First Principles Computational Design of Solid Ionic Conductors through Ion Substitution

dc.contributor.advisorMo, Yifeien_US
dc.contributor.authorBai, Qiangen_US
dc.contributor.departmentMaterial Science and Engineeringen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2020-02-01T06:37:10Z
dc.date.available2020-02-01T06:37:10Z
dc.date.issued2019en_US
dc.description.abstractSolid ionic conductors are key components of energy storage and conversion devices. To achieve high efficiency in these energy devices, solid ionic conductors should demonstrate high ionic or electronic conductivity. While pristine materials often suffer from poor conductivity, substituting ions in materials can tailor their electronic and ionic transport to fulfill requirements of transport properties in energy devices. In this dissertation, I applied first-principles computational techniques to elucidate the effect of ion substitution on electronic and ionic transport properties of solid materials. Therefore, three representative materials SrCeO3, La2-x-ySrx+yLiH1-x+yO3-y, and Li6KTaO6 are investigated as model systems to elucidate how ion substitution can affect the transport of electron, anion, and cation, respectively. I studied SrCeO3 as a model material to uncover the effects of B-site dopants on electronic transport. Based on theoretical calculations, I confirmed a polaron mechanism, including polaron formation and hopping, contributed to the electronic conductivity of SrCeO3. I found different dopants exhibit distinct capabilities for localizing electron polarons, and therefore result in different electronic conductivities in doped SrCeO3. The study demonstrated the capabilities of first principles computation to design new materials with desired polaron formation and migration. I studied La2-x-ySrx+yLiH1-x+yO3-y oxyhydrides as a model material to investigate H- diffusion mechanism in a mixed anion system and its relationship with the cation substitution of Sr2+ to La3+. I found the substitution of Sr2+ to La3+ can alter the H- diffusion mechanism from 2D to 3D pathways. Increasing H- vacancies through Sr2+ to La3+ substitution can also expedite the H- conductivity of the oxyhydrides. Based on the new understanding, a number of promising dopants in Sr2LiH3O were predicted to enhance H- transport. Fast Li-ion conductor materials as solid electrolytes are crucial for the development of all-solid-state Li-ion batteries. I systematically studied Li+ diffusion mechanisms in Li6KTaO6 predicted by our computational study. I found that different carrier defects such as Li vacancies or interstitials can induce distinct Li+ transport mechanisms. In addition, I developed a computational workflow to predict a wide range of materials in a prototype structure. By employing the workflow, I computationally predicted a group of Li superionic conductors with good stabilities by substituting the Li6KTaO6 structure.en_US
dc.identifierhttps://doi.org/10.13016/9goa-b6vk
dc.identifier.urihttp://hdl.handle.net/1903/25416
dc.language.isoenen_US
dc.subject.pqcontrolledMaterials Scienceen_US
dc.subject.pqcontrolledEngineeringen_US
dc.subject.pqcontrolledComputational physicsen_US
dc.subject.pquncontrolledComputational materials designen_US
dc.subject.pquncontrolledDopantsen_US
dc.subject.pquncontrolledElectrical propertiesen_US
dc.subject.pquncontrolledEnergy conversion materialsen_US
dc.subject.pquncontrolledFirst principles calculationsen_US
dc.subject.pquncontrolledIonic conductorsen_US
dc.titleFirst Principles Computational Design of Solid Ionic Conductors through Ion Substitutionen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bai_umd_0117E_20409.pdf
Size:
36.72 MB
Format:
Adobe Portable Document Format