K-theory of two-dimensional substitution tiling spaces from AF-algebras

dc.contributor.advisorTreviño, Rodrigoen_US
dc.contributor.authorLiu, Jianlongen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2023-06-26T05:42:09Z
dc.date.available2023-06-26T05:42:09Z
dc.date.issued2023en_US
dc.description.abstractGiven a two-dimensional substitution tiling space, we show that, under some reasonable assumptions, the K-theory of the groupoid C*-algebra of its unstable groupoid can be explicitly reconstructed from the K-theory of the AF-algebras of the substitution rule and its analogue on the 1-skeleton. We prove this by generalizing the calculations done for the chair tiling in [JS16] using relative K-theory and excision, and packaging the result into an exact sequence purely in topology. From this exact sequence, it appears that one cannot use only ordinary K-theory to compute using the dimension-filtration on the unstable groupoid. Several examples are computed using Sage and the results are compiled in a table.en_US
dc.identifierhttps://doi.org/10.13016/dspace/xf6q-vpeo
dc.identifier.urihttp://hdl.handle.net/1903/30202
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledaperiodic tilingen_US
dc.subject.pquncontrolledC*-algebraen_US
dc.subject.pquncontrolledgroupoiden_US
dc.subject.pquncontrolledK-theoryen_US
dc.titleK-theory of two-dimensional substitution tiling spaces from AF-algebrasen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Liu_umd_0117E_23330.pdf
Size:
2.69 MB
Format:
Adobe Portable Document Format