Towards a Unified and Coherent Land Surface Temperature Earth System Data Record from Geostationary Satellites
dc.contributor.author | Pinker, Rachel T. | |
dc.contributor.author | Ma, Yingtao | |
dc.contributor.author | Chen, Wen | |
dc.contributor.author | Hulley, Glynn | |
dc.contributor.author | Borbas, Eva | |
dc.contributor.author | Islam, Tanvir | |
dc.contributor.author | Hain, Chris | |
dc.contributor.author | Cawse-Nicholson, Kerry | |
dc.contributor.author | Hook, Simon | |
dc.contributor.author | Basara, Jeff | |
dc.date.accessioned | 2023-11-15T19:18:03Z | |
dc.date.available | 2023-11-15T19:18:03Z | |
dc.date.issued | 2019-06-12 | |
dc.description.abstract | Our objective is to develop a framework for deriving long term, consistent Land Surface Temperatures (LSTs) from Geostationary (GEO) satellites that is able to account for satellite sensor updates. Specifically, we use the Radiative Transfer for TOVS (RTTOV) model driven with Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) information and Combined ASTER and MODIS Emissivity over Land (CAMEL) products. We discuss the results from our comparison of the Geostationary Operational Environmental Satellite East (GOES-E) with the MODIS Land Surface Temperature and Emissivity (MOD11) products, as well as several independent sources of ground observations, for daytime and nighttime independently. Based on a six-year record at instantaneous time scale (2004–2009), most LST estimates are within one std from the mean observed value and the bias is under 1% of the mean. It was also shown that at several ground sites, the diurnal cycle of LST, as averaged over six years, is consistent with a similar record generated from satellite observations. Since the evaluation of the GOES-E LST estimates occurred at every hour, day and night, the data are well suited to address outstanding issues related to the temporal variability of LST, specifically, the diurnal cycle and the amplitude of the diurnal cycle, which are not well represented in LST retrievals form Low Earth Orbit (LEO) satellites. | |
dc.description.uri | https://doi.org/10.3390/rs11121399 | |
dc.identifier | https://doi.org/10.13016/dspace/iv2b-eiyu | |
dc.identifier.citation | Pinker, R.T.; Ma, Y.; Chen, W.; Hulley, G.; Borbas, E.; Islam, T.; Hain, C.; Cawse-Nicholson, K.; Hook, S.; Basara, J. Towards a Unified and Coherent Land Surface Temperature Earth System Data Record from Geostationary Satellites. Remote Sens. 2019, 11, 1399. | |
dc.identifier.uri | http://hdl.handle.net/1903/31403 | |
dc.language.iso | en_US | |
dc.publisher | MDPI | |
dc.relation.isAvailableAt | College of Computer, Mathematical & Natural Sciences | en_us |
dc.relation.isAvailableAt | Atmospheric & Oceanic Science | en_us |
dc.relation.isAvailableAt | Digital Repository at the University of Maryland | en_us |
dc.relation.isAvailableAt | University of Maryland (College Park, MD) | en_us |
dc.subject | Land Surface Temperature (LST) | |
dc.subject | satellite retrievals of LST | |
dc.subject | LST from GEOS satellites | |
dc.title | Towards a Unified and Coherent Land Surface Temperature Earth System Data Record from Geostationary Satellites | |
dc.type | Article | |
local.equitableAccessSubmission | No |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- remotesensing-11-01399-v2.pdf
- Size:
- 7.51 MB
- Format:
- Adobe Portable Document Format