characterizing representations,

ρ : π1(Σ) −→ PSL(2,C),

that occur as the holonomy of complex projective structures on Σ, Gallo, Kapovich

and Marden also proved that

ρ : π1(Σ) −→ PSL(2,C)

admits a branched complex projective structure on Σ if and only if its image is

non-elementary and w(ρ) = 0 mod 2 [2].

Despite the great success in understanding when PSL(2,C) representations

admit branched complex projective structures, it is not known when representations,

ρ : π1(Σ) −→ PSL(2,R),

admit branched hyperbolic structures. Ser Tan Peow found an example of an Euler

class 2 representation of the genus-3 surface group into PSL(2,R) that does not

admit a branched hyperbolic structure but is arbitrarily close to representations

that do, [12]. Furthermore Goldman conjectured that if e(ρ) = ±(−χ(Σ) + 1), it

admits a branched hyperbolic structure, [unpublished]. Until recently, there has

been little progress on Goldman’s conjecture.

In 2001, while trying to prove Goldman’s conjecture, Daniel Virgil Mathews

obtained the following partial results.

Let Σg be the genus-g surface and (for later) let Σg,h be the genus-g surface

with h holes.
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Moreover, let Sg be the set of Euler class ±(χ(Σg)+1) representations of the Σg

group into PSL(2,R) that takes a separating simple closed curve to a non-hyperbolic

isometry.

Let Ng be the set of Euler class ±(χ(Σg) + 1) representations of the Σg group

into PSL(2,R) that takes a non-separating simple closed curve to a elliptic isometry.

Let Bg be the set of Euler class ±(χ(Σg)+1) representations of the Σg surface

group into PSL(2,R) admitting a branched hyperbolic structure.

Mathews established Goldman’s conjecture for members of S2. Although S2

is not necessarily the entire Euler class 1 component of the space of Σ2 group rep-

resentations, it has non-empty interior.

Theorem 1. Every Euler class ±(χ(Σ2) + 1) representation of the genus-2 surface

group into PSL(2,R) that takes a separating simple closed curve to a non-hyperbolic

isometry admits a branched hyperbolic structure, [10].

Mathews established Goldman’s conjecture for a dense subset of Ng, namely

Bg ∩Ng is dense in Bg.

Theorem 2. The set of Euler class ±(χ(Σg) + 1) representations of the genus-g

surface group into PSL(2,R) that admits a branched hyperbolic structure is dense

in the set of Euler class ±(χ(Σg) + 1) representations of the genus-g surface group

that takes a non-separating simple closed curve to an elliptic isometry, [10].

Theorems 1 and 2 imply that B2 is dense in the open subset of Euler class 1

representations of the Σ2 surface group into PSL(2,R) taking a simple closed curve

to an elliptic isometry.
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This article is devoted to better understanding the relationships between The-

orems 1 and 2. In particular the following assertions will be proved:

Theorem 3. Let P be the set of Euler class ±(χ(Σ2)+1), genus-2 surface group rep-

resentations into PSL(2,R) that take a separating simple closed curve to a parabolic

isometry. Let E be the set of Euler class ±(χ(Σ2) + 1), genus-2 surface group rep-

resentations into PSL(2,R) that take a non-separating simple closed curve to an

elliptic isometry. Then P ∩ E is dense in P .

The proof of the above theorem involves pulling ρ back by certain homeomor-

phisms of Σ and applying the resulting representation to a canonical non-separating

simple closed curve.

Theorem 4. Let either Σ ' Σ1,2 or Σ ' Σ2. If a representation,

ρ : π1(Σ) −→ PSL(2,R),

takes all boundary components to non-identity isometries and takes a non-separating

simple closed curve to an elliptic isometry, then ρ is arbitrarily close to a represen-

tation, ρ (with the same boundary data as ρ), that takes a separating simple closed

curve to a unipotent isometry.

In other words, the set of Σ group representations that takes all boundary

components to non-identity isometries and takes a separating simple closed curve

to a unipotent isometry is dense in the set of Σ group representations that take a

non-separating simple closed curve to an elliptic isometry.
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Corollary. If Σ ' Σ2 and if the Euler class 1 representation,

ρ : π1(Σ) −→ PSL(2,R),

takes some non-separating simple closed curve to an elliptic isometry, then ρ is

arbitrarily close to a representation,

ρ : π1(Σ) −→ PSL(2,R),

that takes a separating simple closed curve to a parabolic isometry.

The proof of Theorem 4 involves first understanding when certain 4-holed

sphere group representations take non-peripheral simple closed curves to parabolic

isometries and then extending them to 2-holed torus and genus-2 surface group

representations.

A noteworthy corollary to Theorems 3 and 4:

Corollary. Let Simp ⊂ π1(Σ2) be the set of classes represented by non-separating

simple closed curves. If the Euler class ±1 homomorphism,

ρ : π1(Σ2) −→ PSL(2,R),

takes a non-separating simple closed curve to an elliptic isometry, then ρ is arbitrarily

close to a homomorphism,

ρ : π1(Σ2) −→ PSL(2,R),

where the set {|Tr(ρ(γ)|)}γ∈Simp is dense in [0,∞).

The above corollary can be proved using results of Goldman but the proof in

this article is independent.
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Theorems 3 and 4 will be proved in Chapter 2.

In chapter 3, the following two theorems about boundary-parabolic, relative

Euler class 1, 4-holed sphere,Σ0,4, group representations are proved using methods

similar to those used to prove Theorems 3 and 4 .

Theorem 5. If a boundary parabolic, relative Euler class 1 representation,

ρ : π1(Σ0,4) −→ PSL(2,R),

takes a simple closed curve to an elliptic isometry, then ρ is arbitrarily close to a

representation,

ρ : π1(Σ0,4) −→ PSL(2,R),

so that there is a decomposition of

Σ0,4 = Σ1
⊕
γ

Σ2

into three holed spheres, Σ1 and Σ2, so that

• ρ|π1(Σ1) is abelian

and

• ρ|π1(Σ2) is the holonomy of a cusped hyperbolic structure.

The relative Euler class will be defined in section 1.6.2.

Theorem 6. There are infinitely many irreducible, non-discrete, relative Euler class

1 homomorphisms of the 4-holed sphere group into PSL(2,R) that take all simple

closed curves to hyperbolic isometries.

Theorem 6 is quite unexpected seeing that irreducible, non-discrete represen-

tations take some curve to an elliptic isometry.
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1.2 Notation and conventions

The term, “surface”, denotes a compact oriented surface with possibly non-

empty boundary while the term, “closed surface”, refers to a surface with empty

boundary.

If Σ is a surface, Σ̃ is its universal cover.

Definition 7. A curve, γ, is said to be peripheral if it is either null-homotopic or

freely homotopic to a boundary component, otherwise, γ is called non-peripheral.

Definition 8. Let Σ be a surface. If the non-peripheral simple closed curve, γ,

separates Σ into surfaces, Σ1 and Σ2, with non-empty boundary, then Σ = Σ1
⊕

γ Σ2.

If the surfaces, S1 and S2, are homeomorphic, then S1 ' S2.

Depending on the context, Σg,h is either the compact oriented genus-g surface

with h disks removed, or the oriented genus-g surface with h punctures.

• If Σ ' Σ0,3, unless otherwise stated, assume that π1(Σ) has the following

presentation:

π1(Σ0,3) = 〈A,B,C|A ·B · C〉.

Here A,B and C represent boundary components of Σ0,3.
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• If Σ ' Σ1,1, unless otherwise stated, assume that π1(Σ) has the following

presentation:

π1(Σ1,1) = 〈A,B,C|[A,B] · C〉.

Here A and B represent non-separating simple closed curves that intersect one

another exactly once. [A,B] represents the boundary component of Σ1,1.

• If Σ ' Σ0,4 = Σ1
⊕

γ Σ2, then both Σ1 ' Σ2 ' Σ0,3.

Unless otherwise stated, assume that π1(Σ0,4) has following presentation:

π1(Σ0,4) = 〈A,B,C,D|A ·B · C ·D〉.

Here A,B,C and D represent boundary components of Σ0,4.
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• If Σ ' Σ1,2 = Σ1
⊕

γ Σ2, then Σ1 ' Σ1,1 and Σ2 ' Σ0,3. (Unless stated,

assume this convention)

Unless otherwise stated, assume that π1(Σ1,2) has following presentation:

π1(Σ1,2) = 〈A,B,C,D|[A,B] · C ·D〉.

C and D represent boundary components of Σ1,2 while A and B represent non-

separating simple closed curves that intersect each other exactly once while

not intersecting either C or D.
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• If Σ ' Σ2 = Σ1
⊕

Σ2, then Σ1 ' Σ2 ' Σ1,1. Unless otherwise stated, assume

that π1(Σ2) has following presentation:

π1(Σ2) = 〈A1, B1, A2, B2|[A1, B1] · [A2, B2]〉.

A1, B1, A2 and B2 represent non-separating simple closed curves with

i(A1, B1) = i(A2, B2) = 1

while

i(A1, A2) = i(A1, B2) = i(B1, A2) = i(B1, B2) = 0.
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• π1(Σ) := π1(Σ, σ). (σ is the prescribed base-point for π1(Σ).)

σ = σ1 ∈ Σ1 and σ2 ∈ Σ2. σ1 is joined to σ2 by a simple arc. If i is the

inclusion of π1(Σ2, σ2) into π1(Σ, σ) given by the above mentioned simple arc then,

• if either Σ ' Σ0,4 or Σ ' Σ1,2,

π1(Σ1, σ) = π1(Σ1) = 〈A,B〉

and

i ◦ π1(Σ2, σ2) := π1(Σ2) = 〈C,D〉,
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• if Σ ' Σ2,

π1(Σ1, σ) = π1(Σ1) = 〈A1, B1〉

and

i ◦ π1(Σ2, σ2) := π1(Σ2) = 〈A2, B2〉.

1.3 Definition of a geometry

Definition 9. Let G be a path-connected, finite dimensional Lie group. Let H ≤ G

be a closed Lie subgroup of G and let X = G�H. When this is the case,

• G acts transitively on the homogeneous space, X, by left translation,

• X is an analytic manifold

and

• G acts on X by analytic homeomorphisms.

Any such pair (X,G) is called a geometry.

Definition 10. Two geometries, (X1, G1) and (X2, G2), are said to be isomorphic

if there is a Lie group isomorphism,

φ : G1 −→ G2,
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and a φ-equivariant homeomorphism,

h : X1 −→ X2.

There is a G-invariant Riemannian metric on X if and only if H is compact,

[13]. Let G1 and G2 be path-connected, finite dimensional Lie groups. Let H1 and

H2 be compact (and therefore closed) Lie subgroups of G1 and G2 respectively. Let

X1 = G1�H1

and let

X2 = G2�H2.

If (G1, X1) is isomorphic to (G2, X2), then their corresponding Riemannian geome-

tries can be chosen to be isometric.

1.4 The hyperbolic plane

1.4.1 Standard models of the hyperbolic plane

H2 is the hyperbolic plane and Isom+(H2) is its set of orientation preserving

isometries. All of the following geometries are isomorphic (and isometric) and yield

different models of the (H2, Isom+(H2)) geometry.

• The Poincaré upper Half Plane Model The underlying set, H2, is the

upper half plane,

{x+ iy ∈ C : y > 0} ⊂ C ⊂ CP1.

Isom+(H2) = PSL(2,R) = SL(2,R)�{±I}.
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PSL(2,R) acts on the upper half plane as follows:

If

 a b

c d

 ∈ SL(2,R),

 a b

c d

 · z =
az + b

cz + d
.

The above SL(2,R) action on H2 descends to a PSL(2,R) action. The isotropy

group of point is Lie group isomorphic to the compact Lie group, SO(2,R)�{±I}.

Therefore H2 possesses an Isom+(H2) invariant metric,

ds2 =
dx2 + dy2

y2
.

It is possible to uniquely write any α ∈ SL(2,R) as follows:

α = A ·B,

where A ∈ SL(2,R) is a positive definite symmetric matrix and B ∈ SO(2).

It follows that SL(2,R) and PSL(2,R) ' Isom+(H2) are topological solid tori.

Geodesics are either circular arcs that intersect R orthogonally or vertical lines

in H2.

• The Poincaré Unit Disk Model The underlying set, H2, is the interior of

the unit disk in C.

Isom+(H2) = PSU(1, 1) = {

 a c

c a

 : |a|2 − |c|2 = 1}�{±I}.
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As in the Poincaré Upper Half Plane Model, PSU(1, 1) acts on H2 as follows:

If

 a c

c a

 ∈ SU(1, 1), then

 a c

c a

 · z =
az + c

cz + a
.

The above action descends to a PSU(1, 1) action on H2.

Geodesics in this model are circular arcs that intersect the unit circle orthog-

onally.

Remark 11. It is well known that PSL(2,C) acts on CP1. The underlying

sets for the above two models of H2 are subsets of CP1 and each realization

of Isom+(H2) includes into PSL(2,C). Each inclusion map is equivariant with

respect to the Isom+(H2) actions on H2 and CP1.

• The Lorentz Hyperboloid Model Let R2,1 denote R3 with the indefinite

signature (2, 1) metric,

< (x, y, z), (w, u, v) >= −xw + yu+ zv.

The underlying set, H2, is

{x = (x1, x2, x3) ∈ R2,1 :< x, x >= −1, x1 > 0}.

Isom+(H2) = PSO(2, 1) (the set of linear transformations of R3 that leave <,>

invariant and preserve the sign of x1) acts on H2 in the obvious way.

Geodesics are the intersections of 2 dimensional linear vector spaces with H2.
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• The Klein Projective Model Radially project the Lorentz Hyperboloid

Model onto the unit disk H2 = {(x, y, 1) : y2 + z2 < 1}. Isom+(H2) =

PSO(2, 1). Geodesics are chords through H2.

Unless otherwise stated, the Poincaré Upper Half Plane Model will be used

when doing calculations while pictures will be drawn in the Poincaré Unit Disk

Model.

If α ∈ SL(2,R), then Tr(α) denotes the trace of α while |Tr(α)| refers to the

absolute value of the trace of α. If α ∈ PSL(2,R) then, |Tr(α)| is well defined.

1.4.2 Isometries of the hyperbolic plane

The orientation preserving isometries of H2 fall into exactly 1 of the following

4 categories:

• The Identity Transformation Not much to be said here except that through-

out this article I will denote the Identity transformation.

• Hyperbolic Transformations leave exactly 1 geodesic, gT , invariant and

have exactly two fixed points in H2. Depending on the model, either H2 ⊆ CP1

(as in Poincaré Unit Disk and Upper Half-Plane Models) or H2 ⊆ RP2 (as in

the Klein Projective Model). The hyperbolic transformation, T, translates

every point on gT by the same hyperbolic length lT . In the Poincaré Models,

the absolute value of the trace of a corresponding matrix equals 2 cosh( lT
2

) > 2.
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Two hyperbolic isometries with the same trace are conjugate in Isom+(H2).

• Elliptic Transformations fix exactly 1 point, pT ∈ H2, and leave each hyper-

bolic circle centered at pT invariant. Unlike hyperbolic transformations, these

transformations have exactly one fixed point in H2. Each non-fixed point in

H2 is rotated by an angle, θT (that depends only on T ), about the fixed point,

pT . In the Poincaré Models, the absolute value of the trace of a corresponding

matrix equals 2 cos( θT
2

) < 2. Two elliptic isometries with the same trace fall

in one of two Isom+(H2) conjugacy classes.

• Parabolic Transformations are non-identity transformations that neither

fix a point in H2 nor leave a geodesic invariant. These transformations have

exactly one fixed point in H2. Parabolic transformations fall into one of two

Isom+(H2) conjugacy classes. The absolute value of the trace of a parabolic

transformation is 2.

If α ∈ PSL(2,R) is a hyperbolic element, α∗ is the repeller of α while α∗ is the

attractor of α.

If α ∈ PSL(2,R) is either an elliptic or a parabolic element, α∗ is its fixed

point in H2 (the closure of H2).

Definition 12. α ∈ PSL(2,R) is said to be unipotent if it is either parabolic or the

identity.
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Definition 13. For p ∈ H2,

Stab(p) := {α ∈ Isom+(H2) : α · p = p}

is the stabilizer of p.

1.5 Development and holonomy

Let Σ be a compact oriented surface with possibly non-empty boundary. A

hyperbolic structure on Σ is a metric, <,>, on Σ that is locally isometric to the

metric on H2. Each hyperbolic structure comes with a homomorphism,

ρ : π1(Σ) −→ Isom+(H2)

(its holonomy representation) and a map,

Dρ : Σ̃ −→ H2

(its developing map), that is

• equivariant with respect to the LEFT π1(Σ) actions on Σ̃ and H2

and

• a homeomorphism onto its image.

[See [13] for explicit definition.]

Prescribing a hyperbolic structure on Σ is equivalent to assuming a holonomy

representation and compatible developing map.
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Definition 14. If ρ is realized as the holonomy of a hyperbolic structure on Σ, ρ is

said to admit a hyperbolic structure on Σ.

Not all homomorphisms,

ρ : π1(Σ) −→ Isom+(H2),

admit hyperbolic structures. For example, the trivial representation,

1 : π1(Σ) −→ Isom+(H2),

cannot because unless Σ is simply connected, 1-equivariant maps,

D1Σ̃ −→ H2,

are never injective.

Question: Which closed oriented surface group representations into Isom+(H2)

admit hyperbolic structures?

In 1981 Dr. William Goldman answered this question. To precisely express

Dr. Goldman’s solution, one must understand the Euler class of a closed surface

group representation into Isom+(H2).

1.6 Euler class and relative Euler class of a surface group

representation

1.6.1 Euler class of a closed surface group representation

Assume that Σg is a closed oriented genus-g surface.

π1(Σg) = 〈A1, B1, . . . , Ag, Bg|
∏

1≤i≤g

[Ai, Bi]〉.
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R(A1, B1, . . . , Ag, Bg) :=
∏

1≤i≤g

[Ai, Bi].

In order to give the set of representations of π1(Σg) into Isom+(H2) ' PSL(2,R) a

topology, view it as a closed subset of PSL(2,R)2g. Isom+(H2) ' PSL(2,R) acts on

this subset as follows:

if α ∈ Isom+(H2) and

ρ : π1(Σ) −→ Isom+(H2)

is a homomorphism, then define the homomorphism,

α · ρ : π1(Σg) −→ Isom+(H2),

as follows:

(α · ρ)(γ) := α · ρ(γ) · α−1

for γ ∈ π1(Σg).

To form the Isom+(H2), genus-g surface group character variety

Hom(π1(Σg), Isom+(H2))�Isom+(H2)

identify two representations if and only if the closure of their orbits under the above

action intersect.

Let

ρ : π1(Σg) −→ Isom+(H2)

be a homomorphism. Define the Euler class of ρ, e(ρ) ∈ Z, as follows:

Definition 15. e(ρ) is computed as follows [11]:

Consider the following short exact sequence of groups:
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1 −→ π1(Isom+(H2)) −→ ˜Isom+(H2) −→ Isom+(H2) −→ 1.

(The first non-trivial homomorphism is the standard inclusion, i, of π1(Isom+(H2))

into ˜Isom+(H2) while the second is the universal covering homomorphism,

p : ˜Isom+(H2) −→ Isom+(H2).)

For each i ≤ g, choose lifts of ρ(Ai) and ρ(Bi), (respectively) ρ̃(Ai), ρ̃(Bi) ∈

˜Isom+(H2).

Because the universal covering map,

˜Isom+(H2) −→ Isom+(H2),

is a homomorphism and the above sequence is exact,

R(ρ̃(A1), ρ̃(A2), . . . , ρ̃(Ag), ρ̃(Bg)) ∈ i ◦ π1(Σ) ' Z.

Define

e(ρ) := i−1 ◦R(ρ̃(A1), ρ̃(A2), . . . , ρ̃(Ag), ρ̃(Bg)).

Lemma 16. e(ρ) does not depend on the choice of lifts of ρ(Ai) and ρ(Bi).

Proof. This follows from the facts that i(π1(Isom+(H2))) is central in ˜Isom+(H2) and

R is a product of commutators.

e(ρ) is an integer valued function of

Hom(π1(Σg), Isom+(H2))�Isom+(H2).
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When thought of this way, e(ρ) is continuous and parameterizes the set of path

components of the genus-g surface group character variety [5]. By the results of

Milnor and Wood,

|e(ρ)| ≤ −χ(Σg).

This bound is known as the Milnor-Wood Bound.

Goldman proved in his Ph.D thesis that ρ admits a hyperbolic structure if and

only if e(ρ) = ±χ(Σg). When this is the case, ρ is said to be extremal. Otherwise

ρ is non-extremal. The path components of

Hom(π1(Σg), Isom+(H2))�Isom+(H2)

that contain extremal representations are called extremal components while all

other components are called non-extremal components.

Later Goldman conjectured that every Euler class ±(χ(Σg)+1) representation,

ρ : π1(Σg) −→ Isom+(H2),

admits a branched hyperbolic structure.

Definition 17.

ρ : π1(Σg) −→ Isom+(H2)

is said to admit a branched hyperbolic structure if there is a branched map,

Dρ : Σ̃g −→ H2,

that is equivariant with respect to the LEFT π1(Σg) actions on Σ̃ and H2.
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1.6.2 The relative Euler class of a surface group representation with non-elliptic

boundary

Slightly modify the above construction for Σg,h6=0:

Definition 18. [10]

π1(Σg,h) =

〈A1, B1, . . . , Ag, Bg, C1, . . . , Ch|
∏

1≤i≤g

[Ai, Bi] ·
∏

1≤j≤h

Cj〉

R(A1, B1, . . . , Ag, Bg, C1, . . . , Ch) :=
∏

1≤i≤g

[Ai, Bi] ·
∏

1≤j≤h

Cj.

Definition 19. A homomorphism,

ρ : π1(Σg,h) −→ Isom+(H2),

is said to be boundary-non-elliptic if ρ takes all boundary components to non-elliptic

isometries.

For any boundary-non-elliptic homomorphism,

ρ : π1(Σg,h) −→ Isom+(H2),

there is a canonical simplest lift of ρ(Ci) to ˜Isom+(H2), ρ̃(Ci), (See [10]). Choose any

lifts, ρ̃(Ai) and ρ̃(Bi), of ρ(Ai) and ρ(Bi). The relative Euler class of ρ, e(ρ) ∈ Z, is

defined as follows:

e(ρ) := i−1 ◦R(ρ̃(A1), ρ̃(B1), . . . , ρ̃(Ag), ρ̃(Bg), ρ̃(C1), . . . , ρ̃(Ch)).
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As is e(ρ) for

ρ : π1(Σg) −→ Isom+(H2),

e(ρ) is well defined and can be thought of as a continuous, integer valued function

on the space of boundary non-elliptic homomorphisms

Furthermore the relative Euler class of a boundary non-elliptic representation,

ρ : π1(Σg,h) −→ Isom+(H2),

is additive. More precisely, if

• γ is a simple closed curve on Σg,h,

•

Σg,h = Σ1
⊕
γ

Σ2

and

• ρ(γ) is non-elliptic,

then

e(ρ) = e(ρπ1(Σ1)) + e(ρπ1(Σ2)).

(If h = 0, e(ρ) is the Euler class of ρ.)

As with closed surfaces,

|e(ρ)| ≤ −χ(Σg,h).

This bound is also called the Milnor-Wood Bound.

The following important definitions end this section:
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Definition 20. Let C1, . . . , Ch ∈ π1(Σg,h) be represented by the boundary compo-

nents of Σg,h. Then

ρ1 : π1(Σg,h) −→ Isom+(H2)

and

ρ2 : π1(Σg,h) −→ Isom+(H2)

are said to have the same boundary data if for each i ≤ h, ρ1(Ci) is conjugate to

ρ2(Ci)

Definition 21. Let C1, . . . , Ch ∈ π1(Σg,h) be represented by the boundary compo-

nents of Σg,h. Then

ρ : π1(Σg,h) −→ Isom+(H2)

is said to be boundary parabolic if ρ(Ci) is parabolic for each i ≤ h.

1.7 Simple closed curves on a surface with possibly non-empty

boundary

If γ is a simple closed curve on Σg,h, then one of the following is true:

• Σg,h− γ is connected, in which case γ is called non-separating. Given another

non-separating simple closed curve, γ1, there is a homeomorphism of Σg,h

taking γ to γ1.

or

• Σg,h − γ consists of exactly two connected components, Σ1 and Σ2, with

χ(Σ1) + χ(Σ2) = χ(Σg,h).
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(Here χ(Σg,h) = 2− 2g + h is Euler characteristic of Σg,h.)

If

Σ = Σ1
⊕
γ

Σ2 = Σ1
⊕
γ1

Σ2

so that

– Σ1 is homeomorphic to Σ1

and

– Σ2 is homeomorphic to Σ2,

then there is a homeomorphism of Σg,h taking γ to γ1.

Twist flows along simple closed curves

• Let

ρ : π1(Σg,h) −→ Isom+(H2)

be a homomorphism and let γ be a separating simple closed curve so that

Σg,h = Σ1
⊕
γ

Σ2

(as usual, let the prescribed base-point be in Σ1 ). If α centralizes ρ(γ), define

the representation,

ρ[γ, α] : π1(Σg,h) −→ Isom+(H2),

as follows:

ρ[γ, α]|π1(Σ1)(ω) := ρ(ω)

ρ[γ, α]|π1(Σ2)(ω) := α · ρ(ω) · α−1.
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Lemma 22. ρ[γ, α] defines an representation of π1(Σ).

Proof. Recall that

π1(Σ) = 〈A1, B1, . . . , Ag, Bg|
∏

1≤i≤g

[Ai, Bi]〉.

It suffices to show that

ρ[γ, α](
∏

1≤i≤g

[Ai, Bi]) = I.

Without loss of generality,

γ =
∏

1≤i≤k

[Ai, Bi],

for some k < g. From the definition of ρ[γ, α],

ρ[γ, α](γ) = ρ(γ) = α · ρ(γ) · α−1

and

ρ[γ, α]π1(Σ2) = α · ρπ1(Σ2) · α−1.

Therefore since

ρ(
∏

1≤i≤g

[Ai, Bi]) = I,

it follows that

ρ[γ, α](
∏

1≤i≤g

[Ai, Bi]) = I

as well.

Because π1(Σ) is generated by π1(Σ1) and π1(Σ2), ρ[γ, α] is uniquely deter-

mined.
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• If γ is a non-separating simple closed curve, ρ is as above and α centralizes

ρ(γ), define the representation,

ρ[γ, α] : π1(Σg,h) −→ Isom+(H2),

as follows:

If ω is represented by a simple closed curve that intersects γ exactly once,

then,

ρ[γ, α](ω) := ρ(ω) · α

while if ω is represented by a simple closed curve that does not intersect γ,

then

ρ[γ, α](ω) := ρ(ω).

Lemma 23. ρ[γ, α] defines a representation from π1(Σg) to Isom+(H2).

Proof. If γ is a non-separating simple closed curve, without loss of generality,

γ = A1. Then

ρ[γ, α](B1) = ρ(B1) · α,

ρ[γ, α](Ai) = ρ(Ai)

for 1 ≤ i ≤ g and

ρ[γ, α](Bi) = ρ(Bi)

for 2 ≤ i ≤ g.
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It follows from the definition of ρ[γ, α] that

ρ[γ, α]([A1, B1]) = ρ(A1) · ρ(B1) · α · ρ(A1)−1 · α−1 · ρ(B1)−1.

Because α centralizes ρ(A1), α also centralizes ρ(A1)−1, therefore

ρ[γ, α]([A1, B1]) = ρ(A1) · ρ(B1) · α · α−1 · ρ(A1)−1 · ρ(B1)−1 = ρ([A1, B1]) = I.

Therefore since

ρ(
∏

1≤i≤g

[Ai, Bi]) = I,

it follows that

ρ[γ, α](
∏

1≤i≤g

[Ai, Bi]) = I

as well.

Because π1(Σg,h) is generated by simple closed curves that either

– intersect γ exactly once

or

– do not intersect γ,

ρ[γ, α] is uniquely determined.

ρ[γ, α] is called the twist flow along the curve γ by α. ρ[γ, α] is said to be a small

twist flow if α is close to I.

1.7.1 Certain homeomorphisms of Σg,h

By applying homeomorphisms to certain “canonical simple closed curves”, it

is possible to generate many simple closed curves of a desired type.
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Dehn twists

Let γ ⊂ Σg,h be a non-peripheral simple closed curve and let N be a closed

annular neighborhood of γ. N is homeomorphic to the set, (written in polar co-

ordinates),

{(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π} ⊆ R2.

The homeomorphism,

Dγ(r, θ) = (r, 2π(r − 1) + θ)

of the above annular region yields a homeomorphism of N that fixes its boundary.

Thus, Dγ yields a homeomorphism of Σg,h (also called Dγ). Dγ is not isotopic to

the identity as it does not induce an inner automorphism of π1(Σg,h).

From now on, if S is an oriented surface with possibly non-empty boundary

and ω is a simple closed curve on S, Dω is the homeomorphism of S obtained by

Dehn twisting along ω. (Often times notation will not distinguish between Dω and

its induced map on the fundamental group of S.)

If S is a surface with boundary,

ψ : π1(S, s) −→ PSL(2,R)

is a homomorphism and

ϕ : S −→ S

is a homeomorphism that fixes s, then

(ϕ∗ψ)(α) := (ψ ◦ (ϕ∗)
−1)(α)
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(ϕ∗ is the automorphism of π1(S, s) induced by ϕ).

A few simple examples:

Simple closed curves on the 4-holed sphere g = 0, h = 4

Recall that

π1(Σ0,4) = 〈A,B,C,D|A ·B · C ·D〉.

A non-peripheral simple closed curve, γ, separates the boundary components of Σ0,4,

A,B,C and D into pairs and thus separates Σ0,4 into two 3-holed spheres, Σ1,Σ2.

If the simple closed curves on Σ0,4, γ1 and γ2, separate the boundary components of

Σ0,4 into the same pairs, then γ1 and γ2 are said to be in the same class.

Without loss of generality, let γ = A ·B. Let

• Σ1 have boundary components A,B and A ·B

• Σ2 have boundary components, A ·B = (C ·D)−1, C and D

and

• let the base-point for π1(Σ0,4) be in the interior of Σ1.

Then,

Dγ∗(A) = A

Dγ∗(B) = B

Dγ∗(C) = (A ·B) · C · (A ·B)−1.

Simple closed curves on the two holed torus g = 1, h = 2

Recall that

π1(Σ1,2) = 〈A,B,C,D|[A,B] · C ·D〉.
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A non-peripheral simple closed curve, γ, on Σ1,2 is either non-separating or separates

Σ1,2 into

• a 1-holed torus Σ1 with boundary component, γ,

and

• a three holed sphere, Σ2, with boundary components C,D and γ.

When γ is non-separating, without loss of generality, let γ = B. A intersects

γ exactly once while C and D do not intersect γ.

Dγ∗(A) = A ·B

Dγ∗(B) = B

Dγ∗(C) = C.

When γ is separating, without loss of generality, γ = [A,B] and the base-point

of π1(Σ1,2) is in Σ1.

Dγ∗(A) = A

Dγ∗(B) = B

Dγ∗(C) = [A,B] · C · [A,B]−1.

Simple closed curves on the genus two surface g = 2, h = 0

Recall that

π1(Σ2 = 〈A1, B1, A2, B2|[A1, B1] · [A2, B2]〉.
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A simple closed curve, γ, on Σ2 is either non-separating or separates Σ2 into two

1-holed tori, Σ1 and Σ2. When γ is non-separating, let γ = B1. Then

Dγ∗(A) = A1 ·B1

Dγ∗(B) = B1

Dγ∗(C) = A2

Dγ∗(B2) = B2.

When γ is separating, let γ = [A2, B2] and let the base-point of π1(Σ2) be in

the 1-holed torus containing curves A1 and B1,

Dγ∗(A1) = A1

Dγ∗(B1) = B1

Dγ∗(A2) = [A1, B1] · A2 · [A1, B1]−1

Dγ∗(D) = [A1, B1] ·B2 · [A1, B1]−1.

The rest of this article will assume the Poincaré Unit Disk Model of H2.
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2. GENUS-2 SURFACE GROUP REPRESENTATIONS WITH

ELLIPTIC NON-SEPARATING SIMPLE CLOSED CURVES

The following two theorems will be proved in this chapter.

Theorem 24. Let P be the set of Euler class 1, genus-2 surface group representa-

tions into PSL(2,R) that take a separating simple closed curve to a parabolic isom-

etry. Let E be the set of Euler class 1, genus-2 surface group representations into

PSL(2,R) that take a non-separating simple closed curve to an elliptic isometry.

Then P ∩ E is dense in P .

In other words, every representation in P is arbitrarily close to a member of

P ∩ E. (This is Theorem 3 in the introduction.)

Theorem 25. Let either Σ ' Σ1,2 or Σ ' Σ2. If a representation,

ρ : π1(Σ) −→ PSL(2,R),

takes all boundary components to non-identity isometries and takes a non-separating

simple closed curve to an elliptic isometry, then ρ is arbitrarily close to a represen-

tation, ρ, that takes a separating simple closed curve to a unipotent isometry.

In other words, the set of Σ group representations that take all boundary

components to non identity isometries and that take a separating simple closed



curve to a unipotent isometry is dense in the set of Σ group representations that

take a non-separating simple closed curve to an elliptic isometry. (This is Theorem

4 in the introduction.)

An important corollary:

Corollary. If the Euler class 1 homomorphism,

ρ : π1(Σ2) −→ PSL(2,R),

takes some non-separating simple closed curve to an elliptic isometry, then it is

arbitrarily close to a representation that takes a separating simple closed curve to a

parabolic isometry.

The structure of this article is as follows:

Section 1 is devoted to establishing a certain canonical form for non-abelian

reducible representations,

ρ : F2 ' π1(Σ1,1) −→ PSL(2,R).

Theorem 1 is proved in section 2.

If E is the set of Σ0,4 group representations that take some non-peripheral

simple closed curve to an elliptic isometry and if U is the set of Σ0,4 group represen-

tations that take some non-peripheral simple closed curve to a unipotent isometry,

then the Elliptic-Parabolic Lemma, proved in section 2, relates E to U .

The Elliptic-Parabolic Lemma will be used later to prove Theorem 25. Section

4 is devoted to constructing machinery for

• extending certain Σ0,4 group representations to Σ1,2 group representations
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and

• extending certain Σ1,2 group representations to Σ2 group representations.

Theorem 25 is proved in section 5.

2.1 Basic facts about non-abelian reducible PSL(2,R)

representations of the rank two free group

Definition 26. F2 =< A,B > is the free group on two generators, A and B.

Definition 27. If α1, α2 ∈ F2 freely generate F2, then both α1 and α2 are called

primitives.

To prove Theorem 24, it is necessary to find a certain canonical form for

reducible non-abelian representations of F2 ' π1(Σ1,1) into PSL(2,R).

If the homomorphism,

ρ : F2 → PSL(2,R),

is non-abelian and reducible, then ρ is PSL(2,R) conjugate to an upper triangular

representation of the following form:

ρ(A) =

 es ?

0 e−s

 ,

ρ(B) =

 eαs ?

0 e−αs

 .
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If α ∈ Q, ρ is said to satisfy the Rational Case, otherwise, ρ satisfies the

Irrational Case.

The goal of this section is to prove the following lemma which will be important

to the proof of Theorem 24:

Lemma 28 (Canonical Form). If ρ : F2 −→ PSL(2,R) is non-abelian and reducible,

then there is an automorphism, φ, of F2, that fixes [A,B] so that φ∗ρ is of one of

the following forms:

1. ρ satisfies the Rational Case

φ∗ρ(A) =

 1 ?

0 1


while

φ∗ρ(B) =

 eu ?

0 e−u


for some u 6= 0 ∈ R

2. ρ satisfies the Irrational Case

φ∗ρ(A) =

 eε ?

0 e−ε


for some ε arbitrarily close to 0

while

φ∗ρ(B) =

 eu ?

0 e−u


for some u 6= 0 ∈ R.
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Remark 29. Although the proof of the Rational Case of Lemma 28 is not needed, it

is included for completeness.

Proof. Rational Case Let s and t be real numbers so that t is a rational multiple of

s. In other words t = p
q
s, where p, q ∈ Z and (p, q) = 1. Since (p, q) = 1, (−p, q) = 1

as well. Because (−p, q) = 1, there is a primitive, w(A,B) ∈ F2, where the sum

of the powers of A in w(A,B) is −p and the sum of the powers of B in w(A,B) is

q. Since ρ is an upper triangular representation of F2 into PSL(2,R), the diagonal

entries of ρ(w(A,B)) are the same as those of ρ(A−p ·Bq).

Without loss of generality,

ρ(A) =

 es ?

0 e−s

 ,

ρ(B) =

 et ?

0 e−t

 .

ρ(A−p ·Bq) =

 e−ps ?

0 eps

 .

 e
p
q
qs ?

0 e−
p
q
qs

 =

 e−ps 0

0 eps

 ·
 eps 1

0 e−ps

 =

 1 ?

0 1

 .

Since the diagonal entries of ρ(w(A,B)) are the same as those of ρ(A−p ·Bq),

ρ(w(A,B)) =

 1 ?

0 1
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is parabolic.

Because w(A,B) is primitive, there is a w(A,B) ∈ F2 so that the set,

{w(A,B), w(A,B)},

freely generates F2. It follows that there is an automorphism of F2, ϕ, where

ϕ(A) = w(A,B)

and

ϕ(B) = w(A,B).

By Nielsen’s Theorem, [7], ϕ([A,B]) is conjugate to [A,B]±1, so there is an α ∈ F2

where

α · ϕ([A,B]) · α−1 = [A,B]±1.

If α · ϕ([A,B]) · α−1 = [A,B], define

φ(β) := α · ϕ−1(β) · α−1

for β ∈ F2.

Define the automorphism, inv : F2 −→ F2, as follows:

inv(A) := A−1

inv(B) := B

If α · ϕ([A,B]) · α−1 = [A,B]−1, define

φ−1(β) := A · inv(α · ϕ(β) · α−1) · A−1
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for β ∈ F2.

φ∗ρ(A) =

 1 ?

0 1


and

φ∗ρ(B) =

 eu ?

0 e−u

 .

Irrational Case

Suppose α /∈ Q, then there is a sequence of rational numbers, {pi
qi
} → α, where

for each i, (pi, qi) = 1 = (−pi, qi). pi → qiα, therefore eqiα−pi → 1. Consequently

the diagonal entries of

ρ(A−pi ·Bqi) =

 e(qiα−pi)s ?

0 e(pi−qiα)s


approach 1. Since for each i, (−pi, qi) = 1, there is a primitive, wi(A,B) ∈ F2, with

homology (−pi, qi). As in the Rational case,

ρ(wi(A,B)) =

 eqiα−pi ?

0 e−(qiα−pi)

 .

Proceeding as in the Rational Case, there is an automorphism,

φ : F2 −→ F2,

fixing [A,B], where

φ∗ρ(A) =

 eqiα−pi ?

0 e−(qiα−pi)
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for the real number, qiα− pi, with arbitrarily small absolute value and

φ∗ρ(B) =

 eu ?

0 e−u


for some non-zero real number, u.

The following lemma will be important later.

Lemma 30. Suppose the upper triangular, non-abelian representation,

ρ : F2 −→ PSL(2,R),

satisfies the Rational Case, then ρ is arbitrarily close to an upper triangular, non-

abelian representation,

ρ : F2 −→ PSL(2,R),

that satisfies the Irrational Case so that ρ([A,B]) = ρ([A,B])

Proof. Let

ρ(A) =

 es ?

0 e−s


and

ρ(B) =

 eαs ?

0 e−αs

 .

Without loss of generality, ρ([A,B]) =

 1 ±1

0 1

 .
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Let

ρ(A) =

 es ?

0 e−s


and

ρ(B) =

 e(α+ε)s ?

0 e−(α+ε)s


The non-zero off-diagonal entry of ρ([A,B]) is a continuous function of the entries

of ρ(A) and ρ(B), so for ε ∈ R with arbitrarily small absolute value,

ρ([A,B]) =

 1 ±(1 + δ)

0 1



for some δ ∈ R arbitrarily close to 0. If % =

 ±|1 + δ| 12 0

0 ±|1 + δ|− 1
2

 , then

% · ρ([A,B]) · %−1 = ρ([A,B]). Furthermore if δ is close to 0, then |1 + δ| 12 is close to

1.

2.2 Euler class 1 representations of the genus-2 surface group, with

parabolic separating simple closed curve

Throughout this section let Σ be a closed oriented genus-2 surface. Recall

π = π1(Σ, σ) = π1(Σ) '< A1, B1, A2, B2|[A1, B1] · [A2, B2] > .

With the above presentation, Σ = Σ1
⊕

[A1,B1] Σ2 where Σ1 and Σ2 are two 1-holed

tori separated by the simple closed curve, κ = [A1, B1] ∈ π, (σ ∈ Σ1). Let π1(Σ1) =<

A1, B1 > and π1(Σ2) =< A2, B2 >.
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2.2.1 Important lemmas

The following lemmas will be important to the proof of Theorem 24.

Lemma 31. Let ρ : π → PSL(2,R) be an Euler class 1 representation with ρ(κ)

parabolic. Without loss of generality, ρ|π1(Σ1) is the holonomy of a cusped hyperbolic

structure and ρ|π1(Σ2) is a non-abelian reducible representation.

Proof. Without loss of generality, ρ([A1, B1]) is parabolic. For i ∈ {1, 2}, ρ|π1(Σi) is

therefore either the holonomy of a cusped hyperbolic structure on Σi or is reducible

and non-abelian, [7]. e(ρ|π1(Σi)) = ±1 if and only if ρ|π1(Σi) is the holonomy of a

hyperbolic structure on Σi and e(ρ|π1(Σi)) = 0 if and only if π1(Σi) is reducible and

non-abelian, [7]. By the additivity of e(ρ), the result holds.

Lemma 32. Suppose

X =

 a b

c d

 ∈ SL(2,R)

and

Y =

 λ t

0 λ−1

 ∈ SL(2,R).

If c 6= 0, then X ·Y projects to an elliptic isometry in PSL(2,R) if and only if either

t ∈
(−2− (aλ+ dλ−1)

c
,
2− (aλ+ dλ−1)

c

)
or (2− (aλ+ dλ−1)

c
,
−2− (aλ+ dλ−1)

c

)
.
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Proof.

Tr(X · Y ) = Tr(

 a b

c d

 ·
 λ t

0 λ−1

) = aλ+ dλ−1 + ct.

t ∈ {2− (aλ+ dλ−1)

c
,
−2− (aλ+ dλ−1)

c
},

if and only if X ·Y is unipotent. Furthermore Tr(X ·Y ) is a linear and bijective real

valued function of t and for t with large absolute value X · Y is hyperbolic.

Observation 33. The length of interval in Lemma 32,

|2− (aλ+ dλ−1)

c
− −2− (aλ+ dλ−1)

c
| = 4

|c|

and therefore only depends on X.

Definition 34. If I1 and I2 are distinct real numbers while

X =

 a b

c d

 ∈ SL(2,R)

and

Y =

 λ t

0 λ−1

 ∈ SL(2,R),

then

II1,I2,X,Y := (
I1 − (aλ+ dλ−1)

c
,
I2 − (aλ+ dλ−1)

c
).

Observation 35. Notice that in order for Trace(X · Y ) to be in the interval, (I1, I2),

t must be in the interval,

II1,I2,X,Y = (
I1 − (aλ+ dλ−1)

c
,
I2 − (aλ+ dλ−1)

c
).
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II1,I2,X,Y , has length |I1−I2|
|c| .

Lemma 36. Suppose c 6= 0 ∈ R. Let r, t ∈ R and |t| < 2
|c| , then there is an integer,

n, so that r + nt ∈ I∓2,±2,X,Y

Proof. Without loss of generality, c > 0. Because the subset,

{r + nt} ⊂ R,

is discrete, there is a member, r + n0t, of minimum distance from the interval

I−2,2,X,Y = (
−2− (aλ+ dλ−1)

c
,
2− (aλ+ dλ−1)

c
).

That minimum distance cannot be greater than t or else the distance from

either r+ (n0 + 1)t or r+ (n0− 1)t to I−2,2,X,Y is less than the distance from r+n0t

to I−2,2,X,Y . It is now clear that either r+(n0+1)t or r+(n0−1)t is in the prescribed

interval.

2.2.2 The proof of Theorem 24

Let ρ : π1(Σ)→ PSL(2,R) be an Euler class 1 homomorphism where for some

real number, α and real number, s 6= 0,

1.

ρ(A1) =

 a b

c d

 ,

ρ(A2) =

 ±es t0

0 ±e−s

 ,
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ρ(B2) =

 ±eαs r

0 ±e−αs


and

2.

ρ([A2, B2]) =

 1 −1

0 1

 .

ρ|π1(Σ1) is a discrete embedding, so without loss of generality c 6= 0.

By virtue of Lemma 30, it suffices show that if α is irrational, then ρ takes a

non-separating simple closed curve to an elliptic isometry. Assume α is irrational.

The proof of Theorem 24.

Proof. By Lemma 28 assume that s is arbitrarily close to 0, so that |es − e−s| is

arbitrarily close to 0. Without loss of generality, let

|es − e−s| <
∣∣ 4

2c

∣∣ =
∣∣2
c

∣∣.
For each integer, n, A1 ·κn ·A2 ·κ−n is represented by a non-separating simple

closed curve on Σ. It suffices to show that there is an integer, n, where ρ(A1 · κn ·

A2 · κ−n) is elliptic.

Since

ρ([A2, B2]) = −ρ([A1, B1]−1) =

 1 −1

0 1

 ,

a simple calculation shows that

ρ(κ−n · A2 · κn) =

 ±es n(e−s − es) + t0

0 ±e−s

 .
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Because

|e−s − es| < 2

|c|

there is, by Lemma 36, an integer, n, so that the non-zero off-diagonal entry of

ρ(κn · A2 · κ−n) is in the interval,

(
2− (aes + de−s)

c
,
−2− (aes + de−s)

c
).

By Lemma 32, ρ(A1 · κ−n · A2 · κn) is therefore elliptic. Since every member

of P is arbitrarily close to a representation, ρ, where ρ|π1(Σ2) satisfies the Irrational

Case, Theorem 24 is proved.

Summing up the proof of Theorem 24

To obtain a non-separating simple closed curve, γ, where ρ(γ) is elliptic, it is

necessary to:

1. first perturb ρ so that ρ|π1(Σ2) satisfies the Irrational Case,

then

2. apply a homeomorphism, φ, of Σ that fixes π1(Σ1) so that the diagonal ele-

ments of φ∗ρ(A2) are as close to 1 as is needed,

and finally

3. apply an appropriate power of D[A1,B1] to the non-separating simple closed

curve, A1 ·A2, so that ρ takes the resulting non-separating simple closed curve

to an elliptic isometry. By the calculations above, if the diagonal elements of

φ∗ρ(A2) are close enough to 1, this is possible.
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The above proof of Theorem 24 generalizes to a proof of the following theorem.

Theorem 37. Let I1 and I2 be distinct real numbers. If EI1,I2 is the set of Euler

class 1 representations of the genus-2 surface group into PSL(2,R) that take a non-

separating simple closed curve to an isometry with trace in (I1, I2) and if P is the

set of Euler class 1 representations of the genus-2 surface group into PSL(2,R) that

take a separating simple closed curve to a parabolic isometry, then P ∩
⋂
I1 6=I2(EI1,I2)

is dense in P .

2.3 The Elliptic-Parabolic Lemma

2.3.1 The statement and proof of the Elliptic-Parabolic Lemma

The following lemma is key to the proof of Theorem 25.

Proposition 38 (The Weak Elliptic-Parabolic Lemma). Consider the following

hypothesis’ on the homomorphism,

ρ : π1(Σ0,4) −→ PSL(2,R) :

1. |Tr(ρ(A))| = |Tr(ρ(C))| ≥ 2

2. ρ(A), ρ(C) 6= I

3. ρ(A ·B) is an elliptic isometry of infinite order.
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If ρ satisfies hypothesis’ 1 through 3, then there is

• a non-peripheral simple closed curve, γ, of the same class as A · C

and

• a representation, ρ, with the same boundary data as and is arbitrarily close to

ρ

so that

ρ(γ) is unipotent.

Proof. Hypotheses 1 and 2 guarantee the existence of the fixed points,

ρ(A)∗, ρ(A)∗, ρ(C)∗, ρ(C)∗ ∈ ∂H2,

(if |Tr(A)| = 2, then ρ(A)∗ = ρ(A)∗ and ρ(C)∗ = ρ(C)∗).

Since ρ(A ·B) is an elliptic isometry of infinite order,

• ρ(A ·B) has a fixed point, ρ(A ·B)∗ ∈ H2

and

• the cyclic group, 〈ρ(A ·B)〉, is dense in Stab(ρ(A ·B)∗).

Furthermore there is an elliptic isometry, β ∈ Stab(ρ(A ·B)∗), that takes ρ(C)∗

to ρ(A)∗.

Since

• 〈ρ(A ·B)〉 is dense in the stabilizer of ρ(A ·B)∗

and
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• β stabilizes ρ(A ·B)∗,

there is a sequence of integers, {ni}, where

ρ(A ·B)ni → β ∈ PSL(2,R).

It follows that

lim
i→∞

(ρ(A ·B)ni · (ρ(C)∗)) = (ρ(A ·B)ni · ρ(C) · ρ(A ·B)−ni)∗ = ρ(A)∗.

Without loss of generality, ρ(A)∗ =∞.

Therefore

•

ρ(A) =

 ecosh−1(
Tr(ρ(A))

2
) ?

0 e− cosh−1(
Tr(ρ(A))

2
)


and

•

lim
i→∞

ρ(A ·B)ni · ρ(C) · ρ(A ·B)−ni =

 e− cosh−1(
Tr(ρ(A))

2
) ?

0 ecosh−1(
Tr(ρ(A))

2
)

 .

This follows from

• hypothesis’ 1 and 2

and

•

∞ = ρ(A)∗ = lim
i→∞

(ρ(A ·B)ni · ρ(C) · ρ(A ·B)−ni)∗.
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Therefore

lim
i→∞

(ρ(A) · ρ(A ·B)ni · ρ(C) · ρ(A ·B)−ni) = ρ(A) · β · ρ(C) · β−1 =

 1 ?

0 1


is unipotent.

If necessary, first perform an arbitrarily small twist flow along A · B so that

there is some, (possibly very large) integer, ni, where

(ρ(A ·B)ni · ρ(C) · ρ(A ·B)−ni)∗ = ρ(A)∗.

Since twist flowing ρ along any simple closed curve preserves boundary data, the

result follows.

If ρ(A ·B) has finite order, (since ρ(C) is either parabolic or hyperbolic, there-

fore ρ|π1(Σ1) and ρ|π1(Σ2) are irreducible) it is possible to perturb each representation,

ρ|π1(Σ1) and ρ|π1(Σ2), by an arbitrarily small perturbation, to representations, ρ|π1(Σ1)

and ρ|π1(Σ2) so that

1. ρ|π1(Σ1)(A · B) and ρ|π1(Σ1)(C · D)−1 are of infinite order and are PSL(2,R)

conjugate by an isometry arbitrarily close to I,

2. Tr(ρ(A)) = Tr(ρ|π1(Σ1)(A)) = Tr(ρ|π1(Σ2)(C)) = Tr(ρ(C))

and
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3. Tr(ρ|π1(Σ2)(D)) = Tr(ρ(D)) and Tr(ρ|π1(Σ1)(B)) = Tr(ρ(B))

The elliptic isometries, ρ|π1(Σ2)(A · B) and ρ|π1(Σ2)(C ·D−1), may or may not

coincide. However by condition 1 it is possible to conjugate ρ|π1(Σ2) by a small

PSL(2,R) element so that ρ(A ·B) and ρ(C ·D)−1 coincide. Therefore

Proposition 39 (The Elliptic-Parabolic Lemma). Consider the following hypothe-

sis’ on

ρ : π1(Σ0,4) −→ PSL(2,R) :

1. |Tr(ρ(A))| = |Tr(ρ(C))| ≥ 2

2. ρ(A), ρ(C) 6= I

3. ρ(A ·B) is an elliptic isometry.

If ρ satisfies hypothesis’ 1 through 3, then there is

• a non-peripheral simple closed curve, γ, of the same class as A · C

and

• a representation, ρ, with the same boundary data as and is arbitrarily close to

ρ

so that

ρ(γ) is unipotent.
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2.4 Relating representations of Euler characteristic -2 surface

groups

2.4.1 Conventions

The following conventions will be used in the next two sections:

Let Σ ' Σ0,4 have boundary components A,B,C and D.

Form Σ ' Σ1,2 by identifying the boundary components of Σ, A and B, by an

orientation reversing homeomorphism. q1 : Σ −→ Σ is the corresponding quotient

map.
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Form Σ ' Σ2 by identifying the boundary the components of Σ, q1(C) and

q1(D), by an orientation reversing homeomorphism. q2 : Σ −→ Σ is the correspond-

ing quotient map.

Let S1 be a segment (disjoint from A ·B) on Σ that joins the boundary com-

ponents, A and B, so that q1(S1) is a non-separating simple closed curve on Σ that

intersects q1(A) exactly once.

Let S2 be a segment (disjoint from A ·B) on Σ that joins the boundary com-

ponents, C and D, so that q2(q1(S2)) is a non-separating simple closed curve on Σ
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that intersects q2q1(C) exactly once.

Recall that

π1(Σ) = 〈A,B,C,D|A ·B · C ·D〉.

π1(Σ) = 〈(q1)∗(A), q1(S1), q1∗(C), q1∗(D)|[q1∗(A), q1(S1)] · q1∗(C) · q1∗(D)〉

and

π1(Σ) = 〈q2∗q1∗(A), q2∗q1(S1), q2∗q1∗(C), q2q1(S2)|

[q2∗q1∗(A), q2∗q1(S1)] · [q2∗q1∗(C), q2q1(S2)]〉.

56



2.4.2 Relating 4-holed sphere group to 2-holed torus group representations

Definition 40. If

ρ : π1(Σ) −→ PSL(2,R)

is a homomorphism where ρ(A) and ρ(B−1) are PSL(2,R) conjugate, then ρ is said

to be extendible.

(For example, this is true if ρ(A) and ρ(B) are both hyperbolic with equal

trace.)

Definition 41. For an extendible homomorphism,

ρ : π1(Σ) −→ PSL(2,R),

if τ ∈ PSL(2,R) and

τ · ρ(A) · τ−1 = ρ(B−1),

τ is said to satisfy the ρ Extension Condition.

Observation 42. If

• ρ is an extendible 4-holed sphere group representation

• τ satisfies the ρ Extension Condition,

• a centralizes ρ(A) and

• b centralizes ρ(B),
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then b · τ · a also satisfies the ρ Extension Condition.

In fact, if τ1, τ2 ∈ PSL(2,R) satisfy the ρ Extension Condition, then either

τ1 = τ2 · a, (for some a that centralizes ρ(A)), or τ1 = b · τ2 (for some b centralizing

ρ(B)).

Definition 43. If τ satisfies the ρ Extension Condition, it is possible construct a

homomorphism,

ρτ : π1(Σ) −→ PSL(2,R),

as follows:

ρτ ((q1)∗(A)) := ρ(A)

ρτ (q1(S)) := τ

ρτ ((q1)∗(C)) := ρ(C)

ρτ ((q1)∗(D)) := ρ(D).

Definition 44. To obtain a canonical 4-holed sphere group representation,

ρ̇ : π1(Σ) −→ PSL(2,R),

from a 2-holed torus group representation,

ρ : π1(Σ) −→ PSL(2,R),

define

ρ̇ : π1(Σ) −→ PSL(2,R)

as follows:
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ρ̇(A) := ρ((q1)∗(A))

ρ̇(B) := ρ(q1(S1)) · ρ((q1)∗(A
−1)) · ρ(q1(S1))−1

ρ̇(C) := ρ((q1)∗(C))

ρ̇(D) := ρ((q1)∗(D)).

ρ̇(A ·B · C ·D) = ρ([(q1)∗(A), q1(S1)] · q1(C) · q1(D)) = I,

thus ρ̇ is an extendible 4-holed sphere group representation where ρ ◦ q∗ = ρ̇.

Lemma 45. If ρ is extendible and τ satisfies the ρ Extension Condition, then ρτ is

an extension of ρ by (q1)∗.

Proof. Because

• A,B,C and D generate π1(Σ),

• A ·B · C ·D = 1

and

• B = A−1D−1C−1,

each curve in π1(Σ) can be expressed as a word in A,C and D.

If ω ∈ π1(Σ) is a word inA,C andD, then (q1)∗(ω) is a word in (q1)∗(A), (q1)∗(C)

and (q1)∗(D). Recall that

ρτ ((q1)∗(A)) = ρ(A),
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ρτ ((q1)∗(C)) = ρ(C)

and

ρτ ((q1)∗(D)) = ρ(D).

Since ρ, ρτ and q1∗ are homomorphisms, then

ρτ ((q1)∗(ω)) = ρ(ω).

In particular if ω is a simple closed curve on Σ, then

• (q1)∗(ω) is a simple closed curve on Σ

and

• ρτ ((q1)∗(ω)) = ρ(ω).

2.4.3 Perturbing extensions of 4-holed sphere group representations

It will be necessary to extend perturbed 4-holed sphere group, (and later

two holed torus group), representations to perturbed 2-holed torus group, (genus-2

surface group), representations.

Let

ρ : π1(Σ) −→ PSL(2,R)

be extendible and let τ satisfy the ρ Extension Condition. If

• ρ(A) and ρ(B), are not involutions

and

60



• one chooses to perturb ρ to ρ by a small perturbation,

then it is possible to choose

ρτ : π1(Σ) −→ PSL(2,R)

that extends ρ and is close to ρτ . More precisely,

Lemma 46. Let {ρi} and ρ be a sequence of 4-holed sphere group representations

and a 4-holed sphere group representation respectively,

where

• limi→∞ ρi = ρ,

• for each i, ρi(A), ρi(C
−1), ρ(A), ρ(C−1) are all in the same PSL(2,R) conju-

gacy class

and

• ρ(A) and ρ(C) are not involutions.

let τ satisfy the ρ Extension Condition, then there is a sequence, {τi} → τ , of

members of PSL(2,R) that satisfy the ρi Extension Condition.

Proof. The proof of this lemma will be separated into the following 4 cases:

1. ρ(A) and ρ(B) are both hyperbolic

2. ρ(A) and ρ(B) are both parabolic

3. ρ(A) and ρ(B) are both elliptic of non-zero trace
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4. ρ(A) and ρ(B) are both the identity matrix.

Case 1. ρ(A) and ρ(B) are hyperbolic

For each i, τi satisfies the identity

ρi(B)−1 = τi · ρ(A) · τi−1

if and only if both

1. τi · ρi(A)∗ = ρi(B)∗

and

2. τi · ρi(A)∗ = ρi(B)∗.

It suffices to find a sequence, τi → τ ∈ PSL(2,R), so that identities 1 and 2 hold for

all large i.

There is a point, p ∈ ∂(H2), where

p, τ · p /∈ {ρ(A)∗, ρ(A)∗, ρ(B)∗, ρ(B)∗}.

Because ρ(A) and ρ(C) are both hyperbolic, ρ(A)∗ 6= ρ(A)∗ and ρ(C)∗ 6= ρ(C)∗.

Choose open intervals IA, IA, I
B, IB about ρ(A)∗, ρ(A)∗, ρ(B)∗, ρ(B)∗ respectively

so that

• p, τ · p /∈ IA ∪ IA ∪ IB ∪ IB

and

• IA ∩ IA = IB ∩ IB = ∅. (For interval I, I is its closure.)
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If 3-tuples of points in ∂H2, (x1, y1, z1) and (x2, y2, z2), consist of 3 distinct

points define

T [(x1, x2), (y1, y2), (z1, z2)] to be the unique member of PGL(2,C) that takes

x1 7→ x2,

y1 7→ y2

and

z1 7→ z2.

Since x1, x2, y1, y2, z1, z2 ∈ ∂H2, T [(x1, x2), (y1, y2), (z1, z2)] ∈ PGL(2,R).

Let

S(ρ) = {(X, Y ) ∈ PSL(2,R)× PSL(2,R) :

|Tr(X)|, |Tr(Y )| > 2, X∗ ∈ IA, X∗ ∈ IA, Y ∗ ∈ IB, Y∗ ∈ IB}.

S(ρ) is open in PSL(2,R)×PSL(2,R). Since ρi → ρ ∈ PSL(2,R) and (ρ(A), ρ(B)) ∈

S(ρ), it follows that for large i,

(ρi(A), ρi(B)) ∈ S(ρ).

Define Φ : S(ρ) −→ PGL(2,R) as follows:

φ(X, Y ) := T [(X∗, Y∗), (X∗, Y
∗), (p, τ · p)].

Φ is continuous on S(ρ) and Φ(ρ(A), ρ(B)) = τ . For large i, define

τi := Φ(ρi(A), ρi(B)).

Then, τi · ρi(A) · τi−1 = ρi(B
−1). Furthermore since ρi → ρ, it follows that

ρi(A)→ ρ(A)
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and

ρi(B)→ ρ(B).

Therefore

τi = Φ(ρi(A), ρi(B))→ Φ(ρ(A), ρ(B)) = τ.

Because τ ∈ PSL(2,R), τi ∈ PSL(2,R) for large i.

Case 2. ρ(A) and ρ(B) are parabolic

If X and Y are parabolic isometries and α ∈ PGL(2,R), then α ·X ·α−1 = Y ±1

if and only if α · X∗ = Y∗. Let p and q be points in ∂H2 so that no two members

of the sets, {ρ(A)∗, p, q} and {ρ(B)∗, γ · p, γ · q}, coincide. Choose disjoint intervals,

IA and IB, about ρ(A)∗ and ρ(B)∗ respectively with closures disjoint from the sets,

{p, q} and {τ · p, τ · q}, respectively. Since ρi → ρ and ρi(A) is parabolic,

ρi(A)∗ → ρ(A)∗

and

ρi(B)∗ → ρ(B)∗.

For large i, define

τi := T [(ρi(A)∗, ρi(B)∗), (p, τ · p), (q, τ · q)].

As in the previous case, τi → τ in PGL(2,R) and

τi · ρi(A)∗ = ρi(B)∗.

Because τi → τ and τ ∈ PSL(2,R), then both τi ∈ PSL(2,R) for large i and

τi · ρi(A) · τi−1 → τ · ρ(A) · τ−1 = ρ(B)−1.
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ρ(B) and ρi(B) are not involutions, so for large i, τi · ρi(A) · τi−1 = ρi(B
−1).

Case 3. ρ(A) and ρ(B) are elliptic of non-zero trace

If X and Y are elliptic members of PSL(2,R), let X∗, Y∗ be the geodesic

segment joining X∗ and Y∗. Let

F (X, Y ) : {(X, Y ) ∈ PSL(2,R)× PSL(2,R) : |Tr(X)|, |Tr(X)| < 2} −→ PSL(2,R)

be the translation along X∗, Y∗ taking X∗ to Y∗. F is continuous. Observe

• γ, F (ρ(A)∗, ρ(B)∗) ∈ PSL(2,R)

and

• τ · ρ(A) · τ−1 = ρ(B)−1

A transformation, α ∈ PSL(2,R), takes ρ(A)∗ to ρ(B)∗ if and only if α is in

the path connected set, Stab(ρ(B)∗) · F (ρ(A)∗, ρ(B)∗).

Because ρi → ρ, it follows that

ρi(A)∗ → ρ(A)∗

and

ρi(B)∗ → ρ(B)∗.

Furthermore

F (ρi(A)∗, ρi(B)∗)→ F (ρ(A)∗, ρ(B)∗).

Let si ∈ Stab(ρi(B)∗) be so that si → s. If

τi := si · F (ρi(A)∗, ρi(B)∗),
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then τi → τ and τi · ρi(A)∗ = ρi(B)∗. So for each i, either

τi · ρi(A) · τi−1 = ρi(B)−1

or

τi · ρi(A) · τi−1 = ρi(B).

Since Tr(ρ(A)) = Tr(ρ(B)) 6= 0, it follows that

ρ(B) 6= ρ(B)−1.

As in the previous two cases, it follows that

τi · ρi(A) · τi−1 = ρi(B)−1

for large i.

Case 4. ρ(A) and ρ(B) are the identity isometry

In this case, any member of PSL(2,R) centralizes both ρ(A) and ρ(B) so

choose any sequence τi → τ .

Lemma 47 (The Σ,Σ, Lifting Lemma). Let P be a property of extendible π1(Σ)

representations and let Q be a property of π1(Σ) representations, where for the ex-

tendible Σ group representation,

ρ : π1(Σ) −→ PSL(2,R) :

If τ satisfies the

ρ : π1(Σ) −→ PSL(2,R)
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Extension Condition, then P (ρ)⇒ Q(ργ),

then if

• any open neighborhood, U , of

ρ : π1(Σ) −→ PSL(2,R)

contains a representation, ρ (with the same boundary data as ρ), satisfying

P (ρ)

and

• ρ(A) is not an involution,

it follows that any open neighborhood, V , of

ρτ : π1(Σ) −→ PSL(2,R)

contains a representation, ρ̃τ (with the same boundary data as ρ), satisfying Q(ρ̃τ ).

Proof. By hypothesis 1, construct a sequence of π1(Σ) representations, ρi −→ ρ that

satisfy property P (ρi). By Lemma 46, it is possible to construct a set of extensions,

ρiτi → ρτ . By hypothesis, Q(ρiτi) is true.

2.4.4 Relating 2-holed torus group Representations to genus-2 surface group

representations
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A homomorphism,

ρ : π1(Σ ' Σ1,2) −→ PSL(2,R),

is extendible if ρ(q1∗(C)) is PSL(2,R) conjugate to ρ(q1∗(D))−1.

For an extendible homomorphism, ρ, τ ∈ PSL(2,R) satisfies the ρ Extension

Condition if

τ · ρ(C) · τ−1 = ρ(D−1).

Given ρ and τ , it is possible to define a representation,

ρτ : π1(Σ) −→ PSL(2,R),

as follows:

ρτ (q2∗q1∗(A)) := ρ((q1)∗(A))

ρτ (q2∗q1(S1)) := ρ(q1(S1))

ρτ (q2∗q1∗(C)) := ρ(C)

ρτ (q2q1(S2)) := τ.

As in the previous section, ρτ

• is an extension of ρ

and

• ρτ ([q2∗q1∗(A), q2∗q1(S1)][q2∗q1∗(C), q2q1(S2)]) = I.
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It is also possible to lift a genus-2 surface group representation to a 2-holed

torus group representation.

If

ρ : π1(Σ) −→ PSL(2,R)

is a homomorphism, define ρ̈ : π1(Σ) −→ PSL(2,R) as follows:

ρ̈((q1)∗(A)) := ρ(q2∗q1∗(A))

ρ̈(q1(S1)) := ρ(q2∗q1(S1))

ρ̈((q1)∗(C)) := ρ(q2∗q1∗(C)).

This will force

ρ̈(q1∗(D)) = ρ(q2q1(S2)) · ρ(q2∗q1∗(C
−1)) · ρ(q2q1(S2))−1.

Therefore ρ can be canonically lifted to a 2-holed torus group representation.

The Σ,Σ Lifting Lemma

Lemma 48. Let P be a property of extendible π1(Σ) representations and let Q be a

property of π1(Σ) representations, where for the extendible Σ group representation,

ρ : π1(Σ) −→ PSL(2,R)

:
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If γ satisfies the ρ Extension Condition, then P (ρ)⇒ Q(ργ),

then if

• any open neighborhood, U , of

ρ : π1(Σ) −→ PSL(2,R)

contains a representation,

ρ : π1(Σ) −→ PSL(2,R)

(with the same boundary data as ρ), satisfying P (ρ)

and

• ρ(A) is not an involution,

it follows that any open neighborhood, V , of

ργ : π1(Σ) −→ PSL(2,R)

contains a representation,

ρ̃γ : π1(Σ) −→ PSL(2,R)

(with the same boundary data as ρ), satisfying Q(ρ̃γ).

2.5 The proof of Theorem 25

The Curve Lengthening Lemma
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Lemma 49 (The Curve Lengthening Lemma). Let

ρ : π1(Σ) −→ PSL(2,R)

be a homomorphism and let γ and β be non-peripheral and non-separating simple

closed curves on Σ so that:

• i(γ, β) = 0,

• ρ(β) 6= I is non-elliptic

and

• ρ(γ) is elliptic,

then there is a

• separating simple closed curve, ξ, on Σ

and

• a Σ group representation, ρ, that is arbitrarily close to and has the same

boundary data as ρ

so that ρ(ξ) is unipotent.

Proof. Since i(γ, β) = 0, there is a homeomorphism, φ (fixing the prescribed base-

point of Σ), taking γ to q1∗(A · C)±1 and taking β to q1∗(A)±1. Furthermore

φ−1∗ : Hom(π1(Σ),PSL(2,R)) −→ Hom(π1(Σ),PSL(2,R))
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is continuous. So if ρ is arbitrarily close to a representation that takes a separating

simple closed curve to a unipotent isometry, then so is φ−1∗(ρ). Without loss of

generality, assume that ρ((q1)∗(A · C)) is elliptic and ρ(q1∗(A)) 6= I is non-elliptic.

It suffices to show that when this is the case, there is a representation, ρ,

that is both arbitrarily close to ρ and takes a separating simple closed curve to a

unipotent isometry.

Observe that

• ρ(q1∗(A)) = ρ̇(A) 6= I and ρ̇(B) 6= I are PSL(2,R) conjugate and non-elliptic

while

• ρ(q1∗(A · C)) = ρ̇(A · C) is elliptic.

By the Elliptic-Parabolic Lemma, the 4-holed sphere group representation,

ρ̇, is arbitrarily close to a 4-holed sphere group representation, ρ̇ (with the same

boundary data as ρ), that takes a non-peripheral simple closed curve ζ in the class

of A ·B to a unipotent isometry.

Let P (η) be the following property of extendible π1(Σ) representations:

• “η takes a simple closed curve in the class of A ·B to a unipotent isometry

and

• η(A) is either hyperbolic or parabolic”

and let Q(ζ) be the following property of π1(Σ) representations:

• “ζ takes a separating simple closed curve to a unipotent isometry”.
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For an extendible 4-holed sphere group representation, η and for γ ∈ PSL(2,R)

that satisfies the η Extension Condition,

P (η)⇒ Q(ηγ).

It was just shown that in any open neighborhood of ρ̇ there is a representation,

ρ̇, that satisfies P (ρ̇) and has the same boundary data as ρ̇. By the Σ,Σ Lifting

Lemma, in any open neighborhood of ρ there is a representation, ρ (with the same

boundary data as ρ), that satisfies Q(ρ). That is, ρ takes a separating simple closed

curve to a unipotent isometry.

Theorem 50 (The 2-holed Torus Group Theorem). If the representation,

ρ : π1(Σ) −→ PSL(2,R),

takes all boundary components to non-identity isometries and takes a non-peripheral

non-separating simple closed curve, γ, to an elliptic isometry, then ρ is arbitrarily

close to a representation,

ρ : π1(Σ) −→ PSL(2,R),

that takes a separating simple closed curve to a unipotent isometry.

Without loss of generality, γ = q1∗(A).

In light of the Curve Lengthening Lemma, the following fact is necessary.

Lemma 51. If ρ satisfies the hypothesis’ of Theorem 50 and if

ρ|π1(Σ1) = 〈q1∗(A), q1(S1)〉
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is non-abelian, then there is

• a representation, ρ, that is arbitrarily close to and has the same boundary data

as ρ

and

• a non-separating simple closed curve, ζ, on Σ

so that

• i(ζ, γ) = 0

and

• ρ(ζ) is hyperbolic.

Proof. Assume that both ρ(q1∗(A)) is elliptic and ρ(q1∗(A · C)) is not hyperbolic.

Since ρ|π1(Σ1) is both non-abelian and takes γ = q1∗(A) to an elliptic isometry, it

follows that ρ([q1∗(A), q1(S1)]) is hyperbolic, [7]. Therefore without loss of generality,

ρ([q1∗(A), q1(S1)]) = ρ(q1∗(C ·D)−1) =

 λ 0

0 λ−1

 ,

where λ 6= 0,±1 ∈ R,

ρ(q1∗(A)) =

 a b

c d


and
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ρ(q1∗(C)) =

 u v

w z

 .

Because ρ(q1∗(A)) is elliptic, both b 6= 0 and c 6= 0.

ωn := D[q1∗(A),q1(S1)]∗
n(q1∗(A · C))

is represented by a non-separating simple closed curve on Σ that does not intersect

q1(A) on Σ.

|Tr(ρ(ωn))| = |au+ zd+ cvλ−2n + bwλ2n|.

Because both b 6= 0 and c 6= 0, if either v 6= 0 or w 6= 0 (i.e. ρ(q1∗(C)) is not

diagonal), then there is an integer, n ≥ 0, so that ρ(ωn) is hyperbolic. Therefore

(ωn) is a non-separating simple closed curve on Σ where:

• ρ((ωn)) is hyperbolic

and

• i(ωn, (Dn
[q1∗(A),q1(S1)](q1∗(A)))) = i(ωn, q1∗(A)) = 0 on Σ.

It suffices to show that ρ is arbitrarily close to a Σ group representation (with

the same boundary data as ρ), ρ, where ρ(q1∗(C)) is not diagonal.

By hypothesis, ρ(q1∗(C)), ρ(q1∗(D)) 6= I. Assume ρ(q1∗(C)) is diagonal:

ρ(q1∗(C)) =

 u 0

0 u−1

 .
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Recall that

ρ(q1∗(C ·D))−1 =

 λ 0

0 λ−1

 .

Define

ρ : π1(Σ) −→ PSL(2,R)

as follows:

ρ(q1∗(A)) := ρ(q1∗(A))

ρ(q1(S1)) := ρ(q1(S1))

choose a non-zero real number, δ, with arbitrarily small absolute value so that:

ρ(q1∗(C)) :=

 u −δ

0 u−1



ρ(q1∗(D)) :=

 λ−1u−1 δλ

0 λu

 .

(Note that since ρ(q1∗(C)), ρ(q1∗(D)) 6= I, it follows that ρ(q1∗(C)) is conjugate

to ρ(q1∗(C)) and ρ(q1∗(D)) is conjugate to ρ(q1∗(D)).)

Then,

ρ(q1∗(C ·D))−1 =

 λ −(uδλ− λuδ) = 0

0 λ−1

 = ρ(q1∗(C ·D))−1.

ρ(q1∗(C)) is not diagonal, so ρ can be chosen to be arbitrarily close to and to

have the same boundary data as ρ.
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Proof of the 2-holed Torus Group Theorem

Proof. Without loss of generality, γ = ρ(q1∗(A)) is elliptic. Either ρ|π1(Σ1) is abelian,

in which case ρ([q1∗(A), q1(S1)]) = I, or not. If so, the result is established. If not,

apply Lemma 51 to find a 2-holed torus group representation, ρ1, that is arbitrarily

close to and has the same boundary data as ρ, so that there is a non-separating

simple closed curve, ζ, where

• i(ζ, q1∗(A)) = 0

and

• ρ1(ζ) is hyperbolic.

Apply the Curve Lengthening Lemma to obtain a 2-holed torus group repre-

sentation, ρ, that is arbitrarily close to and has the same boundary data as ρ1, so

that ρ takes a separating simple closed curve to a unipotent isometry.

Unfortunately it is not clear when a relative Euler class 1, 2-holed torus group

representation, ρ, is obtained by gluing a reducible representation of the 1-holed

torus group to a Fuchsian representation of the 3-holed sphere group or not.

Open Question: Can any relative Euler class 1, 2-holed torus group repre-

sentation taking a non-separating simple closed curve to an elliptic element be per-

turbed by an arbitrarily small perturbation to a representation obtained by gluing

a reducible 1-holed torus group representation to a 3-holed sphere group represen-

tation?
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The Genus-2 Surface Group Theorem

Theorem 52 (The Genus-2 Surface Group Theorem). If

ρ : π1(Σ2) −→ PSL(2,R)

takes a non-separating simple closed curve to an elliptic isometry, then ρ is arbi-

trarily close to a representation,

ρ : π1(Σ2) −→ PSL(2,R),

that takes a separating simple closed curve to a unipotent isometry.

Proof of the Genus-2 Theorem

Proof. Without loss of generality, γ = q2∗q1∗(A) and ρ(γ) is elliptic. Either

ρ([q2∗q1∗(A), q2∗q1(S1)]) = I

or not. If so, the result holds. If not, then both ρ|π1(Σ1) and ρ|π1(Σ2) are non-

abelian and as in the proof of Theorem 50, ρ([q2∗q1∗(A), q2∗q1(S1)]) is hyperbolic

(and without loss of generality, diagonal). Since ρ|π1(Σ2) is non-abelian, without loss

of generality, ρ(q2∗q1∗(C)) is not diagonal. In this case, proceed as in the proof of

Lemma 51 to find a non-separating simple closed curve ζ that does not intersect γ

where ρ(ζ) is hyperbolic. Without loss of generality (after applying an appropriate

homeomorphism to Σ), assume ζ = q2∗q1∗(C) and γ is still equal to q2∗q1∗(A). Apply

Theorem 50 to the 2-holed torus group representation, ρ̈, then apply the Σ,Σ Lifting
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Theorem to the representation obtained by perturbing ρ̈ (by Theorem 50) to prove

the result as follows:

ρ(q2∗q1∗(C)) = ρ̈(q1∗(C)) and ρ̈(q1∗(D)) are hyperbolic and PSL(2,R) conju-

gate. Therefore it is possible to apply Theorem 50 to ρ̈ to obtain a representation,

ρ̈, that

• is arbitrarily close to and has the same boundary data as ρ̈

and

• takes a separating simple closed curve to a unipotent isometry.

Since ρ̈(q1∗(C)) = ρ(q2∗q1∗(C)) is not an involution, neither is ρ̈(q1∗(C)). Apply the

Σ,Σ Lifting Theorem to ρ̈ to obtain a representation,

ρ : π1(Σ) −→ PSL(2,R),

that is arbitrarily close to ρ and takes a separating simple closed curve to a unipotent

isometry.

Corollary. If Σ ' Σ2 and if the Euler class 1 representation,

ρ : π1(Σ) −→ PSL(2,R),

takes some non-separating simple closed curve to an elliptic isometry, then ρ is

arbitrarily close to a representation,

ρ : π1(Σ) −→ PSL(2,R),

that takes a separating simple closed curve to a parabolic isometry.
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Proof. By the Genus-2 Surface Group Theorem, ρ is arbitrarily close to ρ that

takes a separating simple closed curve to a unipotent isometry. e(ρ) is also 1. If ρ :

π1(Σ) −→ PSL(2,R) takes a separating simple closed curve (say [q2∗q1∗(A), q2∗q1(S1)])

to I, then ρπ1(Σ1) and ρπ1(Σ2) are both abelian, [10]. Therefore e(ρπ1(Σ1)) = e(ρπ1(Σ2)) =

0. By the additivity of e(ρ), e(ρ) = e(ρ) = 0. This contradicts the hypothesis that

e(ρ) = 1.

Corollary. Let Simp ⊂ π1(Σ2) be the set of classes represented by non-separating

simple closed curves. If the Euler class ±1 homomorphism,

ρ : π1(Σ2) −→ PSL(2,R),

takes a non-separating simple closed curve to an elliptic isometry, then ρ is arbitrarily

close to a homomorphism,

ρ : π1(Σ2) −→ PSL(2,R),

where the set, {|Tr(ρ(γ)|)}γ∈Simp, is dense in [0,∞).

Proof. This follows from Corollary 2.5 and Theorem 37.
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3. BOUNDARY PARABOLIC 4-HOLED SPHERE GROUP

REPRESENTATIONS

3.1 Boundary parabolic 4-holed sphere group representations with

an elliptic simple closed curve

Theorem 53. If the relative Euler class 1, boundary-parabolic representation,

ρ : π1(Σ0,4) −→ PSL(2,R),

takes a non-peripheral simple closed curve to an elliptic isometry, then there is

• a non-peripheral simple closed curve, γ, that separates Σ0,4 into two 3-holed

spheres, Σ1 and Σ2,

and

• a homomorphism,

ρ : π1(Σ0,4) −→ PSL(2,R),

that is both arbitrarily close to and has the same boundary conditions as ρ so

that the following is true:

– ρπ1(Σ1) is the holonomy of a cusped hyperbolic structure on Σ1

while



– ρπ1(Σ2) is an abelian unipotent representation.

Proof. Recall,

π1(Σ0,3) = 〈A,B,C, |A ·B · C〉,

where A,B and C represent the boundary components of Σ0,3.

Lemma 54. If

ζ : π1(Σ0,3) −→ PSL(2,R)

is boundary-parabolic, then either

• ζ is abelian, in which case its relative Euler class, e(ζ), is 0

or

• ζ is the holonomy of a cusped hyperbolic structure on Σ0,3, in which case its

relative Euler class, e(ζ), is ±1.

Proof. Let x = Tr(ζ(A)), y = Tr(ζ(B)) and z = Tr(ζ(A ·B = C−1)). Then,

Tr(ζ([A,B])) = x2 + y2 + z2 − xyz − 2.

Since ζ is boundary parabolic, x = ±2, y = ±2 and z = ±2. Therefore

x2 + y2 + z2 = 4 + 4 + 4 = 12

and depending on the signs of x, y and z,

xyz = ±8.

If xyz = 8, then Tr(ζ([A,B])) = 2 and if xyz = −8, then Tr(ζ([A,B])) = 18.

Let κ = ρ([A,B]).
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• If Tr(κ) = 2, then the unipotent representation,

ζ : π1(Σ0,3) −→ PSL(2,R),

is reducible and abelian and therefore has relative Euler class 0.

• If Tr(κ = 18), ζ is the holonomy of a cusped hyperbolic structure on Σ0,3 and

therefore has relative Euler class ±1, [10], Lemma 8.2.5.

Since |Tr(ρ(A))| = |Tr(ρ(B))| = 2, by the Elliptic-Parabolic Lemma, there is

• a non-peripheral simple closed curve, γ, that separates Σ0,4 into two 3-holed

spheres, Σ1 and Σ2,

and

• a homomorphism,

ρ : π1(Σ0,4) −→ PSL(2,R)

(with the same boundary data as ρ), so that

ρ(γ) is unipotent. Without loss of generality, γ = A ·C. Let Σ1 be the 3-holed

sphere with boundary components A,C and A ·C and let Σ2 be the 3-holed sphere

with boundary components, B,D and (A ·C)−1. Since ρ|π1(Σ1) and ρ|π1(Σ2) are both

boundary parabolic,

e(ρ) = e(ρ|π1(Σ1)) + e(ρ|π1(Σ2)).

83



Since the relative Euler class is a continuous, integer valued function on the

set of boundary-non-elliptic 4-holed sphere group representations into PSL(2,R),

e(ρ) = e(ρ).

Therefore by Lemma 54, one of ρ|π1(Σ1) and ρ|π1(Σ1) is the holonomy of a cusped

hyperbolic structure on a 3-holed sphere while the other is an abelian unipotent

representation. This proves Theorem 5 (as listed in the introduction) or Theorem

53 (as listed in this chapter).

3.2 Irreducible, non-discrete 4-holed sphere group representations

with no simple closed elliptic

Let Σ1 ⊂ Σ0,4 be the 3-holed sphere with boundary components A,B and A ·B

while Σ2 ⊂ Σ0,4 is the 3-holed sphere with boundary components A · B, C and D.

Define the 1-parameter family of homomorphisms,

ρt : π1(Σ0,4) −→ PSL(2,R),

for t ∈ R, as follows:

ρt(A) :=

 −2 1
4

−4 0



ρt(B) :=

 0 −1
4

4 2

 .
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ρt(C) :=

 1 t

0 1



ρt(D = (A ·B · C)−1) :=

 1 −(1 + t)

0 1

 .

ρtπ1(Σ1) is the holonomy of a cusped hyperbolic structure on Σ1 with

ρt(A ·B) =

 1 1

0 1


while ρtπ1(Σ2) is abelian and all unipotent.

A pair of simple calculations yield

Tr(ρt(B · C)) = 2 + 4t

and

Tr(ρt(A · C)) = −(2 + 4t).

Theorem 55. If t > 0, then ρt takes all non-peripheral simple closed curves to

hyperbolic isometries.

To prove this result, let Mod(Σ0,4) be the group of isotopy classes of homeo-

morphisms of Σ0,4. Define the subgroup of Mod(Σ0,4), G, as follows:

G := 〈DA·B, DB·C〉.

Lemma 56. Every non-peripheral simple closed curve on Σ0,4 is freely homotopic

to a member of G · {(A ·B)±1, (A · C)±1, (B · C)±1}.
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Proof. The 4-holed sphere, Σ0,4, is embedded into a quadruply punctured sphere

Σ0,4 via a homotopy equivalence so that

• all simple closed curves in Σ0,4 embed as simple closed curves in Σ0,4

and

• there is a strong deformation retraction of Σ0,4 onto Σ0,4 that happens to be

an isotopy. Therefore any simple closed curve on Σ0,4 can be isotoped to a

simple closed curve on Σ0,4.

Following [1], PMod(Σ0,4) is the subgroup of Mod(Σ0,4) that fixes each punc-

ture.

The Birman Exact sequence of Σ0,4,

1 −→ π1(Σ0,3) −→ PMod(Σ0,4) −→ PMod(Σ0,3) −→ 1,

is exact.

The first non-trivial map is the “point-pushing map” PB obtained by pushing

the puncture (that corresponds to)B around the prescribed member of π1(Σ0,3). The

second non-trivial map is obtained by forgetting the puncture, B. Since PMod(Σ0,3)

is trivial, PB is an isomorphism. Therefore PMod(Σ0,4) is freely generated by

PB(A) = DADA·B
−1

and

PB(C) = DADB·C
−1,
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[1]. Since A and C are homotopic to boundary components (actually punctures) of

Σ0,4,

id = DA∗, DC∗ : π1(Σ0,4) −→ π1(Σ0,4).

Therefore

PMod(Σ0,4) = 〈DA·B, DB·C〉 = G.

To establish Lemma 56, every non-peripheral simple closed curve in the 4-

holed sphere is freely homotopic to a member of the G = PMod(Σ0,4) orbit of the

set,

{A ·B±1, A · C±1, B · C±1}.

Lemma 57. If ω ∈ π1(Σ0,4), then ρt(DA·B∗(ω)) = ρ(ω).

Proof. Recall that

π1(Σ0,4) ' 〈A,B,C,D|A ·B · C ·D〉

is freely generated by the set,

{A,B,C}.

Each word in π1(Σ0,4) is of the following form:

Cn1 ·W1(A,B) · Cn2 · . . . ·Wk−1(A,B) · Cnk ,

where ni 6= 0 for 1 < i < k and for each i, Wi(A,B) is a word in 〈A,B〉.

DA·B∗(C
n1 ·W1(A,B) · Cn2 · . . . ·Wk−1(A,B) · Cnk) =
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(A ·B)·Cn1 · (A ·B)−1 ·W1(A,B) · (A ·B) · Cn2 · (A ·B)−1·

. . . ·Wk−1(A,B) · (A ·B)Cnk · (A ·B)−1.

ρt(A ·B) centralizes ρt(C). Since ρt is a homomorphism, the lemma is proved.

In particular if ω ∈ π1(Σ0,4), then ρt(DA·B∗(ω)) is elliptic if and only if ρt(ω)

is elliptic. Therefore it suffices to consider the simple closed curves,

DB·C∗
b(A ·B),

DB·C∗
b(A · C)

and

DB·C∗(B · C)

for b ∈ Z. Because DB·C∗
b(B ·C) is conjugate to B ·C, if ρt takes the simple closed

curves,

DB·C∗
b(A ·B)

and

DB·C∗
b(A · C),

to hyperbolic isometries, then ρt takes all simple closed curves on Σ0,4 to either

parabolic or hyperbolic isometries.

Lemma 58. If t > 0 and ω ∈ π1(Σ0,4) is represented by a non-peripheral simple

closed curve, then ρt(ω) is hyperbolic.
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Proof. Let

β2 = ((1 + 2t)− 2(t2 + t)
1
2 ),

β1 = ((1 + 2t) + 2(t2 + t)
1
2 )

and

α =
β2

β1

.

By a “Mathematica” calculation,

Tr(ρt(DB·C∗
b(A ·B))) = αb + α−b.

Therefore

|Tr(ρt(DB·C
b
∗(A ·B)))| ≥ 2

and equals 2 if and only if t ∈ {0,−1
2
,−1}.

Notice

β1 + β2 = 2 + 4t

and

β1 − β2 = 4(t+ t2)
1
2 .

By another “Mathematica” calculation, if b ∈ Z,

Tr(D(B·C)∗
b(A · C)) =

−1

(β1β2)b
(β2b

1 + β2b
2 + (2(t+ t2)

1
2 (β2b

2 − β2b
1 )) + 2t(β2b

1 + β2b
2 )).

Regrouping terms and simplifying,

Tr(D(B·C)∗
b(A · C)) = −(

βb2
βb1

+ 2t
βb2
βb1

+ 2(t+ t2)
1
2
βb2
βb1

+
βb1
βb2

+ 2t
βb1
βb2
− 2(t+ t2)

1
2
βb1
βb2

) =
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−((1 + 2t+ 2(t+ t2)
1
2 )
βb2
βb1

+ (1 + 2t− 2(t+ t2)
1
2 )
βb1
βb2

) =

−(β1
βb2
βb1

+ β2
βb1
βb2

).

Expand β1 and β2 out to obtain

Tr(D(B·C)∗
b(A · C)) = −(

(1 + 2t− 2(t+ t2)
1
2 )b

(1 + 2t+ 2(t+ t2)
1
2 )b−1

+
(1 + 2t+ 2(t+ t2)

1
2 )b

(1 + 2t− 2(t+ t2)
1
2 )b−1

).

Replace b with −b to obtain

Tr(D(B·C)∗
−b(A · C)) = −(

(1 + 2t− 2(t+ t2)
1
2 )b+1

(1 + 2t+ 2(t+ t2)
1
2 )b

+
(1 + 2t+ 2(t+ t2)

1
2 )b+1

(1 + 2t− 2(t+ t2)
1
2 )b

=

Tr(D(B·C)∗
b+1(A · C))).

Therefore without loss of generality, let b > 0.

Add the two summands in most recent expression for Tr(D(B·C)∗
b(A · C)) to

obtain

Tr(D(B·C)∗
b(A · C)) = −(

(1 + 2t− 2(t+ t2)
1
2 )2b−1 + (1 + 2t+ 2(t+ t2)

1
2 )2b−1

(1 + 2t+ 2(t+ t2)
1
2 )b−1(1 + 2t− 2(t+ t2)

1
2 )b−1

).

Lemma 59. The denominator of the above expression is 1.

Proof. The denominator of the above expression is

(1 + 2t+ 2(t+ t2)
1
2 )b−1(1 + 2t− 2(t+ t2)

1
2 )b−1 =

(((1 + 2t) + 2(t+ t2)
1
2 )((1 + 2t)− 2(t+ t2)

1
2 ))b−1 =
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((1 + 2t)2 − (2(t+ t2)
1
2 )2)b−1 =

(1 + 4t+ 4t2 − 4t− 4t2)b−1 = 1b−1 = 1.

Therefore the equation,

Tr(D(B·C)∗
b(A · C)) = −(

(1 + 2t− 2(t+ t2)
1
2 )2b−1 + (1 + 2t+ 2(t+ t2)

1
2 )2b−1

(1 + 2t+ 2(t+ t2)
1
2 )b−1(1 + 2t− 2(t+ t2)

1
2 )b−1

),

reduces to

Tr(D(B·C)∗
b(A · C)) = −((1 + 2t− 2(t+ t2)

1
2 )2b−1 + (1 + 2t+ 2(t+ t2)

1
2 )2b−1) =

−(
∑

0≤i<2b

(
2b− 1

i

)
(1+2t)2b−1−i(−2(t+t2)

1
2 )i+

∑
0≤i<2b

(
2b− 1

i

)
(1+2t)2b−1−i(2(t+t2)

1
2 )i).

Notice that the terms in the above binomial expansions that correspond to the

odd powers of 2(t+ t2)
1
2 cancel, so that

Tr(D(B·C)∗
b(A · C)) = −(

∑
0≤2i<2b

2

(
2b− 1

2i

)
(1 + 2t)2b−1−2i(2(t+ t2)

1
2 )2i).

Therefore Tr(D(B·C)∗
b(A · C)) can be expressed as a polynomial in t with all

positive coefficients.

The first term, cb0(t), of the expression,

Tr(D(B·C)∗
b(A · C)) = −(

∑
0≤2i<2b

2

(
2b− 1

2i

)
(1 + 2t)2b−1−2i(2(t+ t2)

1
2 )2i),
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(as a polynomial in 1 + 2t and 2(t+ t2)
1
2 ) is

cb0(t) = −2

(
2b− 1

0

)
(1 + 2t)2b−1 = 2(1 + 2t)2b−1.

Because t, b > 0, it follows that |cb0(t)| > 2. Therefore

|Tr(ρ(DB·C∗
b(A · C)))| > 2.

Theorem 55 follows from Lemma 56, Lemma 57 and Lemma 58. Furthermore

if t is irrational, the group 〈ρt(A ·B), ρt(C)〉 is not discrete, therefore

Theorem 60. If t > 0 is irrational, then ρt takes infinitely many curves in π1(Σ0,4)

to elliptic isometries but takes all simple closed curves to hyperbolic isometries.

The following question remains open:

Open Question: If ρ : π1(Σ0,4) −→ PSL(2,R) takes all boundary compo-

nents to hyperbolic isometries, are there non-discrete representations that take all

simple closed curves to non-elliptic isometries?
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