Gabor Frames for Quasicrystals and K-theory

dc.contributor.advisorRosenberg, Jonathanen_US
dc.contributor.authorKreisel, Michael Charlesen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2015-06-25T05:48:49Z
dc.date.available2015-06-25T05:48:49Z
dc.date.issued2015en_US
dc.description.abstractWe study the connection between Gabor frames for quasicrystals, the topology of the hull of a quasicrystal, and the K-theory of an associated twisted groupoid algebra. In particular, we construct a finitely generated projective module over this algebra, and multiwindow Gabor frames can be used to construct an idempotent representing the module in K-theory. For lattice subsets in dimension two, this allows us to prove a twisted version of Bellissard's gap labeling theorem. By viewing Gabor frames in this operator algebraic framework, we are also able to show that for certain quasicrystals it is not possible to construct a tight multiwindow Gabor frame.en_US
dc.identifierhttps://doi.org/10.13016/M21C95
dc.identifier.urihttp://hdl.handle.net/1903/16503
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledGabor framesen_US
dc.subject.pquncontrolledK-theoryen_US
dc.subject.pquncontrolledOperator algebrasen_US
dc.subject.pquncontrolledQuasicrystalsen_US
dc.titleGabor Frames for Quasicrystals and K-theoryen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kreisel_umd_0117E_15993.pdf
Size:
688.1 KB
Format:
Adobe Portable Document Format