
ABSTRACT

Title of dissertation: GABOR FRAMES FOR QUASICRYSTALS
AND K-THEORY

Michael Kreisel, Doctor of Philosophy, 2015

Dissertation directed by: Professor Jonathan Rosenberg
Department of Mathematics

We study the connection between Gabor frames for quasicrystals, the topology

of the hull ΩΛ of a quasicrystal Λ and the K-theory of an associated twisted groupoid

algebra. In particular, we construct a finitely generated projective module over

this algebra, and any multiwindow Gabor frame for Λ can be used to construct a

projection representing this module in K-theory. For the case of lattices, modules

of this kind were first constructed over noncommutative tori in [31]. Luef developed

connections with Gabor analysis and showed that the operator algebraic framework

tied together many unique aspects of lattice Gabor frames [25], [26]. Our work

adapts their results to the setting of quasicrystals.

Along the way, we prove a variety of compatibility conditions between the

topology of ΩΛ and the associated Gabor frame operators. We give a version of

Janssen’s representation for the Gabor frame operator when Λ is a model set. We

also prove that certain quasicrystals can never be the support of a tight multiwindow

Gabor frame when the window functions are in the modulation space M1(Rd).

As an application to noncommutative topology, we are able to deduce results



on the twisted version of Bellissard’s gap labeling conjecture. We show that the

twisted gap labeling group of Λ always contains the image of the trace map of an

associated noncommutative torus and we identify modules in K-theory correspond-

ing to these gap labels. For lattice subsets in dimension two we prove that this

constitutes the entire gap labeling group. As a byproduct of our analysis, we also

show that when ΩΛ is viewed as a fiber bundle over a torus with projection p, the

pullback map p∗ is injective on K0.
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Chapter 1

Introduction

The first examples of mathematical quasicrystals were studied by Meyer in [28].

Meyer thought of quasicrystals as generalizations of lattices which retained enough

lattice-like structure to be useful for studying sampling problems in harmonic analy-

sis. In another direction, the mathematical theory of quasicrystals began developing

rapidly after real, physical quasicrystals were discovered by Shechtman et. al. [35].

This led to the study of the topological dynamics of the hull ΩΛ of a quasicrystal

Λ, which are directly related to a variety of questions and constructions in symbolic

dynamics (see [1] and [32] for an introduction). Bellissard’s gap labeling conjec-

ture provides a clear connection between the mathematics and physics [6]. While

Bellissard’s work demonstrates the value of topology and dynamics in studying the

physics of quasicrystals, little has been done to integrate Meyer’s original vision into

this picture. The goal of the present paper is to show one avenue by which these

strands of research can be connected. Namely, we will show how Gabor frames for

a quasicrystal can be made compatible with its topological dynamics, and we use

this connection to prove a twisted version of Bellissard’s gap labeling conjecture for

two-dimensional quasicrystals.

To elaborate, we will begin by describing Bellissard’s gap labeling conjecture

in detail. Given a quasicrystal Λ, we can imagine a material with an electron at each
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point in Λ. In order to analyze electron interactions in Λ, one studies a Schrodinger

operator of the form

HΛ =
1

2m

(
~
i
~∇− e ~A

)2

+
∑
y∈Λ

v(· − y)

acting on L2(Rd), where v is a suitable potential( [4] Section 2.7). The vector po-

tential ~A models the effect of a constant, uniform magnetic field. With appropriate

boundary conditions, it is possible to restrict HΛ to an operator HΛ,R on L2(CR(0))

where CR(0) is the closed cube of side length R. Then we can define the integrated

density of states (IDOS)

N (E) = lim
R→∞

1

|CR(0)|
|{E ′ ∈ Sp(HΛ,R) |E ′ ≤ E}|

which is used to express thermodynamical properties such as the heat capacity.

The IDOS can also be expressed using the language of operator algebras. There

are natural C∗ and Von Neumann (VN) algebras related to HΛ which are generated

by the resolvent of HΛ. Essentially, the C∗-algebra the same as the twisted groupoid

algebra Aθ = C∗(RΛ, θ) described in Section 2.4, where the cocycle θ is determined

by the magnetic field and is the restriction of a cocycle on R2d (see [4] and [6] for

details). The algebraAθ is simple and has a unique normalized trace. The associated

VN algebra (its weak closure) will be denoted by A′′θ . The spectral projection of HΛ

onto (−∞, E] is denoted by χE(HΛ), and lies in A′′θ . This allows us to describe the

IDOS using the trace on A′′θ as

N (E) = Tr(χE(HΛ))

which is known as Shubin’s formula ( [4] Section 2.7). When E lies in a spectral gap,
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χE(HΛ) lies in the C∗-algebra Aθ. In this case, the value of the IDOS is constant

over the gap and can be described using the trace on Aθ.

Thus there is physical interest in computing the image of the trace map

Tr∗ : K0(Aθ)→ R

which we will call the gap labeling group. Moreover, from physical considerations

we would expect that the gap labels can be computed from only the structure of

Λ and θ. A large part of the gap labeling group can be computed by looking at

the structure of Aθ as a groupoid algebra. Since the unit space of RΛ is a Cantor

set, any clopen set of the unit space gives a projection in Aθ. The trace of the

corresponding projection is simply the measure of the clopen set, which is given by

a patch frequency as described in Section 2.1. This leads to Bellissard’s gap labeling

conjecture:

Conjecture 1.1 ( [6] Problem 1.15). When the magnetic field θ = 0, the set of gap

labels is given by

Tr∗(K0(Aθ=0)) =

∫
Ωtrans

C(Ωtrans,Z),

which is precisely the group generated by the normalized patch frequencies of Λ.

There are many proofs of Conjecture 1.1 in low dimensions and other special cases,

and there are at least three proofs of the conjecture in full generality [5], [7], [17].

However, all three of these papers depend upon the results of [11], which have been

shown to be incorrect [12]. Thus the conjecture appears to remain open in its full

generality, although all cases of physical interest have been settled.
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Despite the success of Bellissard’s gap labeling program when θ = 0, nothing

seems to be known when a magnetic field is present. Part of the difficulty lies in

the simplicity of Conjecture 1.1. When θ = 0, we can ignore all classes in K0(Aθ=0)

which do not come from projections on the unit space, at least for the purpose of gap

labeling. However, once we twist by θ the other summands inK0(Aθ) may contribute

to the gap labeling group. Additionally, the methods of [5], [7], and [17] all apply

some version of transverse index theory. This allows them to prove Conjecture 1.1

without knowing how to construct all the classes in K0(Aθ). Thus one might ask:

Question 1.1. How can we construct the classes in K0(Aθ) which do not come from

projections on the unit space of RΛ?

If we could construct these elements directly then we would immediately be able to

compute the gap labeling group.

Motivated by Question 1.1, we look at the simpler case when Λ is a lattice.

In this case, the algebra Aθ is a noncommutative torus. In [31], Rieffel describes

a general procedure for constructing all modules over noncommutative tori. In

[25] and [26] Luef shows how Rieffel’s construction is related to Gabor analysis.

In particular, he shows how Gabor frames for lattices can be used to construct

projections in noncommutative tori which represent Rieffel’s modules. In order to

prove that his modules are finitely generated and projective, Rieffel uses arguments

that rely heavily on the group structure of a lattice. The construction of Luef’s

projections is more flexible since Gabor frames can be defined not only for lattices,

but for any point set. One roadblock to generalizing Luef’s results to the setting
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of quasicrystals is that lattice Gabor frames are understood much better than non-

uniform frames. The recent results of Gröchenig, Ortega-Cerda, and Romero in [15]

have greatly increased our understanding of non-uniform frames and they comprise

the main technical results that we need.

The main goal of this thesis is to adapt Rieffel’s construction to the setting of

quasicrystals. In Chapter 2 and we review the background on quasicrystals needed

to understand our main results. In Chapter 3 we review the work of Gröchenig,

Ortega-Cerda, and Romero in [15], which allows us to prove the following result:

Theorem 1.1. Let Λ ⊂ R2d be a quasicrystal. Then there exist functions g1, . . . , gN

in M1(Rd) so that for any T ∈ ΩΛ, G(g1, . . . , gN , T ) is a frame for L2(Rd) and an

Mp-frame for all 1 ≤ p ≤ ∞.

We also show various ways in which the topology of the hull ΩΛ is compatible with

the frame operators for point sets contained in ΩΛ.

In Chapter 4 we give a review of Rieffel’s and Luef’s work on noncommutative

tori to motivate our constructions, then we construct an Aθ module HΛ which

is a representation of Aθ by time-frequency shifts. We then use the results from

Chapter 3 to show that HΛ is finitely generated and projective. In order to compute

the dimension of HΛ, we apply a deep result from [3] on the frame measure for

non-uniform Gabor frames. This yields the following theorem:

Theorem 1.2. The module HΛ is finitely generated and projective as an Aθ-module,

and thus defines a class [HΛ] ∈ K0(Aθ). The dimension of HΛ is given by

Tr([HΛ]) =
1

Dens(Λ)
,
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so that 1
Dens(Λ)

lies in the gap labeling group of Aθ.

We also construct a projection in MN(Aθ) representing [HΛ] in K0(Aθ) and

use this to give HΛ the structure of a Hilbert C∗-module. We describe some fea-

tures of EndAθ(HΛ) which indicate that a Janssen representation should exist for

Gabor frames when Λ has pure discrete spectrum. We then prove a Janssen rep-

resentation for model sets rigorously using a Poisson summation formula. This

representation suggests that when Λ is a quasicrystal and g1, . . . , gN ∈ M1(Rd)

then G(g1, . . . , gN ,Λ) can never be a tight frame. We are able to prove this under

certain assumptions on the eigenvalues of ΩΛ, and we indicate how some of these

assumptions may be able to be relaxed.

Theorem 1.2 indicates that when the cocycle σ is nontrivial, the gap labeling

group may be generated by more than just the patch frequencies. Note that while

the density of Λ is intrinsic to the space ΩΛ, it is not an isomorphism invariant of the

groupoid RΛ. For example, we can apply a linear map A with det(A) 6= 1 to Λ. The

groupoids RΛ and RAΛ are isomorphic, however Dens(AΛ) = Dens(Λ)
|det(A)| . If the cocycle

σ is preserved by the isomorphism then HΛ and HAΛ are both modules over Aσ,

but represent different elements in K0(Aσ). Thus by deforming Λ in a way which

does not alter the groupoid RΛ or the cocycle σ, we can construct many modules

over Aσ using our methods.

In Chapter 5, we illustrate this point by computing the gap labeling group for

any standard cocycle θ when Λ ⊂ R2 is contained in a lattice. This involves showing

exactly how the modules HAΛ fit into K0(Aθ), which can be computed easily using
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the Pimsner-Voiculescu exact sequence. Thus we have:

Theorem 1.3. When Λ ⊂ Z2 is a quasicrystal and θ is a standard cocycle, the gap

labeling group of Aθ is

Tr∗(K0(Aθ)) = µ(C(Ωtrans,Z)) +
θ

Dens(Λ)
Z .

Here the cocycle θ is determined by a single real number, also denoted θ.

In higher dimensions K0(Aθ) is larger and the modules HAΛ are not enough

to generate the rest of K0(Aθ), although they do give us some information about

the gap labeling group. We are able to prove the following theorem which is a

partial generalization of our results to higher dimensions. Let Λ ⊂ Rd be a marked

lattice with an aperiodic coloring satisfying the definition of a quasicrystal. Then

ΩΛ naturally has the structure of a fiber bundle

p : ΩΛ → Td

over the torus Td with the Cantor set as its fibers. The fiber bundle structure comes

from viewing ΩΛ as the suspension of the Cantor set Ωtrans by an action of Zd .

Theorem 1.4. The induced map p∗ : K0(Td)→ K0(ΩΛ) is injective. Furthermore,

we can compare the image of p∗ with the image of r∗,

r∗ : K0(C(Ωtrans))→ K0(C(Ωtrans) o Zd) ∼= K0(C(ΩΛ) oRd) ∼= K0(ΩΛ)

where r∗ is induced by the inclusion r : C(Ωtrans)→ C(Ωtrans)oZd . The intersection

of the images of p∗ and r∗ is generated by [1], the class of the trivial bundle.
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By results of Sadun and Williams [33], given any quasicrystal Λ we can find a marked

lattice L so that ΩΛ is homeomorphic to ΩL, and thus Theorem 1.4 holds in much

greater generality than at first it may appear. The proof of Theorem 1.4 shows that

it can be useful to study the twisted algebras Aσ even if one’s primary goal is to

understand the topology of ΩΛ.

Appendices A and B collect various basic facts about C∗-algebras, K-theory,

and Morita equivalence which will be used implicitly throughout the text.
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Chapter 2

Quasicrystals

2.1 Topological Dynamics

The main objects of our investigation are quasicrystals, so we begin with a

review of the topological and dynamical properties of a quasicrystal, as well as

properties of the associated operator algebras. We will state the basic definitions

and theorems for even dimensional quasicrystals since it will simplify notation later,

however the same definitions and theorems apply in any dimension. We will always

think of R2d ∼= Rd×R̂
d

as time-frequency space, and elements z ∈ R2d will be written

as z = (x, ω) when it is necessary to emphasize this point of view.

Definition 2.1. Let Λ ⊂ R2d be a discrete set.

1. The hole of Λ is defined to be

ρ(Λ) := sup
z∈R2d

inf
λ∈Λ
|z − λ|

and Λ is called relatively dense if ρ(Λ) <∞.

2. Λ is called relatively separated if

rel(Λ) := sup{#(Λ ∩ C1(z)) : z ∈ R2d} <∞

where C1(z) is the cube of side length 1 centered at z.
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3. Λ is called uniformly discrete if there is an open ball Br(0) s.t. (Λ− Λ) ∩

Br(0) = {0}.

If Λ is both relatively dense and uniformly discrete then it is called a Delone set.

A Delone set Λ is called aperiodic if Λ− z 6= Λ for any z ∈ R2d .

In Gabor analysis, the goal is to recover a function from samples of its Short Time

Fourier Transform on a discrete set (see Chapter 3). Often the sampling set is

assumed to be a lattice; however there are now a variety of results available which

treat sampling on non-uniform sets as well ([3], [15]). While these results are able

to deal with sampling on arbitrary Delone sets, we will restrict our attention to

quasicrystals, which are Delone sets with additional regularity properties.

Definition 2.2. Let Λ be a Delone set. The sets Br(z) ∩ Λ where z ∈ Λ are called

the r-patches of Λ.

1. If for any fixed r there are only finitely many r-patches up to translation, then

Λ is said to be of finite local complexity (FLC).

2. For an r-patch P and a set A ⊂ R2d we define

LP (A) = #{z ∈ R2d | P − z ⊂ A ∩ Λ}.

Thus LP (A) counts the number of times P appears in A. For a sequence of

balls Brk(z) in R2d such that rk goes to ∞, we define the patch frequency of

P to be

freq(P,Λ) = lim
k→∞

LP (Brk − z)

vol(Brk)
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if this limit exists uniformly in z and independent of the choice of balls Brk .

If the patch frequencies exist for all patches P ⊂ Λ then Λ is said to have

uniform cluster frequencies (UCF).

A Delone set is called a quasicrystal if it is FLC and has UCF.

The study of quasicrystals has to a large extent been driven by the study of

electron interactions in aperiodic solids. Given an electron in an aperiodic solid, we

might assume that it will only interact with nearby electrons since the forces drop

off rapidly as distances increase. Thus for the study of electron interactions, it is

natural to treat two quasicrystals Λ and Λ′ as the same if they contain precisely the

same local patterns. One could formalize this by saying that any r-patch appearing

in Λ also appears as an r-patch in Λ′ and vice versa, and in this case we say Λ

and Λ′ are locally isomorphic. For example, any translate Λ− z is clearly locally

isomorphic to Λ. The collection of all quasicrystals which are locally isomorphic to

Λ will be called the hull of Λ (denoted ΩΛ), and this object is useful in studying

the physics of aperiodic solids (see [6]).

Now we present another construction of the hull which demonstrates how ΩΛ

can be given the structure of a topological dynamical system. Given two Delone

sets Λ,Λ′, define

R(Λ,Λ′) = sup{r | ∃z ∈ R2d with ||z|| < 1

r
, Br ∩ (Λ− z) = Λ′ ∩Br}.

We can define the distance between Λ and Λ′ as

d(Λ,Λ′) = min

{
1,

1

R(Λ,Λ′)

}
.
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Intuitively, two Delone sets are close if they agree in a large ball around the origin

after a small translation. This defines a metric d on the space of all Delone subsets

of R2d, and the resulting topology on point sets is known as the local topology.

Definition 2.3. Given a Delone set Λ, the orbit of Λ is OΛ = {Λ − z | z ∈ R2d}.

The hull ΩΛ is the closure of OΛ in the metric d.

The hull ΩΛ comes with a natural action of R2d by translation. The following

proposition shows how regularity properties of Λ can be translated into properties

of the dynamical system (ΩΛ,R2d) :

Proposition 2.1 ([6], [23]). Let Λ be an aperiodic Delone set.

1. Λ is FLC iff ΩΛ is compact.

2. Λ has UCF iff the dynamical system (ΩΛ,R2d) is minimal and uniquely ergodic.

Thus we see that for any quasicrystal Λ we have an associated dynamical

system (ΩΛ,R2d) which is compact, minimal, and uniquely ergodic. In fact, we have

an explicit description of the ergodic measure µ using patch frequencies. Given a

patch P in Λ, and V ⊂ R2d a precompact open set, define the cylinder set

ΩP,V = {Λ′ ∈ ΩΛ | P − z ⊂ Λ′ for some z ∈ V }.

The cylinder sets form a basis for the topology on ΩΛ, so it suffices to describe the

ergodic measure for cylinder sets. Fix η(Λ) so that any ball of radius η(Λ) contains

at most one point of Λ. If diam(V ) < η(Λ), then the measure of ΩP,V is given by

µ(ΩP,V ) = V ol(V )freq(P,Γ)
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where Γ is an element of ΩΛ. Since we can also describe the hull using local isomor-

phism classes, for any Λ′ ∈ ΩΛ the quantities rel(Λ′) and ρ(Λ′) are equal to rel(Λ)

and ρ(Λ) respectively. Thus we may think of these quantities as associated to the

hull itself, and not just to a particular point set contained in it. Furthermore, the

patch frequencies are also independent of the choice of point set Λ′ ∈ ΩΛ so that

the patch frequencies and density can be associated to the tiling space as a whole

as well.

While the hull ΩΛ appears naturally from physical considerations, we will con-

sider now a different space which appears more naturally in the context of harmonic

analysis. We would like to think of a quasicrystal Λ as a collection of shifts we can

apply to a function. The shifts might simply be translations (see [27]), but in the

case of Gabor analysis they will be time-frequency shifts. In this vein, we consider

OΛ
trans := {Λ− z | z ∈ Λ},

the collection of Delone sets which are translates of Λ by points in Λ.

Definition 2.4. We define the canonical transversal Ωtrans as the closure of

OΛ
trans in the metric d.

Note that the canonical transversal can also be defined as

Ωtrans = {Λ′ ∈ ΩΛ | 0 ∈ Λ′},

and is a transversal to the action of R2d on the hull.

Topologically Ωtrans is a Cantor set, and it comes with a measure which, by
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abuse of notation, we shall also call µ. Given a patch P ⊂ Λ, we can define

ΩP := {Λ′ ∈ Ωtrans |P − z = Br(0) ∩ Λ′ for some r ∈ R, z ∈ R2d}.

The set ΩP contains exactly the point sets in Ωtrans which have the pattern P

centered at the origin. The sets ΩP form a clopen basis for the topology on Ωtrans,

and µ(ΩP ) = freq(P,Λ). The hull ΩΛ is locally the product of Ωtrans and R2d as

both a topological space and a measure space. By results of Sadun and Williams

we can always realize ΩΛ as a fiber bundle over a torus with Cantor set fibers [33],

however it is not always the case that Ωtrans carries an action of Z2d so that ΩΛ is

the suspension of Ωtrans. This will be an important point to keep in mind during

Chapter 5.

2.2 Examples

Now we will present two classes of quasicrystals which comprise the most

commonly studied examples: model sets and substitutions. To construct model

sets in Rd, we first embed Rd into a higher dimensional Rn = Rd×Rn−d, or more

generally as part of a product Rd×G where G is a locally compact abelian group.

Denote by p1 and p2 the projections onto the factors Rd and G respectively. Then

we choose a lattice D ⊂ Rd×G so that p1 is injective on D and p2(D) is dense in G.

Instead of projecting all of D onto Rd, we will project only a piece of D, ensuring

that the resulting collection of points in Rd is a quasicrystal. This is summarized in

the definition below:

Definition 2.5 (Model sets). Consider the space Rd×G, where G is a locally com-
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pact abelian group. Fix D ⊂ Rd×G a discrete cocompact subgroup and W ⊂ G a

relatively compact subset whose boundary has Haar measure 0. Also assume that π1

is injective on D and π2(D) is dense in W. The triple (Rd, G,D) is known as the

cut and project scheme. We define the model set or cut and project set ΛW

by

ΛW = {π1(d) | d ∈ D, π2(d) ∈ W}.

When x ∈ ΛW , we define x? := p2(p−1
1 (x)). The group G is known as the internal

space and Rd is known as the physical space.

Any model set (except for a lattice) is aperiodic, FLC, and has UCF ( [6], [23]).

In fact, we can calculate the patch frequencies of patterns in ΛW using the cut and

project scheme:

Proposition 2.2 (Corollary 7.3 in [1]). Let Λ be a model set for the cut and project

scheme (Rd, G,D) and suppose the window W is compact. If P ⊂ ΛW is a finite

subset, we can determine the relative frequency of P as

rel freq(P,ΛW ) =
vol
(⋂

x∈P (W − x?)
)

vol(W )

and we have the equality

freq(P,ΛW ) = Dens(ΛW )rel freq(P,ΛW ).

We can also compute the density of ΛW as Dens(ΛW ) = vol(W )
vol(D)

.

Many interesting examples of model sets can be constructed using objects from

number theory. Consider the number ring Z[ζ8] ⊂ C where ζ8 is a primitive eighth

root of unity. We have an automorphism x → x? of Z[ζ8] given by extending the
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Figure 2.1: A patch of the Ammann-Beenker tiling.

map ζ8 → ζ3
8 . The map x → (x, x?) gives an embedding of Z[ζ8] as a lattice L8 in

C2 ∼= R4 . We can write L8 =
√

2R8 Z4 where R8 is the rotation matrix

R8 =
1

2



√
2 1 0 −1

0 1
√

2 1

√
2 −1 0 1

0 1 −
√

2 1


.

The projections p1 and p2 are given by projecting onto the first and second copies

of C ∼= R2 respectively. Collectively, we have described a cut and project scheme

(R2,R2,L8). The window W will be a regular octagon in R2 centered at the origin

with side length one, and oriented so that all edges are perpendicular to some eighth

root of unity. The resulting model set ΛW is known as the Ammann-Beenker
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Figure 2.2: The substitution rule for the chair tiling.

point set and can be seen as the vertices of the tiles in Figure 2.11.

Now we will describe another way to build aperiodic tilings of the plane known

as the substitution method. We begin with a finite collection of tiles T = {Ti} which

are polygonal subsets of Rd . We also have a linear map A and a rule for each i which

allows us decompose ATi into a union of tiles from T . This is called the substitution

rule. By iterating this procedure, we can build a tiling of the plane, and the vertices

of the tiling will be a quasicrystal.

This procedure is better understood by looking at a particular example. Figure

2.2 shows the substitution rule for the chair tiling. Our collection of tiles contains

“L” shaped blocks in a variety of orientations. Recall that two tiles are considered

to be of the same tile type if they are the same after a translation, but not after a

rotation. Thus in the second picture, the orange and white blocks are of the same

tile type, but each blue block is its own tile type. Here the linear map A is simply

multiplication by two. After iterating this substitution rule a few times, we will

1All pictures in this section were obtained from the Tilings Encyclopedia project.
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Figure 2.3: A patch of the chair tiling.

have encountered all the different tile types present in the full tiling. It is clear that

we can tile one quarter of the plane by repeatedly iterating the substitution rule.

To get a tiling of the full plane, we simply rotate this picture to tile each quarter

plane. The vertices of the tiling form an aperiodic subset of Z2 .

Although the descriptions of model sets and substitution tilings are quite dif-

ferent, these classes often overlap. In particular, the Ammann-Beenker tiling and

the chair tiling can be realized as both model sets and substitutions. The chair

tiling can be viewed as a union of lattices of increasing volume, which allow it to be

written as a model set where the internal space is the group of 2-adic numbers.
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2.3 Poisson Summation Formulas

In studying Gabor analysis on model sets we shall sometimes need to make

use of a generalized Poisson summation formula. Recall that for f ∈ S(Rd) and a

lattice L ⊂ Rd the classical Poisson summation states

∑
z∈L

f(z) =
∑
l∈L∗

f̂(l)

where L∗ denotes the dual lattice

L∗ := {l ∈ Rd | l · z ∈ Z for all z ∈ L}.

We can consider the translation bounded measure δL :=
∑

z∈L δz where δz is the

Dirac delta function at z. Then we can rephrase the Poisson summation formula as

an equality of measures

δ̂L = δL∗ .

Thus if we want an analogous formula for a quasicrystal Λ, we can begin by consid-

ering the measure

δΛ :=
∑
z∈Λ

δz

and try to compute δ̂Λ. Unfortunately, this computation is complicated by the fact

that although δΛ is a measure, δ̂Λ will not be a measure in general. In fact there are

rather stringent restrictions on when this can occur.

Theorem 2.1 ([21] Theorem 3.7). Suppose that Λ and Λ′ are discrete sets in Rd,

that {c(l) | l ∈ Λ′} are positive numbers, and that the two distributions

f1 =
∑
z∈Λ

δz, f2 =
∑
l∈Λ′

c(l)δl
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are tempered distributions. If f2 = f̂1, then Λ is a full rank lattice in Rd,Λ′ is the

dual lattice, and all c(l) = 1
vol(Λ)

.

Thus we must be very careful while computing δ̂Λ.

For the remainder of the section we will assume that Λ ⊂ Rd is a model set

with cut and project scheme (Rd,Rn, D). We have assumed that the internal space

is Rn largely for convenience, and all results carry over to the more general case

([34]). We define the dual cut and project scheme to be (Rd,Rn, D∗) and for

convenience we denote p1 and p2 as the projections for both the original cut and

project scheme and its dual. We fix a relatively compact window W and consider

the model set ΛW . For a point k ∈ Rd, we define the Fourier-Bohr coefficient at

k to be

ck := lim
R→∞

Dens(ΛW )

|ΛW ∩BR|
∑

z∈ΛW∩BR

e−2πikz.

For model sets this limit exists independently of the center of the ball BR ([1] Prop

9.9). When k /∈ p1(D∗) we have ck = 0. It is possible to have ck = 0 even though

k ∈ p1(D∗), however for model sets such k form a discrete subset of p1(D∗). One

can see this by computing the Fourier-Bohr coefficients using the Fourier transform

of the characteristic function of the window, as in [1].

A cursory computation of δ̂ΛW shows that ([16] Section 5)

δ̂ΛW =
∑

k∈p1(D∗)

ckδk.

However, since the RHS of this expression is not locally absolutely summable, we

need a more precise way to interpret this sum. To do this, we consider a sequence

of smooth functions ϕε on W such that limε→0 ϕε = χW , the characteristic function
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of W. We define a corresponding collection of measures

δΛW ,ε :=
∑
z∈ΛW

ϕε(z
?)δz.

It can be shown that

δ̂ΛW ,ε =
∑

k∈p1(D∗)

cεkδk

where the RHS is locally absolutely summable. Additionally, we have limε→0 c
ε
k = ck.

We summarize this by the following theorem, whose proof can be found in [8] Section

2:

Theorem 2.2. We have

lim
ε→0

δ̂ΛW ,ε = δ̂ΛW

in the sense of tempered distributions. Interpreted in this sense, for any f ∈ S(Rd)

we have ∑
z∈ΛW

f̂(z) =
∑

k∈p1(D∗)

ckf(k)

where

ck = lim
R→∞

Dens(ΛW )

|ΛW ∩BR|
∑

z∈ΛW∩BR

e−2πikz.

To better motivate the definition of the Fourier-Bohr coefficients, we can give

them a dynamical interpretation. For any point k ∈ Rd we say that k is an eigen-

value of the dynamical system (ΩΛ,Rd) with eigenfunction ϕk if ϕk is a measurable

complex valued function on ΩΛ satisfying

ϕk(T − z) = e2πikzϕk(T )
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for all T ∈ ΩΛ and z ∈ Rd . If an eigenfunction exists for an eigenvalue k then

it is unique up to scaling by a unit complex number. If the eigenfunction is con-

tinuous, we call k a continuous eigenvalue. The continuous eigenvalues make

up the discrete part of the dynamical spectrum. By this, we mean that we can

decompose the joint spectrum of the translation operators on ΩΛ, and that the con-

tinuous eigenfunctions make up the discrete part in this decomposition. When the

continuous eigenfunctions make up the entire spectrum, we say that ΩΛ has pure

discrete spectrum. This is equivalent to saying that the linear span of the con-

tinuous eigenfunctions is dense in L2(ΩΛ). For the classes of quasicrystals we have

described (namely model sets and substitutions) all eigenfunctions are continuous,

and thus we do not have to draw the distinction between measurable and continu-

ous eigenfunctions. However there are other classes where this distinction becomes

important [20].

Now we can describe the connection between Fourier-Bohr coefficients and

eigenvalues. For a model set Λ,ΩΛ always has pure discrete spectrum and the

collection of eigenvalues is exactly p1(D∗). In this case, we see that the Fourier-Bohr

coefficient ck is simply the integral of the eigenfunction ϕk over Ωtrans after applying

Birkhoff’s ergodic theorem. We will see the eigenfunctions appear again, along with

the Fourier-Bohr coefficients, when we investigate Hilbert C∗-module structures and

the Janssen representation in Section 4.4.
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2.4 The Groupoid C∗-algebra Aσ

We are now ready to describe our main object of study: the groupoid C∗-

algebra Aσ associated to Ωtrans. We consider the equivalence relation

RΛ = {(T, T ′) ∈ Ωtrans × Ωtrans |T is a translate of T ′}

and an element of RΛ will be written as (T, T − z) where z ∈ R2d . We give RΛ a

topology by declaring that a sequence (Tk, Tk−zk)→ (T, T −z) iff Tk → T in Ωtrans

and |zk − z| → 0. With this topology, RΛ has the structure of a locally compact,

principal, r-discrete groupoid (see [30]). The unit space of RΛ is given by elements

of the form (T, T ). We can compose two elements (T, T − z), (T ′, T ′ − w) only if

T ′ = T − z, and in this case

(T, T − z) ∗ (T − z, T − z − w) = (T, T − z − w).

This groupoid captures the idea of shifting by exactly the points in Λ. To

see this, note that (Λ,Λ − z) ∈ RΛ iff z ∈ Λ. Thus the orbit of Λ in RΛ is in

correspondence with the points of Λ, and the element (Λ,Λ − z) can be thought

of as a shift by z. This will be made more explicit in Section 4.3, where we will

construct a projective representation of RΛ using time-frequency shifts. Anticipating

this, we will describe the cocycle on RΛ which will be involved in this projective

representation. First, let θ be a 2-cocycle on R2d . We can use θ to construct a

2-cocycle on RΛ, denoted θΛ, using the formula

θΛ ((T, T − z), (T ′, T ′ − w)) = θ(z, w).

23



Cocycles of this form will be called standard cocycles, and when it is clear we will

drop the subscript from θΛ and refer to both cocycles as θ. We will be particularly

concerned with the symplectic cocycle σ on R2d given by

σ(z, w) = e−2πixω′

where z = (x, ω) and w = (x′, ω′).

Following [30] and [6], we construct a C∗-algebra from RΛ and a 2-cocycle

θ. To construct the C∗-algebra Aθ = C∗(RΛ, θ), we begin with Cc(RΛ), with the

product

f ∗ g(T, T − z) :=
∑
w∈T

f(T, T − w)g(T − w, T − z)θ ((T, T − w), (T − w, T − z))

and involution defined by

f ∗(T, T − z) := f(T − z, T )θ ((T, T − z), (T − z, T ))

where z = (x, ω). For the symplectic cocycle σ, the multiplication and involution

can be written as

f ∗ g(T, T − z) :=
∑

w=(x′,ω′)∈T

f(T, T − w)g(T − w, T − z)e2πix′(ω′−ω)

and

f ∗(T, T − z) := f(T − z, T )e2πixω

respectively. We can define a norm on Cc(RΛ) by taking the sup over all the norms

coming from the bounded representations of Cc(RΛ) (see [30] Chapter 2 for details,

or [6] Section 4.1 for a description specific to quasicrystals). After completing Cc(RΛ)

in this norm, we obtain the C∗-algebra Aθ.
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For a standard cocycle θ, we can also construct a cocycle on the action groupoid

C(ΩΛ)oR2d, and in this case Aθ is Morita equivalent to the twisted crossed product

C∗(C(ΩΛ) o R2d, θ) [29]. Since the action of R2d on ΩΛ is minimal and uniquely

ergodic, both algebras are simple and have a unique normalized trace given by

integrating over the unit space of their respective groupoids. For a function f ∈

Cc(RΛ), the trace is given by

Tr(f) =

∫
Ωtrans

f(T, T )dT,

and after applying Birkhoff’s ergodic theorem we can write

Tr(f) = lim
k→∞

1

|Λ ∩ Ck|
∑

z∈(Λ∩Ck)

f(T − z, T − z)

so that the trace is expressed as an average over the values of f on the orbit of Λ.

For a standard cocycle θ we can compute the K-theory of Aθ by appealing to

the following theorem of Gillaspy [13]:

Theorem 2.3 ([13] Thm. 5.1). Let G be a second countable locally compact Haus-

dorff group acting on a second countable locally compact Hausdorff space X such that

G satisfies the Baum-Connes conjecture with coefficients, and let ωt be a homotopy

of continuous 2-cocycles on the transformation group X o G. For any t ∈ [0, 1], the

∗-homomorphism

qt : C∗r (GoX × [0, 1], ω)→ C∗r (GoX,ωt),

given on Cc(GoX × [0, 1]) by evaluation at t ∈ [0, 1], induces an isomorphism

K∗(C
∗
r (GoX × [0, 1], ω)) ∼= K∗(C

∗
r (GoX,ωt)).
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Theorem 2.3, combined with the Connes-Thom isomorphism and the Morita equiv-

alence between Aθ and C∗(C(ΩΛ) oR2d, θ), gives

K∗(Aθ) ∼= K∗(C
∗(C(ΩΛ) oR2d, θ)) ∼= K∗(C(ΩΛ) oR2d) ∼= K∗(C(ΩΛ)) ∼= K∗(ΩΛ).

Theorem 2.3 applies since any cocycle on R2d is homotopic to the trivial cocycle,

essentially by the straight line homotopy. Unfortunately, the K-theory of ΩΛ can be

quite complicated. In many cases K0(ΩΛ) will not be finitely generated, and there

are examples where it has torsion [12]. Because of these complexities, it is in general

difficult to see how our module HΛ fits into K0(Aσ). In Section 5, we will show that

when Λ ⊂ R2 is a subset of a lattice these difficulties can be overcome, and an

understanding of how HΛ fits into K0(Aσ) is enough to compute Tr∗(K0(Aσ)).
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Chapter 3

Gabor Analysis

3.1 Time-Frequency Analysis

Now we will review some basic concepts from time-frequency analysis. For a

point z = (x, ω) ∈ R2d we denote by π(z) the time-frequency shift by z, which

operates on L2(Rd) by

π(z)f(t) = MωTxf(t) = e2πiωtf(t− x).

Here Mω denotes the modulation operator

Mωf(t) = e2πiωtf(t)

and Tx denotes the translation operator

Txf(t) = f(t− x).

Fix g 6= 0 ∈ L2(Rd) which we will call the window function. Then the Short Time

Fourier Transform (STFT) of f ∈ L2(Rd) with respect to the window g is

Vgf(x, ω) =

∫
Rd
f(t)g(t− x)e−2πitωdt for (x, ω) ∈ R2d .

The STFT of a function f with respect to the window g is an attempt to decompose

f into time-frequency shifts of g. If g is supported on a small set around the origin

then we can view Vgf as an attempt to measure the “local frequencies” present in
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f. Similar to the Fourier transform, the STFT has the following continuous recon-

struction formula:

Proposition 3.1 ([14]). Fix g, γ ∈ L2(Rd) s.t. 〈g, γ〉 6= 0. Then for all f ∈ L2(Rd),

f =
1

〈g, γ〉

∫ ∫
R2d

Vgf(x, ω)MωTxγ dωdx.

A central goal in Gabor analysis is to look for discrete versions of this reconstruction

formula. This idea is expressed through the language of frames.

Definition 3.1. A sequence (ej)j∈J in a separable Hilbert spaceW is called a frame

if there exist constants A,B > 0 s.t. for all f ∈ W

A||f ||2 ≤
∑
j∈J

|〈f, ej〉|2 ≤ B||f ||2.

If A = B then (ej) is called a tight frame, and if A = B = 1 then (ej) is called a

Parseval tight frame.

Any frame (ej) has an associated frame operator S given by

Sf =
∑
j∈J

〈f, ej〉ej,

which is the composition of the analysis and synthesis operators

(Cf)j = 〈f, ej〉

D({aj}j∈J) =
∑
j∈J

ajej.

We have a (non-unique, non-orthogonal) expansion of f given by

f =
∑
j∈J

〈f, S−1ej〉ej
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where the elements S−1ej are known as the dual frame. We also have an associated

Parseval tight frame given by (S−1/2ej)j∈J .

If we wish to discretize the STFT, we can choose a subset Λ ⊂ R2d and a

window g and ask whether the set

G(g,Λ) =: {π(z)g | z ∈ Λ}

forms a frame for L2(Rd). Such frames are called Gabor frames for Λ. More gen-

erally, we can choose finitely many functions g1, . . . , gN and look for multiwindow

Gabor frames of the form

G(g1, . . . , gN ,Λ) := {π(z)gi | i = 1 . . . , N, z ∈ Λ}.

In this case elements of the dual frame will be denoted by g̃iz = S−1(π(z)gi). When

Λ is a lattice, the dual frame will also have the structure of a Gabor frame given by

G(g̃1, . . . , g̃N ,Λ) where g̃i = S−1gi.

With this background in place, it is natural to ask:

Question 3.1. Given a quasicrystal Λ, can we find functions g1, . . . , gN so that

G(g1, . . . , gN ,Λ) is a Gabor frame for Λ?

Much of the work in Gabor analysis has focused on the case where Λ is a lattice.

However, recent results in [15] took a large step towards answering this question not

just for quasicrystals, but for any discrete set Λ. In order to explain their results, it

will be necessary to introduce the modulation spaces Mp(Rd).

Definition 3.2. Fix a non-zero g ∈ S(Rd). For 1 ≤ p ≤ ∞ we define the modula-
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tion spaces

Mp(Rd) := {f ∈ S ′(Rd) |Vgf ∈ Lp(R2d)}

with the norm ||f ||Mp = ||Vgf ||p.

Different choices for g give rise to equivalent norms on Mp(Rd). The modula-

tion space M1(Rd) consists of good windows for Gabor analysis. When g ∈M1(Rd)

the analysis and synthesis operators for a Gabor system G(g,Λ) are bounded be-

tween Mp(Rd) and lp(Λ) :

||CΛ
g f ||lp ≤ rel(Λ)||g||M1||f ||Mp

||DΛ
g c||Mp ≤ rel(Λ)||g||M1||c||lp .

A Gabor system G(g,Λ) with g ∈ M1(Rd) will be called an Mp-frame if CΛ
g is

bounded below on Mp(Rd). This is equivalent to having constants A,B so that for

all f ∈Mp(Rd)

√
A||f ||Mp ≤ ||SΛ

g f ||Mp ≤
√
B||f ||Mp .

In this case the frame operator SΛ
g is invertible on Mp(Rd).

Now we are ready to state the result from [15] which gives sufficient conditions

for answering Question 3.1. For g ∈ M1(Rd) and δ > 0, we can define the M1

modulus of continuity of g as

ωδ(g) = sup
|z−w|≤δ

||π(z)g − π(w)g||M1

It is clear that ωδ → 0 as δ → 0 since the representation π is strongly continuous in

B(M1(Rd)).
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Theorem 3.1 ( [15]). For g ∈M1(Rd) with ||g||2 = 1 choose δ > 0 so that ωδ(g) < 1.

If Λ ⊂ R2d is relatively separated and ρ(Λ) < δ, then G(g,Λ) is a Gabor frame for

L2(Rd).

From this result, we can see that when ρ(Λ) is small enough there will be many

windows g for which G(g,Λ) is a Gabor frame. Furthermore, when g is one of these

admissible windows, G(g,Λ′) will also form a Gabor frame for any Λ′ ∈ ΩΛ since

ρ(Λ′) = ρ(Λ). However, when ρ(Λ) is large we cannot expect G(g,Λ) to form a

Gabor frame for any g. In fact, the Balian-Low theorem for non-uniform frames

proven in [15] shows that if G(g,Λ) is a frame then Dens(Λ) > 1. In this case, we

can only expect a multiwindow Gabor frame to exist.

Finally, we will need to introduce one more function space needed for the

proofs in Section 3.2. The Wiener amalgam space W (L∞, L1)(Rd) consists of all

functions f ∈ L∞(Rd) such that

||f ||W (L∞,L1) :=
∑
k∈Zd
||f ||L∞([0,1]d+k) <∞.

It is a standard result (see [14] Proposition 12.1.11) that when g ∈ M1(Rd) then

for any f ∈ M1(Rd), Vgf ∈ W (L∞, L1)(R2d) and ||Vgf ||W (L∞,L1) ≤ C||f ||M1||g||M1 .

Also note that if f ∈ W (L∞, L1)(Rd) and T ⊂ Rd is a Delone set then we have the

inequality

∑
t∈T

|f(t)| ≤ rel(T )||f ||W (L∞,L1). (3.1)

If T ∈ ΩΛ then the bound in this inequality is independent of T since rel(T ) = rel(Λ).
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3.2 Gabor Frames for Quasicrystals

3.2.1 Existence of Multiwindow Gabor Frames

Our first goal will be to prove Theorem 1.1. Given a quasicrystal Λ, Theorem

3.1 gives sufficient conditions for a single window Gabor frame to exist for Λ based on

the size of ρ(Λ). To show that multiwindow frames exist, we first need the following

lemma:

Lemma 3.1. Suppose Λ ⊂ R2d is FLC. Fix ε > 0. We can find finitely many disjoint

translates {Λi}Ni=1 so that Λ̄ =
⋃N
i=1 Λi has ρ(Λ̄) < ε.

Proof. First we let R = ρ(λ) + δ for some small δ. Since Λ is FLC, there are only

finitely many patterns of the form BR(z) ∩ Λ up to translation. These patterns

contain all the possible types of holes in Λ, some of which have size larger than ε.

Note that if we have a finite sequence zn then
⋃N
n=1 Λ + zn is also FLC. Thus we

can systematically shrink these holes one by one by taking unions of translates of

Λ. It will suffice to take a single pattern P which contains a hole of size larger than

ε and show how we can shrink that hole by a factor of 2. Repeating the procedure

will shrink the hole below a size of ε.

Choose a point z ∈ P and let c denote the center of the largest hole in P. Then

the set Λ ∪ (Λ− z + c) will no longer contain the patch P. Instead, all occurrences

of the patch P in Λ will now have a point in the center of the largest hole of P, so

that the largest hole will have been reduced in size by a factor of 2.

This method does not ensure that the sets Λ and Λ − z + c will be disjoint,
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since the vector z− c may lie in Λ−Λ. To fix this, note that we do not need to place

a point exactly in the center of the hole, but only very close to the center, in order

to reduce the hole by a significant amount. Thus if z− c ∈ Λ−Λ, we instead choose

a point c′ close enough to c so that z − c′ /∈ Λ− Λ and the hole in P is reduced by

a factor of 2− η for some small η. We can find such a point c′ since Λ FLC implies

that Λ− Λ is discrete.

Proposition 3.2. Given a Delone set Λ ⊂ R2d with FLC and g ∈M1(Rd), we can

find a multiwindow Gabor frame for Λ where the windows consist of time frequency

translates of g. Furthermore, this multiwindow Gabor frame will be an Mp-frame for

all p.

Proof. Choose δ > 0 so that ωδ(g) < 1. Applying Lemma 3.1, we can find Λ′ =⋃N
i=1(Λ + zi) so that ρ(Λ′) < δ. Then by Theorem 1.1,

G(g,Λ′) =
N⋃
i=1

{π(z + zi)g | z ∈ Λ}

is a Gabor frame and by Theorem 5.1 of [15] it is an Mp-frame for all p. This is

almost equal to the multiwindow Gabor system given by

N⋃
i=1

G(π(zi)g,Λ) =
N⋃
i=1

{π(z)π(zi)g | z ∈ Λ} =
N⋃
i=1

{e−2πixωiπ(z + zi)g | z ∈ Λ}

where z = (x, ω) and zi = (xi, ωi). The functions in the two Gabor systems differ

only by phase factors, so
⋃N
i=1 G(π(zi)g,Λ) will satisfy the same frame inequalities

as G(g,Λ′) and thus
⋃N
i=1 G(π(zi)g,Λ) is a multiwindow Gabor frame with the same

frame bounds (and Mp-frame bounds) as G(g,Λ′).
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Corollary 3.1. If g ∈M1(Rd) and
⋃N
i=1 G(π(zi)g,Λ) is a multiwindow Gabor frame

as constructed above, then so is
⋃N
i=1 G(π(zi)g,Λ

′) for any Λ′ ∈ ΩΛ.

Proof. Since Λ′ ∈ ΩΛ, it contains exactly the same patches as Λ. Thus the procedure

in Lemma 3.1 also works to fill in the holes of Λ′, so that the sets
⋃N
i=1 Λ + zi and⋃N

i=1 Λ′ + zi have the same sized hole. Then the argument from Proposition 3.2 ap-

plies in exactly the same way to Λ′, showing that
⋃N
i=1 G(π(zi)g,Λ

′) is a multiwindow

Gabor frame.

Taken together, Proposition 3.2 and Corollary 3.1 immediately imply Theorem 1.1.

3.2.2 Continuity and Covariance Properties of the Frame Operator

Now we will investigate various continuity and covariance properties of the

frame operator. When G(g1, . . . , gN ,Λ) is a multiwindow Gabor frame, we will

denote the associated frame operator by SΛ
{gi}. We will often omit the subscripts

and superscripts when they are clear from context. We would like to understand

the relationship between the frame operators ST and ST
′

when T, T ′ ∈ ΩΛ. First we

shall show that when T ′ = T − z then there is a covariance condition relating ST

and ST
′
.

Proposition 3.3. If G(g1, . . . , gN , T ) and G(g1, . . . , gN , T − w) are multiwindow

Gabor systems for T and T −w respectively, then the frame operators ST and ST−w

satisfy

STπ(w) = π(w)ST−w.
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Proof. Fix f ∈ L2(Rd). On the one hand we have

STπ(w)f =
N∑
i=1

∑
z∈T

〈π(w)f, π(z)gi〉π(z)gi =
N∑
i=1

∑
z∈T

e2πix′ω〈f, π(z − w)gi〉π(z)gi.

where z = (x, ω) and w = (x′, ω′). On the other hand we have

π(w)ST−wf =
N∑
i=1

∑
z∈T

〈f, π(z − w)gi〉π(w)π(z − w)gi

=
N∑
i=1

∑
z∈T

e2πix′ω〈f, π(z − w)gi〉π(z)gi

and so the two expressions are equal.

We would also like to know something about the continuity of the frame oper-

ators over ΩΛ. If Tk → T in ΩΛ, we cannot expect STk → ST in the operator norm.

However, we do have that STk → ST in the strong operator topology.

Proposition 3.4. Suppose Tk → T in ΩΛ and the window functions g1, . . . , gN lie

in M1(Rd). Then STk → ST in the strong operator topology on B(M1(Rd)).

Proof. Fix f ∈ M1(Rd). Let A = max{||gi||M1}. Fix ε > 0 and choose a large cube

C so that for all i ∑
a∈Zn \C

||Vgif ||L∞([0,1]n+a) <
ε

4ANrel(Λ)

where N is the number of windows in the multiwindow frame. Since Tk → T, we

can choose K so that for all k ≥ K,Tk agrees with T on the cube C up to a small

translation, so that∥∥∥∥∥
N∑
i=1

∑
z∈T∩C

〈f, π(z)gi〉π(z)gi −
N∑
i=1

∑
z∈Tk∩C

〈f, π(z)gi〉π(z)gi

∥∥∥∥∥
M1

<
ε

2
.
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Then for all k ≥ K we have

||STf − STkf ||M1 ≤

∥∥∥∥∥∥
N∑
i=1

∑
z∈T\C

〈f, π(z)gi〉π(z)gi −
N∑
i=1

∑
z∈Tk\C

〈f, π(z)gi〉π(z)gi

∥∥∥∥∥∥
M1

+
ε

2

≤ A

 N∑
i=1

∑
z∈T\C

|〈f, π(z)gi〉|+
N∑
i=1

∑
z∈Tk\C

|〈f, π(z)gi〉|

+
ε

2

= A

 N∑
i=1

∑
z∈T\C

|Vgif(z)|+
N∑
i=1

∑
z∈Tk\C

|Vgif(z)|

+
ε

2

≤ 2Arel(Λ)

 N∑
i=1

∑
a∈Zn \C

||Vgif ||L∞([0,1]n+a)

+
ε

2

< 2ANrel(Λ)

(
ε

4ANrel(Λ)

)
+
ε

2
= ε.

In the fourth inequality it is important to note that the inequality (3.1) holds not

only for the norms, but also for the partial sums. The main reason this proof works

is that rel(T ) is constant on ΩΛ. By applying inequality (3.1), this implies that we

can find a cube C so that the sum STf is arbitrarily small outside of C independent

of T ∈ ΩΛ.

Even though the mapping T → ST will not be continuous when B(M1(Rd)) is

given the norm topology, we can still show that all the frames G(g1, . . . , gN , T ) have

the same optimal frame bounds.

Proposition 3.5. Suppose G(g1, . . . , gN , T ) is a frame for each T ∈ ΩΛ and each

gi ∈ M1(Rd). For any T ∈ ΩΛ the optimal upper and lower frame bounds for

G(g1, . . . , gN , T ) are the same as those for G(g1, . . . , gN ,Λ). As a result, ||ST ||M1 =

||SΛ||M1 and ||(ST )−1||M1 = ||(SΛ)−1||M1 where || · ||M1 denotes the operator norm

on B(M1(Rd)).
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Proof. Let A and B denote the optimal lower and upper frame bounds for

G(g1, . . . , gN ,Λ) so that for all f ∈M1(Rd)

√
A||f ||M1 ≤ ||SΛf ||M1 ≤

√
B||f ||M1 .

Since the translates of Λ are dense in ΩΛ, we can find a sequence of translates

Λ − zk → T. Note that by Proposition 3.3 the frame bounds are constant on the

orbit of Λ. Since Λ − zk → T, SΛ−zk → ST in the strong topology by Proposition

3.4.

Now fix f ∈ M1(Rd). We have ||SΛ−zkf ||M1 → ||STf ||M1 . Since
√
A||f ||M1 ≤

||SΛ−zkf ||M1 ≤
√
B||f ||M1 for all k, we have

√
A||f ||M1 ≤ ||STf ||M1 ≤

√
B||f ||M1 .

By reversing the roles of T and Λ in this argument, we see that the upper and lower

frame bounds for T and Λ must be equal. The last remark follows since the lower

and upper frame bounds are equal to ||(ST )−1||M1 and ||ST ||M1 respectively.

Corollary 3.2. Suppose g1, . . . , gN ∈M1(Rd) and G(g1, . . . , gN ,Λ) is an M1-frame.

Then for any T ∈ ΩΛ,G(g1, . . . , gN , T ) is also an M1-frame.

Proof. By examining the basic frame inequalities in Definition 3.1, we can see that

if G(g1, . . . , gN ,Λ) is a frame then so is G(g1, . . . , gN ,Λ− z) for any z ∈ R2d . Given

T ∈ ΩΛ, we can find a sequence of translates Λ−zk converging to T. By Proposition

3.4 we have SΛ−zk → ST in the strong topology on B(M1(Rd)). The frame bounds

for the frames G(g1, . . . , gN ,Λ − zk) are all equal by Proposition 3.3, so ST also

satisfies those same frame bounds. In particular ST is bounded below on M1(Rd),

and thus G(g1, . . . , gN , T ) is an M1-frame.
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Note the difference between Corollary 3.1 and Corollary 3.2. Corollary 3.1 says that

there exist windows {gi}Ni=1 ⊂M1(Rd) so that G(g1, . . . , gN , T ) is a Gabor frame for

any T ∈ ΩΛ. Corollary 3.2 says that when G(g1, . . . , gN ,Λ) is a multiwindow Gabor

frame and each gi ∈ M1(Rd), then G(g1, . . . , gN , T ) is automatically also a Gabor

frame for any T ∈ ΩΛ. The similarity between the Delone sets in ΩΛ is the key to

Proposition 3.4 which drives all of our results.

3.3 Comparison of Convergence Properties

It is interesting to compare our Proposition 3.4 to the results in [15]. They

define a notion of convergence for point sets which is seemingly much stronger than

the local topology defined in Section 2.1. For Λ ⊂ R2d a Delone set, they consider

a sequence of Delone sets {Λn |n ≥ 1} produced as follows. For each n ≥ 1 let

τn : Λ → R2d be a map and define Λn := τn(Λ) = {τn(λ) |λ ∈ Λ}. We assume

τn(λ) → λ as n → ∞. The sequence of sets Λn together with the maps τn is called

a deformation of Λ. We will say that a sequence of sets Λn is a deformation of Λ

with the understanding that the maps τn are also given.

Definition 3.3. A deformation of Λ is called Lipschitz, denoted by Λn
Lip→ Λ, if:

1. Given R > 0,

sup
λ,λ′∈Λ

|λ−λ′|≤R

|(τn(λ)− τn(λ′))− (λ− λ′)| → 0 as n→∞.

2. Given R > 0 there exists R′ > 0 and n0 ∈ N such that if |τn(λ)− τn(λ)′| ≤ R

for some n ≥ n0 and some λ, λ′ ∈ Λ then |λ− λ′| ≤ R′.
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The goal of Lipschitz convergence is to ensure that the separation, relative

density, and hole of Λn are close to the corresponding quantities for Λ when n is

large. This level of control allows them to prove the following result:

Theorem 3.2. Let g ∈M1(Rd),Λ ⊂ R2d and assume that G(g,Λ) is a frame. If Λn

is Lipschitz convergent to Λ then G(g,Λn) is a frame for sufficiently large n.

The proof depends on a general characterization of Gabor frames which does not

involve inequalities. Their result does not imply that SΛn → SΛ in any of the

standard operator topologies, and does not yield estimates for the frame bounds of

SΛn when n is sufficiently large. This illustrates how much simpler the situation

becomes when we restrict our attention to quasicrystals.

We would like to compare Lipschitz convergence with the local topology. In

particular, if Λn
Lip→ Λ and all Λn ∈ ΩΛ, does Λn → Λ in ΩΛ? After reflecting

upon this, it seems quite difficult for any deformation Λn to satisfy condition one

in Definition 3.3 if all Λn ∈ ΩΛ. The sets in ΩΛ were chosen based on their local

structure, but condition one implies a kind of global convergence. We are led to

conjecture:

Conjecture 3.1. Suppose Λn ∈ ΩΛ and Λn
Lip→ Λ. Then for any ε > 0 we can find

Nε such that for all n ≥ Nε,Λn = Λ + vn where vn ∈ R2d is a vector with ||vn|| ≤ ε.

Conjecture 3.1 would imply that Lipschitz convergence implies convergence in the

local topology, but is actually far stronger as any Lipschitz convergent sequence

would be somewhat trivial. We can illustrate this by stating a slightly weaker

conjecture:
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Conjecture 3.2. Suppose Λn ∈ Ωtrans and Λn
Lip→ Λ. Then the sequence Λn is

eventually constant and equal to Λ.

These conjectures seem reasonable in light of the fact that a local isomorphism

between two quasicrystals need not imply global similarity. However, there is one

class of point sets where local similarity does imply a kind of global similarity. In [2]

the authors show that model sets which are close in the local topology are statisti-

cally similar in the following sense. Let Λ be a model set and suppose Λ′ ∈ ΩΛ and

Λ′ agrees with Λ on a large ball around the origin so that d(Λ,Λ′) < ε. Then there is

a constant C independent of Λ,Λ′ so that dens(Λ ∆ Λ′) < Cε. Here dens(Λ) denotes

the upper density of a point set Λ and ∆ denotes the symmetric difference. Further-

more, they show that this property characterizes model sets among quasicrystals.

It is unclear whether this statistical similarity is enough to construct a counterex-

ample to either conjecture. It would be interesting to see whether these conjectures

have different answers depending on the class of quasicrystals (e.g. model set or

substitution) under consideration.
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Chapter 4

Constructing Aσ-modules

4.1 Lattice Gabor Frames and Modules over Noncommutative Tori

To motivate our construction of modules over Aσ, we will review Rieffel’s

results in [31] on constructing modules over noncommutative tori and relate them

to Gabor analysis as in [25], [26].

Definition 4.1. Let L ⊂ R2d be a lattice. The C∗-algebra AL generated by the

time-frequency shifts {π(z) | z ∈ L} is called a noncommutative torus.

We can also define noncommutative tori as twisted convolution algebras. We take

l1(L) with twisted convolution

a ∗ b(l) :=
∑
µ∈L

a(µ)b(l − µ)σ(µ, l − µ)

where σ is the symplectic cocycle on R2d . This is equivalent to taking the twisted

group algebra Aθ = C∗r (Z2d, θ) where θ = σ|L. The group algebra is generated

by unitaries U~n which correspond to the Dirac δ-functions at the elements of Z2d .

Any cocycle on Z2d is given by a skew symmetric matrix Θ which describes the

commutation relations between the U~n :

U~nU~m = e2πi~ntΘ~mU~mU~n.

When the off diagonal entries of this matrix are all irrational and rationally inde-

pendent, we call the cocycle totally irrational. The standard trace on Aθ is given
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by

TrAθ

∑
~n∈Z2d

a~nU~n

 = a0.

When θ is totally irrational the map TrAθ∗ : K0(Aθ) → R is injective, although in

general it will not be [9].

Each of these definitions of the noncommutative torus comes with its own

advantages. By viewing a noncommutative torus as a twisted group algebra Aθ we

can easily compute its K-theory. Any skew symmetric matrix Θ is homotopic to

the zero matrix by the straight line homotopy, so Theorem 2.3 applies1 and shows

K∗(Aθ) ∼= K∗(T2d). On the other hand, when we have a lattice L such that σ|L = θ,

the algebra AL ∼= Aθ and describes Aθ in a specific representation. Rieffel’s insight

was that different lattices can produce different representations of Aθ, and that these

representations exhaust the classes in K0(Aθ).

More precisely, we define the smooth noncommutative torus

A∞L :=

{∑
z∈L

azπ(z) ∈ AL | az decays faster than any polynomial

}
,

and the analogous smooth subalgebra of Aθ is defined similarly. The algebra A∞L is

a spectrally invariant subalgebra of AL. There is a canonical action of A∞L on S(Rd)

by time-frequency shifts, and we denote this A∞L -module by VL. We have

TrAL∗([VL]) = vol(L) =
1

Dens(L)
,

and this last equality already suggests how the dimension of this module will gen-

eralize to quasicrystals. We identify a lattice L with a linear map A such that

1There are many ways to compute the K-theory of noncommutative tori, but we use Theorem

2.3 since we will need this specific isomorphism later.
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AZ2d = L. If we fix a cocycle θ then σ|L = θ exactly when A∗σ = θ.

Theorem 4.1 (Rieffel [31]). Fix a cocycle θ on Z2d . Any invertible linear map A

such that A∗σ = θ gives rise to an A∞θ -module VAZ2d . These modules are finitely

generated and projective, and any class in K0(A∞θ ) can be represented as [VAZ2d ] for

some A.

In order to promote VL from an A∞L -module to an AL-module we first endow

it with the structure of a Hilbert C∗-module. For f, g ∈ S(Rd), we define an A∞L

valued inner product by

L〈f, g〉 :=
∑
z∈L

〈f, π(z)g〉π(z).

To prove that this inner product makes VL into a Hilbert A∞L -module, we must

show (among other, easier identities) that the inner product L〈f, f〉 always yields a

positive element of A∞L . It suffices to show that for any g ∈ S(Rd) we have

〈L〈f, f〉g, g〉 ≥ 0.

Simplifying the right hand side, we have

〈L〈f, f〉g, g〉 =
∑
z∈L

〈f, π(z)f〉〈π(z)g, g〉 =
1

vol(L)

∑
l∈L◦
〈f, π(l)g〉〈π(l)g, f〉 ≥ 0

where

L◦ :=

0 −I

I 0

L∗

is the adjoint lattice. Here the second equality follows from an application of the

Poisson summation formula.
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One of the advantages of giving VL a Hilbert module structure is that we can

investigate the dual structure End0
A∞L

(VL). Note that when l ∈ L◦, π(l) commutes

with π(z) whenever z ∈ L. Thus we can consider the natural right action of A∞L◦

on S(Rd) and this action commutes with the left action of A∞L . We can define an

A∞L◦-valued inner product on S(Rd) by

{f, g}L◦ :=
1

vol(L)

∑
l∈L◦

π(l)∗〈π(l)g, f〉 =
1

vol(L)

∑
l∈L◦

π(l)〈g, π(l)f〉.

We would hope that End0
A∞L

(VL) = A∞L◦ , and we can show this by verifying the

identity L〈f, g〉h = f{g, h}L◦ . It is enough to show that for all k ∈ S(Rd),

〈L〈f, g〉h, k〉 = 〈f{g, h}L◦ , k〉.

Simplifying this identity, we can see that it amounts to claiming

∑
z∈L

〈f, π(z)g〉〈π(z)h, k〉 =
1

vol(L)

∑
l∈L◦
〈f, π(l)k〉〈π(l)h, g〉

which follows again from an application of the Poisson summation formula. Thus

VL actually has the structure of a Hilbert A∞L -A∞L◦ bimodule, demonstrating that

A∞L and A∞L◦ are Morita equivalent. We can equip VL with the norm

||f ||AL := ||L〈f, f〉||1/2AL
.

After completing VL in this norm, we end up with an AL-AL◦ equivalence bimodule,

and Theorem 4.1 holds in this case as well.

The reader may already have noticed some similarities between the arguments

above and the analysis of lattice Gabor frames. In particular, the applications of

the Poisson summation formula above are known in time-frequency analysis as the
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Fundamental Identity of Gabor Analysis (FIGA). To draw out the compar-

ison further, let’s fix functions f, g ∈ S(Rd) and consider the frame operator SLf,g

given by

SLf,g =
∑
z∈L

〈 · , π(z)f〉π(z)g.

This is precisely equal to the rank one operator L〈·, f〉g, so the frame operator SLf,g

lies in End0
A∞L

(VL). However, we know from above that End0
A∞L

(VL) = A∞L◦ , so we

should be able to find an expression for SLf,g in terms of time frequency shifts from

L◦. Indeed, an application of the FIGA shows that

SLf,g =
∑
z∈L

〈 · , π(z)f〉π(z)g =
1

vol(L)

∑
l∈L◦
〈g, π(l)f〉π(l) = {f, g}L◦ .

This is known as the Janssen representation of the Gabor frame operator.

Thus one could predict the existence of the Janssen representation from the

Hilbert module structure of VL. Indeed, one can actually deduce the coefficients

in the representation by applying the trace on A∞L◦ . To this end, we can define a

(non-normalized) trace Tr′AL◦ on rank one operators in A∞L◦ using the formula

Tr′AL◦ (〈f, g〉L◦) := TrAL(L〈g, f〉).

This extends to all of A∞L◦ and agrees with the standard trace up to a constant:

Tr′AL◦ = vol(L)TrAL◦ .

Thus we can compute

TrAL◦ ({f, g}L◦) =
1

vol(L)
Tr′AL◦ ({f, g}L◦) =

1

vol(L)
TrAL(L〈g, f〉) =

1

vol(L)
〈g, f〉.
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Now to deduce the Janssen representation, we notice that for l ∈ L◦ the coefficient

of π(l) in the expansion of SLf,g is given by TrAL◦ (S
L
f,gπ(l)∗). However, SLf,gπ(l)∗ is

equal to {f, π(l)∗g}L◦ , so

TrAL◦ (S
L
f,gπ(l)∗) = TrAL◦ ({f, π(l)∗g}L◦) =

1

vol(L)
〈π(l)∗g, f〉 =

1

vol(L)
〈g, π(l)f〉.

This is precisely the coefficient of π(l) in the Janssen representation.

4.2 Projections in Noncommutative Tori

Whenever G(g, L) is a Gabor frame and g ∈ S(Rd), we can use it to construct

a projection in A∞L . Denote by g̃z the function S−1
g π(z)g = π(z)S−1

g g which is an

element of the canonical dual frame. We will denote by C the noncommutative

analysis operator acting on f ∈ S(Rd) by

Cf =
∑
z∈L

〈f, g̃z〉π(z) ∈ A∞L .

Denote by D the noncommutative synthesis operator which takes an element

a ∈ A∞L to ag ∈ S(Rd). Since g generates a Gabor frame, we have that DC is the

identity on S(Rd), showing that VL is finitely generated (by g) and projective as an

A∞L module. Composing the operators in the other direction gives us a projection

in A∞L representing the module VL, which can be written as Pg =
∑

z∈L〈g, g̃z〉π(z).

When g generates a Parseval tight Gabor frame, g̃z = π(z)g and the projection

Pg is precisely the operator L〈g, g〉. This is no coincidence. We can identify the

module VL with the module A∞L ·Pg where A∞L acts by multiplication on the left. The

isomorphism between VL and A∞L is given by the analysis and synthesis operators.
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After doing this, we can consider the canonical Hilbert module structure on A∞L ·Pg

which is given by

〈a, b〉 = aPgb
∗.

We can use the analysis and synthesis operators to translate this inner product into

an inner product on VL, and this defines a new C∗-inner product given by

g
L〈f, h〉 =

∑
z∈L

〈f, S−1
g π(z)h〉π(z).

Using this inner product, we have again that Pg = g
L〈g, g〉. We can see that this

inner product is equivalent to our original one since

g
L〈f, h〉 =

∑
z∈L

〈f, S−1
g π(z)h〉π(z) =

∑
z∈L

〈S−
1
2

g f, S
− 1

2
g π(z)h〉π(z) =L 〈S

− 1
2

g f, S
− 1

2
g h〉.

Thus we see that g
L〈g, g〉 is a projection iff L〈S

− 1
2

g g, S
− 1

2
g g〉 is a projection iff S

− 1
2

g g

generates a Parseval tight frame. Here the last equivalence comes from Theorem 3.3

in [26].

We can see from the previous discussion that when f and g generate Gabor

frames for L, the inner products f
L〈 · , · 〉 and g

L〈 · , · 〉 are equal iff Sf = Sg, though

they are always isomorphic as Hilbert module structures. We can define an equiva-

lence relation on functions f, g ∈ S(Rd) by saying f ∼ g iff SLf = SLg . We call such

functions L frame equivalent.

Question 4.1. Can we classify functions up to L frame equivalence?

This question is posed as an attempt to understand what types of frame oper-

ators are possible for a lattice L. Note that if f and g generate Parseval tight Gabor
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frames for L then they are L frame equivalent. We have a characterization of such

functions called the Wexler-Raz orthogonality relations which say that G(g, L)

is a Parseval tight frame iff 〈g, π(l)g〉 = 1
vol(L)

δL◦,0. Thus we can already see the level

of complexity inherent in Question 4.1 by examining Parseval tight frames. Given

the connection between frame equivalence and equality of the Hilbert inner prod-

ucts f
L〈 · , · 〉 and g

L〈 · , · 〉, it would be interesting to see whether operator algebraic

techniques could be used to tackle Question 4.1.

In the previous discussion we have used Gabor frames to construct projec-

tions, and then projections to construct Hilbert module structures. However, it

can be advantageous to work in the opposite direction as well. For example, when

vol(L) ≥ 1, we can never construct a single window Gabor frame for L. Regardless,

we will always have a Hilbert bimodule structure on VL. As in the proof of Propo-

sition 3.3 in [31], we can always find a finite collection {gi}Ni=1 ⊂ M1(Rd) so that∑N
i=1{gi, gi}L◦ = 1A◦L . After unpacking the definitions, we see that this is precisely

the condition that G(g1, . . . , gN , L) is a Parseval tight multiwindow Gabor frame.

Thus we have proven the existence of Parseval tight multiwindow Gabor frames for

L using purely operator algebraic machinery! This result was first proven in [25]

using these methods, but now has purely analytic proofs. Nonetheless, it still shows

the benefits of using operator algebras to study Gabor systems.
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4.3 Constructing HΛ

Now we are ready to define the module HΛ described in Chapter 1. Let

Λ ⊂ R2d be a quasicrystal. Recall that σ is the standard symplectic cocycle on R2d .

We construct a projective σ-representation of RΛ by time-frequency shifts. Consider

the (trivial) bundle of Hilbert spaces given by Ωtrans×L2(Rd). Denote the fiber over

a quasicrystal T ∈ Ωtrans by HT . An element (T, T − z) ∈ RΛ acts as a map from

HT−z → HT by

(T, T − z)f = π(z)f.

We could construct a module over Aσ by integrating this representation, however it

would not have the correct topology to give a finitely generated projective module.

Instead, we define a module over AL1

σ which we will later complete to a

module over Aσ. Here AL1

σ denotes the continuous functions in L1
σ(RΛ). We be-

gin with C(Ωtrans,M
1(Rd)), the continuous functions on the transversal with values

in M1(Rd). Given f ∈ AL1

σ and Ψ ∈ C(Ωtrans,M
1(Rd)) we define an action I of AL1

σ

by

I(f)Ψ(T ) =
∑
z∈T

f(T, T − z)π(z)Ψ(T − z).

Since Ωtrans is compact, ||Ψ(T )||M1 ≤ C for a constant C which is independent of

T. Thus the series converges in M1(Rd). This representation is faithful since AL1

σ is

simple. We denote this AL1

σ -module byHΛ. We will denote by CΛ the linear subspace

of HΛ of transversally constant functions which can be naturally identified with

M1(Rd). For g ∈M1(Rd) we denote by Ψg ∈ CΛ the function defined by Ψg(T ) = g.

When G(g1, . . . , gN ,Λ) is a multiwindow Gabor frame we will show that Ψg1 , . . . ,ΨgN
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generate HΛ as an AL1

σ -module and construct an associated projection in AL1

σ .

To begin, fix g1, . . . , gN ∈ M1(Rd) so that for any T ∈ ΩΛ,G(g1, . . . , gN , T )

is an M1-frame. By Theorem 1.1, it is always possible to find functions satisfying

this requirement. Now we can define two maps, which are generalizations of the

analysis and synthesis maps for frames. We define the noncommutative synthesis

operator

D : (AL1

σ )N → HΛ

by

D(1i) = Ψgi

where 1i denotes the element of (AL1

σ )N which is 0 except in the ith entry where it

is equal to the identity element of AL1

σ . We extend this map to all of (AL1

σ )N so that

it is a continuous map of AL1

σ -modules, effectively by letting an element in AL1

σ act

on each Ψgi and then summing over i.

Denote by g̃i
T
z := (ST )−1π(z)gi the ith dual frame element corresponding to

z ∈ T. We now define the noncommutative analysis operator C : HΛ → (AL1

σ )N

which sends a function f ∈ HΛ to

C(f) = (G1, . . . , GN) ∈ (AL1

σ )N

where

Gi(T, T − z) := 〈f(T ), g̃i
T
z 〉.
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To see that Gi ∈ AL
1

σ , we compute∫
RΛ

|Gi| =
∫

Ωtrans

∑
z∈T

∣∣〈f(T ), g̃i
T
z 〉
∣∣ dT

=

∫
Ωtrans

∑
z∈T

∣∣〈(ST )−1f(T ), π(z)gi〉
∣∣ dT

which holds since ST is self-adjoint. For convenience we denote by FT the function

(ST )−1f(T ). Since ST is invertible in B(M1(Rd)) we have FT ∈ M1(Rd). Now we

have∫
Ωtrans

∑
z∈T

|〈FT , π(z)gi〉| dT =

∫
Ωtrans

∑
z∈T

|VgiFT (z)|dT

≤ rel(Λ)

∫
Ωtrans

||VgiFT ||W (L∞,L1)dT

≤ C rel(Λ)||gi||M1

∫
Ωtrans

||FT ||M1dT

≤ C rel(Λ) ||gi||M1

∫
Ωtrans

||(ST )−1||M1||f(T )||M1dT <∞

The inequality in the third line comes from Proposition 12.1.11 in [14], and the

constant C is independent of T. We see the integral is finite because the continuity

of f implies ||f(T )||M1 is bounded on Ωtrans, and because Proposition 3.5 shows that

||(ST )−1|| = ||(SΛ)−1|| for all T.

Proposition 4.1. The map C is a map of AL1

σ -modules.

Proof. First note that the transversally constant functions CΛ are cyclic in HΛ under

the action ofAL1

σ . For example, we can get all transversally locally constant functions

by applying characteristic functions of the unit space of RΛ, and locally constant

functions are dense in C(Ωtrans,M
1(Rd)). Thus it will suffice to prove that C is an

AL1

σ -module map when AL1

σ acts on CΛ.
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So assume that Ψf ∈ CΛ and that a ∈ AL1

σ . On the one hand we have

C(I(a)Ψf )i(T, T − z) =

〈∑
w∈T

a(T, T − w)π(w)f, g̃i
T
z

〉

=
∑
w∈T

a(T, T − w)〈π(w)f, g̃i
T
z 〉

=
∑
w∈T

a(T, T − w)〈f, T−x′M−ω′ g̃iTz 〉.

where w = (x′, ω′). On the other hand we have

a ∗ C(Ψf )i(T, T − z) =
∑
w∈T

a(T, T − w)〈f, e2πix′(ω′−ω)g̃i
T−w
z−w 〉.

where z = (x, ω). We will show that

T−x′M−ω′ g̃i
T
(x,ω) = e2πix′(ω′−ω)g̃i

T−w
z−w .

Unpacking the definitions, we see that this is equivalent to showing

T−x′M−ω′(S
T )−1π(z)gi = e2πix′(ω′−ω)(ST−w)−1π(z − w)gi

which is equivalent to

T−x′M−ω′(S
T )−1π(z)gi = (ST−w)−1T−x′M−ω′π(z)gi

after commuting T−x′ past M(ω−ω′) on the RHS. We can cancel the π(z) from both

sides and simply show the operator equality

T−x′M−ω′(S
T )−1 = (ST−w)−1T−x′M−ω′ .

By inverting both sides we see this is equivalent to showing

STπ(w) = π(w)ST−w

which follows from Proposition 3.3.
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Now we can see that the maps D and C are well defined maps of AL1

σ -modules.

Composing these maps, we get that

DCf(T ) =
N∑
i=1

∑
z∈T

〈f(T ), g̃i
T
z 〉gi = f(T )

where the last equality holds since this is exactly the reconstruction formula for

f(T ) using the Gabor frame G(g1, . . . , gN , T ). Thus C splits the map D, showing

that HΛ is finitely generated (by the functions Ψgi) and projective. Thus we have:

Theorem 4.2. HΛ is finitely generated and projective as a AL1

σ -module.

If we compose these maps in the opposite order, we can construct a projection

matrix P ∈ MN(AL1

σ ) which represents HΛ in K0(Aσ). We can write the elements

of P explicitly as functions in AL1

σ as

Pij(T, T − z) = 〈gi, g̃jTz 〉.

To compute the trace of this projection (and thus the dimension of the module HΛ)

we apply the normalized trace on MN(Aσ) to get

Tr(P ) =
1

N

N∑
i=1

∫
Ωtrans

〈gi, g̃iT0 〉dT.

By applying Birkhoff’s Ergodic Theorem, the integrals can be replaced by averages

over the orbits of Λ. Thus we get

Tr(P ) = lim
k→∞

1

N |Λ ∩ Ck|

N∑
i=1

∑
z∈(Λ∩Ck)

〈gi, g̃iΛ−z(0,0)〉

where Ck is the cube centered at the origin with side length k. We would like to

rewrite this sum so that it involves only the dual frame for G(g1, . . . , gN ,Λ). We can
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use Proposition 3.3 to rewrite g̃i
Λ−z
(0,0) as

g̃i
Λ−z
(0,0) = (SΛ−z)−1gi = (SΛ−z)−1T−xM−ωMωTxgi = T−xM−ω(SΛ)−1π(z)gi.

Now we can rewrite the sum as

Tr(P ) = lim
k→∞

1

N |Λ ∩ Ck|

N∑
i=1

∑
z∈(Λ∩Ck)

〈gi, T−xM−ω(SΛ)−1π(z)gi〉

= lim
k→∞

1

N |Λ ∩ Ck|

N∑
i=1

∑
z∈(Λ∩Ck)

〈π(z)gi, g̃i
Λ
z 〉

which involves only the Gabor frame G(g1, . . . , gN ,Λ) and its dual. These averages

coincide precisely with the frame measure introduced in [3]. In Theorem 4.2 (b)

they show that for a single window frame, the averages above are equal to 1
Dens(Λ)

.

Their results are easily generalized to show that this also holds for multiwindow

frames, so we get the following result:

Corollary 4.1. The dimension of HΛ is equal to 1
Dens(Λ)

.

Thus we have completed the proof of Theorem 1.2. Note that the realization of the

frame measure as the dimension of a projective module gives a structural reason

why it should be independent of the choice of windows for the frame.

4.4 Hilbert C∗-module Structure

In Section 4.1 we saw that it was advantageous to give VL the structure of a

Morita equivalence bimodule. Understanding the structure of End0
A∞L
VL was partic-

ularly useful as it could be used to derive the Janssen representation of the frame

operator. Motivated by this example, we would like to give HΛ the structure of
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a Hilbert C∗-module and study the endomorphism algebra End0
AL1
σ
HΛ, which for

brevity we will denote by BL1

σ . We denote its completion to a C∗-algebra by Bσ.

In the previous section we showed that HΛ is a finitely generated projective

module. When G(g1, . . . , gN ,Λ) is a multiwindow Gabor frame, we constructed an

associated projection2 P ∈MN(AL1

σ ) which represents [HΛ] in K0(Aσ). In principal,

the projection P can be used to give HΛ an AL1

σ -valued inner product. We can also

use P to describe BL1

σ , though this description does not immediately identify BL1

σ

as a familiar algebra (e.g. it is unclear whether BL1

σ is a twisted groupoid algebra

associated to a quasicrystal Λ′).

We now outline our strategy in greater detail. We can identify the module

HΛ with (AL1

σ )NP where AL1

σ acts by multiplication on the left. The isomorphism

between HΛ and (AL1

σ )NP is given by the noncommutative analysis and synthesis

maps. For elements a, b ∈ (AL1

σ )NP the natural Hilbert C∗-inner product is given

by

AL1
σ
〈a, b〉 = aPb∗.

Using the noncommutative analysis and synthesis operators we can translate this

inner product structure to HΛ. After doing this, we can identify the endomorphism

algebra BL1

σ with P (AL1

σ )NP acting on (AL1

σ )NP by multiplication on the right. By

utilizing the noncommutative analysis and synthesis maps we can take an element

of the form PaP where a ∈ (AL1

σ )N and get an explicit formula for how it acts on

an element in HΛ.

2Note that the projection P does depend on the choice of window functions g1, . . . , gN , but the

class of P in K0(Aσ) is independent of this choice.
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To carry out this strategy, we first make a simplifying assumption. We assume

that there is a single window Gabor frame G(g,Λ) so that Pg ∈ AL
1

σ is given by

Pg(T, T − z) = 〈g, g̃Tz 〉 = 〈g, (STg )−1π(z)g〉.

Although it will not always be possible to construct such a frame, it serves to simplify

the resulting formulas and does not change the nature of any of the results. Now

suppose Ψ, η ∈ HΛ. Then we apply the noncommutative analysis operator Cg and

compute

g

AL1
σ

〈Ψ, η〉(T, T − z) = (CgΨ) ∗ P ∗ (Cgη)∗(T, T − z) = 〈Ψ(T ), (STg )−1π(z)η(T − z)〉.

The final equality requires repeated use of the reconstruction formula for the Gabor

frame G(g,Λ). This is quite similar to the inner product defined on VL in the case

of noncommutative tori. However, we might have guessed that

AL1
σ
〈Ψ, η〉(T, T − z) = 〈Ψ(T ), π(z)η(T − z)〉

would also define an inner product for HΛ. This would immediately be true if we

could choose G(g,Λ) to be a tight frame, however it is not clear that this is possible.

Instead, we introduce the global frame operator Sg as an operator on HΛ

defined by

(Sgf)(T ) = STg f(T ).

By Proposition 3.4 we see Sg is well defined and invertible. Now we compute

g

AL1
σ

〈Ψ, η〉(T, T − z) = 〈Ψ(T ), (STg )−1π(z)η(T − z)〉

= 〈(STg )−
1
2 Ψ(T ), π(z)(ST−zg )−

1
2η(T − z)〉

= AL1
σ
〈(Sg)−

1
2 Ψ, (Sg)

− 1
2η〉(T, T − z).
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Thus the operator S
− 1

2
g implements an isomorphism between g

AL1
σ

〈 · , · 〉 and

AL1
σ
〈 · , · 〉, which shows that AL1

σ
〈 · , · 〉 is a well defined inner product.

In the case of noncommutative tori, the existence of an inner product like

AL1
σ
〈 · , · 〉 immediately implied the existence of tight multiwindow Gabor frames.

Unfortunately, we cannot conclude the same for the case of quasicrystals. To illus-

trate this, suppose for simplicity that we have an element Ψ ∈ HΛ so that AL1
σ
〈Ψ,Ψ〉

is the identity operator. For noncommutative tori, this would immediately imply

that Ψ generates a Parseval tight Gabor frame. This would also be true in our

case if Ψ were transversally constant. Of course, we cannot guarantee that Ψ will

be transversally constant. For example, let G(g,Λ) be a Gabor frame and con-

sider Ψg, which we know generates HΛ as an AL1

σ -module. Then (Sg)
− 1

2 Ψg satisfies

AL1
σ
〈(Sg)−

1
2 Ψg, (Sg)

− 1
2 Ψg〉 = Id, but is not transversally constant. This phenomenon

is explained by the fact that the collection {(STg )−
1
2π(z)g}z∈T = {π(z)(ST−zg )−

1
2 g}z∈T

is a Parseval tight frame, but not necessarily a Gabor frame.

It may seem disappointing that our method was unable to prove the existence

of Parseval tight multiwindow frames for quasicrystals. After all, this was the first

contribution of operator algebraic methods to understanding lattice Gabor frames.

However, we will soon have evidence that it is impossible to construct Parseval

multiwindow frames for certain quasicrystals. Thus we should not have expected

the methods here to prove their existence. We might instead view the complications

above in a positive light. If we were to determine a Janssen-type representation

using the structure of Bσ then we should expect a similar representation to hold for
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frames like {(STg )−
1
2π(z)g}z∈T even though they are not Gabor frames.

Next we would like to investigate some operators lying in BL1

σ which are of

particular interest. In order to do this, it will help to have a succinct list of generators

for AL1

σ . To this end we introduce the sets Ez = {(T, T − z) ∈ RΛ | z ∈ T} and the

operators χz := χEz . The operator I(χz) acts on Ψ ∈ HΛ by

I(χz)Ψ(T ) =


π(z)Ψ(T − z) if z ∈ T

0 otherwise

These operators generate AL1

σ as a C∗-algebra and demonstrate how AL1

σ acts by

time frequency shifts. The operator I(χz) does a time frequency shift by z if z ∈ T,

and is the zero operator otherwise. In order to construct operators in BL1

σ , we must

first find operators which commute with all the I(χz). An operator O will commute

with all the I(χz) iff it satisfies the following two properties. First, if Ψ ∈ HΛ then

OΨ(T ) must depend only on Ψ(T ). This corresponds to commuting with projections

on the unit space of RΛ, which can be written as combinations of operators of the

form I(χzχ
∗
z). Thus we can think of O as a continuous family of operators O(T ) each

acting on M1(R2d). Finally, the family of operators O(T ) must satisfy the covariance

condition

O(T )π(z) = π(z)O(T − z).

From the conditions above and Proposition 3.3, we immediately see that the

global frame operator Sg commutes with AL1

σ . This mirrors the results of Section 4.1,

where we found that the frame operator for a lattice Gabor frame was an element of

End0
A∞L
. In looking for a Janssen representation, we would like to decompose Sg into
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a linear combination of time-frequency shifts. The first step would be to show that

BL1

σ contains operators which look something like time-frequency shifts. We define

operators τk on HΛ by

(τkΨ)(T ) = ϕk(T )π(ǩ)Ψ(T )

where ϕk is a continuous eigenfunction for ΩΛ with eigenvalue k, and

ǩ =

0 −I

I 0

 k

is a symplectic transformation of the eigenvalue k. A simple computation shows that

all τk commute with AL1

σ . The operators τk play the same role as time-frequency

shifts from the adjoint lattice did in the case of noncommutative tori.

Up until now we have only shown that Sg and the τk commute with AL1

σ , but

we have not actually shown that they are in BL1

σ . This is a somewhat subtle point,

but it becomes important if we consider operators τk when k is a measurable, but not

continuous, eigenvalue. In this case, the operator τk is well defined as an operator

in B(L2(Ωtrans×Rd)), but will not lie in BL1

σ . It will, however, lie in the commutant

of the von Neumann algebra generated by Aσ. It is as yet unclear whether such an

operator should contribute to something like a Janssen representation.

Nevertheless, we can show that Sg and all τk (for continuous eigenvalues k)

lie in BL1

σ . Showing Sg ∈ BL
1

σ is simple, as Sg is exactly the rank one operator

AL1
σ
〈 · ,Ψg〉Ψg. Note that since all the C∗-inner products above are isomorphic, the

corresponding endomorphism algebras are equal. Thus we can use any of the inner

products to show that an operator lies in BL1

σ , and we shall use this technique below.

To show that the τk lie in BL1

σ , we will identify BL1

σ with PgAL
1

σ Pg. For a function

59



a(T, T − z) ∈ AL1

σ , the element PgaPg acts on Ψ ∈ HΛ by

Ψ(PgaPg)(T ) =
∑
z∈T

〈Ψ(T ), g̃Tz 〉
∑
w∈T

e2πix(ω−ω′)a(T − z, T − w)π(w)g

where z = (z, ω), w = (x′, ω′). When a(T ) is a function on the unit space of RΛ, this

formula simplifies to ∑
z∈T

〈Ψ(T ), g̃Tz 〉a(T − z)π(z)g.

We can interpret these operators as altering the reconstruction procedure of the

frame G(g, T ). If we define

τ̃k(T − z, T − w) = e−2πix(ω−ω′)ϕk(T )〈π(ǩ)π(z)g, g̃Tw〉

then we see that the function τ̃k acts on HΛ in exactly the same way as the operator

τk. This demonstrates that τk lies in BL1

σ . To compare with our earlier remarks, note

that τ̃k is a continuous function iff ϕk is a continuous eigenfunction.

Remark 4.1. For a model set with internal space equal to Rn, the operators τk

generate a noncommutative torus inside Bσ. Because HΛ is finitely generated and

projective, we can complete it to get a type II1 representation of the von Neumann

algebra generated by Aσ. This implies that the representation of the rotation algebra

generated by the τk (which lies in the VN completion of Bσ) completes to a von

Neumann algebra with a faithful, finite trace. This is curious, considering that the

τk act something like time-frequency shifts from a dense subgroup of R2d . The stan-

dard representation of these time frequency shifts on L2(Rd) completes to B(L2(Rd))

which has no such trace. This complication was one large obstruction to generalizing

Linnell’s results in [24]. By considering the noncommutative torus generated by the

τk, it may be possible to sidestep this issue and generalize his results.
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The next step in reproducing the results from Section 4.1 is to describe the

trace on BL1

σ . There are two possible ways we might approach this. First, we can

use the Hilbert module structure to describe the trace on rank one operators in BL1

σ .

For Ψ, η ∈ HΛ we define the BL1

σ -valued inner product { · , · }BL1
σ

by

{Ψ, η}BL1
σ

= AL1
σ
〈 · ,Ψ〉η

so that {Ψ, η}BL1
σ

is the rank one operator corresponding to Ψ and η. In this case

we can define a (non-normalized) trace Tr′Bσ by

Tr′Bσ({Ψ, η}BL1
σ

) := TrAσ

(
AL1
σ
〈η,Ψ〉

)
=

∫
Ωtrans

〈η(T ),Ψ(T )〉dT.

We know that Tr′Bσ(Id) is the dimension of HΛ, so the unique normalized trace on

Bσ is given by

TrBσ = Dens(Λ)Tr′Bσ .

We can also define traces TrgBσ by identifying BL1

σ with PgAL
1

σ Pg and using the trace

on Aσ. For a rank one operator we have

TrgBσ({Ψ, η}BL1
σ

) =

∫
Ωtrans

∑
z∈T

〈g, (ST )−1π(z)Ψ(T − z)〉〈π(z)η(T − z), (ST )−1g〉dT.

We know that all traces on BL1

σ are equal up to a constant multiple, and by evaluating

on the projection Pg we see that

TrgBσ = Tr′Bσ .

After some suitable choices, we can deduce the following identity whenever Ψ, η ∈

HΛ and G(g,Λ) is a Gabor frame:∫
Ωtrans

∑
z∈T

〈g, π(z)Ψ(T − z)〉〈π(z)η(T − z), g〉dT =

∫
Ωtrans

〈η(T ),Ψ(T )〉dT.
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This is of particular interest when Ψ = Ψf , η = Ψh are transversally constant. In

this case we get ∫
Ωtrans

∑
z∈T

〈g, π(z)f〉〈π(z)h, g〉dT = 〈h, f〉

whenever f, h ∈M1(R2d). These identities are suspiciously reminiscent of the FIGA.

It seems as if some very general version of the Poisson summation formula must be

at play here, but for now we see no way to prove these identities without the abstract

machinery of operator algebras.

Now that we have described the trace on BL1

σ , we can use it to suggest a

decomposition of Sg into a linear combination of the operators τk. The coefficient

of τk in the expansion of Sg should be equal to TrBσ(Sgτ
∗
k ). Since Sg is the rank one

operator {Ψg,Ψg}BL1
σ
,

Sgτ
∗
k = {Ψg, τ

∗
kΨg}BL1

σ
= {τkΨg,Ψg}BL1

σ
.

Computing the trace, we have

TrBσ({τkΨg,Ψg}BL1
σ

) = Dens(Λ)

∫
Ωtrans

〈g, ϕk(T )π(ǩ)g〉dT

= lim
R→∞

Dens(Λ)〈g, π(ǩ)g〉
|Λ ∩BR|

∑
z∈Λ∩BR

e−2πikz

= ck〈g, π(ǩ)g〉.

This suggests that the coefficient of π(ǩ) in the Janssen representation for the frame

operator SΛ
g is equal to ck〈g, π(ǩ)g〉. We are careful to note that this computation

does not give a proof of any type of Janssen representation. We know that the τk will

almost never generate all of BL1

σ since the K-theory of ΩΛ is rarely the same as the

K-theory of a torus. To turn this into a proof, we would need more knowledge about
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the structure of BL1

σ . Furthermore, we would only expect a Janssen represention of

this form when Λ has pure discrete spectrum. Otherwise the distribution δ̂Λ will

have a continuous part, so we would expect the Janssen representation to reflect

this.

Despite these difficulties in the case of general quasicrystals, the following

results give a Janssen representation for G(g,Λ) when Λ is a model set:

Proposition 4.2 (FIGA for Model Sets). Let Λ ⊂ R2d be a model set and fix

f, g, h, u ∈ S(Rd). Denote by Eig(Λ) the collection of continuous eigenvalues for

ΩΛ. Then

∑
z∈Λ

〈f, π(z)g〉〈π(z)h, u〉 =
∑

k∈ Eig(Λ)

ck〈π(ǩ)f, u〉〈h, π(ǩ)g〉

where ck is the Fourier-Bohr coefficient for k. Here the RHS must be interpreted as

in Theorem 2.2.

Proof. First define the function

F (k) = 〈π(ǩ)f, u〉〈h, π(ǩ)g〉

which lies in S(R2d) and has Fourier transform

F̂ (z) = 〈f, π(z)g〉〈π(z)h, u〉.

Then applying Theorem 2.2 we have

∑
z∈Λ

〈f, π(z)g〉〈π(z)h, u〉 =
∑
z∈Λ

F̂ (z)

=
∑

k∈Eig(Λ)

ckF (k)

=
∑

k∈Eig(Λ)

ck〈π(ǩ)f, u〉〈h, π(ǩ)g〉
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Theorem 4.3 (Janssen Representation for Model Sets). Let Λ be a model set and

SΛ
f,g =

∑
z∈Λ〈 · , π(z)f〉π(z)g be a generalized Gabor frame operator with f, g ∈

S(Rd). Then we have

SΛ
f,g =

∑
k∈ Eig(Λ)

ck〈g, π(ǩ)f〉π(ǩ)

where the convergence on the RHS is interpreted as in Theorem 2.2.

Proof. Let h, u ∈ S(Rd) be arbitrary. It suffices to show that

〈SΛ
f,gh, u〉 =

〈 ∑
k∈ Eig(Λ)

ck〈g, π(ǩf)〉π(ǩ)h, u

〉
.

To see this, we compute

〈SΛ
f,gh, u〉 =

∑
z∈Λ

〈h, π(z)f〉〈π(z)g, u〉

=
∑

k∈ Eig(Λ)

ck〈g, π(ǩ)f〉〈π(ǩ)h, u〉

=

〈 ∑
k∈ Eig(Λ)

ck〈g, π(ǩ)f〉π(ǩ)h, u

〉

where the second equality follows from Proposition 4.2.

It is easily seen that Theorem 4.3 also holds when f, g ∈ M1(Rd), since in this

case Vgf ∈ W (L∞, L1). Additionally, the convergence on the RHS in Theorem 4.3

(properly interpreted) occurs in S(Rd) since the approximating measures δ̂Λ,ε can

be expressed using sums which are locally absolutely convergent.

As in the case of lattice Gabor frames, one would like to use the Janssen

representation to characterize windows g for which G(g,Λ) is a (Parseval) tight
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frame. Since the representation in Theorem 4.3 involves a sum over a dense collec-

tion of time-frequency shifts, it is not immediately clear how to deduce something

like the Wexler-Raz orthogonality relations. However, by using operator algebraic

arguments we are able to prove the following theorem:

Theorem 4.4. Let Λ ⊂ R2d be a quasicrystal. Assume that the group of continuous

eigenvalues Eig(Λ) is dense in R2d, and that the Fourier-Bohr coefficients ck are

non-zero in a neighborhood of 0. Also assume that the operators τk generate a totally

irrational noncommutative torus. Then it is not possible to find a tight multiwindow

frame G(g1, . . . , gN ,Λ) where all gi ∈M1(Rd).

Proof. Since the noncommutative torus generated by the τk is totally irrational, it

has a unique normalized trace. This implies that TrBσ(τk) = δk,0. Now suppose

{gi}Ni=1 ⊂ M1(Rd) generates a tight multiwindow Gabor frame for Λ. Then SΛ
{gi} =

A · Id where A denotes the upper (and lower) frame bound. By Proposition 3.5,

ST{gi} = A · Id for all T ∈ ΩΛ. Thus the global frame operator S{gi} = A · Id as an

operator on HΛ. This implies that

TrBσ(S{gi}τ
∗
k ) = A · TrBσ(τ ∗k ) = A · δk,0.

However, we can compute TrBσ(S{gi}τ
∗
k ) directly, and this implies

A · δk,0 = TrBσ(S{gi}τ
∗
k ) = ck

N∑
i=1

〈gi, π(ǩ)gi〉.

Since Eig(Λ) is dense in R2d, we can choose a sequence of eigenvalues kn 6= 0

s.t. kn → 0 as n → ∞. Then
∑N

i=1〈gi, π(ǩn)gi〉 clearly converges to
∑N

i=1〈gi, gi〉.

However, by our computation above, we have
∑N

i=1〈gi, π(ǩn)gi〉 = 0 for all kn, and∑N
i=1〈gi, gi〉 = A

c0
, which is a contradiction.
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Note that the operator algebraic approach helped us in two ways. First, it allowed

us to avoid the messy convergence issues we ran into in Theorem 4.3 if we tried to

prove the result using analytic methods. It also allowed us to generalize the result

considerably, since we did not need to assume that Λ is a model set.

In Theorem 4.4, the assumption that the τk generate a totally irrational non-

commutative torus may seem suspect. The following lemma shows that there are

examples where this assumption holds:

Lemma 4.1. Let x1 . . . xn ∈ R2d . Then we can construct a cut and project scheme

(R2d,Rk, D) and a window W so that x1, . . . , xn ∈ ΛW .

Proof. (Sketch) Assume n > 2d, as the result is trivial otherwise. We consider R2d

as the first factor in R2d×Rk where 2d + k = n. To each point xi, we have a k-

dimensional affine subspace Vi ⊂ Rn so that the projection of Vi onto R2d is exactly

xi. To ensure that each xi will lie in our model set, it suffices to find a lattice D

which contains at least one point from each Vi. The span of n vectors in Rn will quite

generically form a lattice, so we can choose a lattice D which contains at least one

point from each Vi. Now all xi lie in p1(D), so we simply need to choose a window

W large enough so that they all lie in ΛW .

By using this lemma we can construct model sets with any specified (finitely gener-

ated) group of eigenvalues. This shows that the assumption in Theorem 4.4 actually

occurs in a rather generic case for model sets.

Finally, we would be able to drop the irrationality assumption on Eig(Λ) if

we knew more about the restriction of TrBσ to the algebra generated by the τk. We
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would need to show that TrBσ(τk) = δk,0. This amounts to computing

TrBσ(τk) =

∫
Ωtrans

ϕk(T )〈π(ǩ)(STg )−
1
2 g, (STg )−

1
2 g〉dT

= lim
R→∞

1

|Λ ∩Br|
∑

z∈Λ∩BR

e2πikz〈π(ǩ)(SΛ−z
g )−

1
2 g, (SΛ−z

g )−
1
2 g〉

= lim
R→∞

1

|Λ ∩Br|
∑

z∈Λ∩BR

e2πikz〈π(z)π(ǩ)(SΛ−z
g )−

1
2 g, π(z)(SΛ−z

g )−
1
2 g〉

= lim
R→∞

1

|Λ ∩Br|
∑

z∈Λ∩BR

〈π(ǩ)(SΛ
g )−

1
2π(z)g, (SΛ

g )−
1
2π(z)g〉

?
=

1

Dens(Λ)
δk,0

whenever g ∈M1(Rd) generates a Gabor frame for Λ. If Dens(Λ) < 1 then no such

frame will exist, but a similar computation for multiwindow frames would suffice.

To put this in context, when G(g, L) is a Gabor frame for a lattice L, (SLg )−
1
2 g

generates a Parseval tight multiwindow frame. Consequently, when z ∈ L, the

functions (SLg )−
1
2π(z)g = π(z)(SLg )−

1
2 g all also generate Parseval tight frames. Thus

we have

〈π(l)(SLg )−
1
2π(z)g, (SLg )−

1
2π(z)g〉 = vol(L)δl,0

whenever z ∈ L and l ∈ L◦ by the Wexler-Raz orthogonality relations. So for

lattices, the computation above clearly holds. We also know that the computation

holds for ǩ = 0; this was precisely the computation of the frame measure from [3].

It is possible that an extension of their methods could complete the computation in

full, allowing as to remove the irrationality assumption in Theorem 4.4.

Remark 4.2. To get the equality

TrBσ(τk) =

∫
Ωtrans

ϕk(T )〈π(ǩ)(ST )−
1
2 g, (ST )−

1
2 g〉dT
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we need to slightly tweak the discussion above. We identify BL1

σ with Pg(AL
1

σ )NPg

acting on (AL1

σ )NPg by multiplication on the right. We have a formula for how

an element PgaPg acts on Ψ ∈ HΛ, but this formula depends on the choice of the

noncommutative analysis and synthesis operators. In the original formula given for

τ̃k, we used

CgΨ(T, T − z) = 〈Ψ(T ), g̃Tz 〉

Dga = I(a)Ψg.

However to get the expression for the trace above, one instead should choose

CΨ(T, T − z) = 〈Ψ(T ), (STg )−
1
2π(z)g〉

Da = I(a)(Sg)
− 1

2 g

where Sg again denotes the global frame operator. This amounts to using the Parse-

val tight frame {(SΛ
g )−

1
2π(z)g | z ∈ Λ} rather than the Gabor frame G(g,Λ). In this

case, the formula for τ̃k is

τ̃k(T − z, T − w) = e−2πix(ω−ω′)ϕk(T )〈π(ǩ)(STg )−
1
2π(z)g, (STg )−

1
2π(w)g〉

and the formula for the trace above is simply the integral of this function over the

unit space of RΛ.
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Chapter 5

Twisted Gap Labeling

5.1 Gap Labeling for 2-D Lattice Subsets

Now we will look at the simpler case when Λ is a marked lattice and investigate

the way that HΛ fits into K0(Aσ). A marked lattice is a lattice L ⊂ Rd where each

point l ∈ L is also assigned a color. For simplicity we shall always assume L = Zd,

and the arguments given can be easily adapted to apply when L is a general lattice.

We can construct the hull ΩΛ in exactly the same way when Λ is a marked lattice.

As point sets, all elements of ΩΛ will be a translate of the integer lattice, however

the sets are only considered equal when their colorings are also the same. We will

always assume that a marked lattice has an aperiodic coloring with FLC and UCF.

Example 5.1. Consider the chair tiling of Section 2.2 where the vertices of the tiles

are contained in Z2 . We denote the set of vertices of the tiling by V. We can take

Z2 and color the points in V red and all other points blue. This is an example of a

marked lattice whose hull has the same properties as the hull of a quasicrystal.

When Λ is a marked lattice, the hull ΩΛ has the structure of a fiber bundle

Ωtrans → ΩΛ → Td . It is the suspension of Ωtrans by an action of Zd . We can

understand the second map using the associated C∗-algebras. Denote by A :=

C∗(RΛ) the untwisted groupoid C∗-algebra of RΛ which in this case is isomorphic
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to the crossed product C(Ωtrans) o Zd . Then we have a map

i : C(Td) ∼= C∗r(Z
d)→ A

where i takes a function f ∈ C0(Zd) and extends it to a function F on RΛ by making

it constant in the direction of Ωtrans, i.e. F (T, T − z) = f(z). In other words, the

image of i is generated by the functions on RΛ which do not depend on the colorings

of the points. The map i is the discrete analog of the map C(Td)→ C(ΩΛ) induced

by the fibration. Similarly when we twist by a standard cocycle θ we have an induced

map

j : Aθ → Aθ

from a noncommutative torus into Aθ. Both i and j preserve the trace on C∗r (Zd)

and Aθ respectively.

Our goal is to prove that the induced maps i∗ and j∗ are injective on K0. When

θ is totally irrational, the trace on Aθ is injective. Since j preserves the trace this

immediately implies that j∗ will be injective. We will show that the maps i∗ and j∗

are compatible, so that the injectivity of j∗ for a totally irrational cocycle implies

the injectivity of i∗.

Proposition 5.1. Let Λ = Zd be a marked lattice. Fix a cocycle θ1 on Zd, and let

the maps i and j be defined as above. Also fix a homotopy θ between θ1 = θ(1) and

the trivial cocycle θ(0). Then we have a commutative diagram
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K0(C∗r (Zd)) i∗−−−→ K0(A)

∼=
y y∼=

K0(C∗r (Zd×[0, 1], θ))
k∗−−−→ K0(C∗r (ZdoΩtrans × [0, 1], θ))

∼=
y y∼=

K0(Aθ1) −−−→
j∗

K0(Aθ1)

where the vertical arrows come from the isomorphisms in Theorem 2.3 and the second

horizontal map is induced by the map k : C∗r (Zd×[0, 1], θ) → C∗r (ZdoΩtrans ×

[0, 1], θ) given by i on the fiber at 0 and the map jt : Aθ(t) → Aθ(t) on the fiber at

0 < t ≤ 1.

Proof. We will prove only the commutativity of the upper square; commutativ-

ity of the lower square follows by a similar argument. Choose a projection P ∈

MN(C∗r (Zd)). We can lift this to a path of projections Pt, yielding an element of

K0(C∗r (Zd×[0, 1], θ)). When we map this via k∗, we simply extend the projection

on each fiber by making it constant in the Ωtrans direction. Following the maps

the other way around, we can take P and extend it to be constant in the Ωtrans

direction, then lift it to a path of projections. It is clear that k∗(Pt) is one such

possible lift, so we are done.

Theorem 5.1. Let Λ = Zd be a marked lattice and fix any cocycle θ on Zd . Then

the maps i∗ and j∗ are injective. We can compare their images with the image of

the canonical map r∗ : K0(C(Ωtrans))→ K0(Aθ) and we find that the intersection is

generated by [1], the class of the rank 1 trivial module.

Remark 5.1. Note that this immediately implies Theorem 1.4, since the map i∗ is

just the noncommutative version of the map p∗. By a result of Sadun and Williams
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[33], given any quasicrystal Λ we can find a marked lattice Λ′ so that ΩΛ and ΩΛ′

are homeomorphic. Thus for an arbitrary quasicrystal we can view ΩΛ as a fiber

bundle over a torus, and Theorem 1.4 holds in this case as well.

Proof. First note that when θ is totally irrational, the map Tr∗ ◦ j∗ is injective, so j∗

is injective as well. Thus by Proposition 5.1, we see that i∗ must also be injective.

Now let θ be any cocycle. Since i∗ is injective, by Proposition 5.1 we see that j∗

must be as well.

Now we compare the images of i∗ and j∗ with the image of r∗. First suppose θ

is a totally irrational cocycle, and that the intersection of the groups TrAθ∗(K0(Aθ))

and Tr∗(K0(A)) is equal to Z ⊂ R . This is possible since Tr∗(K0(A)) is countable,

so we can simply choose the entries in the matrix for θ to be rationally independent

from Tr∗(K0(A)). Now it is clear that the image of j∗ is disjoint from the projections

in C(Ωtrans) (except for multiples of the identity) since this is true after applying

the trace. Now note that projections in C(Ωtrans) are preserved by the vertical

isomorphisms on the RHS of the diagram in Proposition 5.1, so the same must be

true for i∗. Finally, using the diagram from Proposition 5.1, the theorem holds when

θ is an arbitrary cocycle.

We can interpret the results above in terms of the modules HΛ. When Λ is

a marked lattice, a Gabor frame for Λ is simply a lattice Gabor frame and does

not depend at all on the colorings of the points in Λ. Furthermore, when Λ = Z2d

as a point set then the standard symplectic cocycle σ|Λ is the trivial cocycle. In

this case, we can use the construction of VΛ in Section 4.1 to get a module over
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C∗r (Z2d), and i∗([VΛ]) = [HΛ]. To construct modules over Aθ for general θ, we follow

Rieffel’s construction and apply a linear map A to Λ with A∗σ = θ. Then we get

a module VΛ over the noncommutative torus AAΛ and j∗([VAΛ]) = [HAΛ]. Thus

our modules precisely describe the images of i∗ and j∗ for even dimensional Λ, and

we can conclude that the twisted gap labeling group for a marked lattice always

contains the image of the trace map on an associated noncommutative torus. With

a little more work, it seems likely that Rieffel’s more general method can be adapted

to construct modules when Λ is odd dimensional as well.

Now we will describe these results in dimension two, where they allow us to

determine the entire gap labeling group. Note that any cocycle θ on Z2 is determined

by a single real number (also denoted θ), which is the only non-zero entry in the

associated skew symmetric matrix. When Λ = Z2 is a marked lattice, we can

compute its K-theory by applying the Pimsner-Voiculescu exact sequence twice, or

by applying the associated Kasparov spectral sequence [18], [36]. In this case we

have

K0(C(Ωtrans) o Z2) = C(Ωtrans,Z)Z2 ⊕ Z

where C(Ωtrans,Z)Z2 denotes the group of coinvariants of the action of Z2 on Ωtrans.

Here the extra copy of Z comes from the inclusion

K0(T2) ∼= K0(C∗r (Z2))→ K0(C(Ωtrans) o Z2)

of the group algebra of Z2 into C(Ωtrans) o Z2, and the summand C(Ωtrans,Z)Z2

comes from the inclusion

K0(C(Ωtrans))→ K0(C(Ωtrans) o Z2).
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The extra generator is precisely the image of the Bott vector bundle in K0(T2).

Thus from our results above, we immediately have

Proposition 5.2. When Λ = Z2 is a marked lattice, the gap labeling group of Aθ is

Tr∗(K0(Aθ)) = µ(C(Ωtrans,Z)) + θZ .

We can also determine the gap labeling group when we have a quasicrystal

Λ ⊂ Z2 . In this case, we can construct a marked lattice Γ = Z2 by coloring the

points of Λ red and the remaining points blue. Then ΩΛ
trans sits as a clopen set in

ΩΓ
trans with measure equal to Dens(Λ). This shows that the gap labeling group of AΛ

θ

is equal to 1
Dens(Λ)

Tr∗(K0(AΓ
θ )), which is in turn equal to µ(C(ΩΛ

trans),Z)+ θ
Dens(Λ)

Z .

Thus we have:

Theorem 5.2. When Λ ⊂ Z2 is a quasicrystal, the gap labeling group of Aθ is

Tr∗(K0(Aθ)) = µ(C(Ωtrans,Z)) +
θ

Dens(Λ)
Z .

Note that in dimension two a matrix A satisfies A∗σ = θ exactly when det(A) = θ.

Thus the moduleHAΛ has trace 1
Dens(AΛ)

= θ
Dens(Λ)

and represents the extra generator

in K0(Aθ).

5.2 Connections with Deformation Theory

In the previous section we were able to determine the twisted gap labeling

group for lattice subsets in dimension two. There are two ways we might want to

generalize this result. First, we might want to compute the twisted gap labeling

group for any 2-D quasicrystal twisted by any cocycle, not merely lattice subsets
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twisted by standard cocycles. Bellissard’s original (untwisted) gap labeling conjec-

ture could be reduced to the case of marked lattices, essentially by the results of

Sadun and Williams [33]. They show that a quasicrystal Λ can be deformed so that

it is a marked lattice Λ′, and that this deformation gives rise to a homeomorphism

between ΩΛ and ΩΛ′ . Thus we might be tempted to say that we can reduce the

twisted gap labeling conjecture so that it falls within the scope of our results. Un-

fortunately, our results hold only for standard cocycles (i.e. restrictions of cocycles

on R2d) and in the process of deforming from Λ to Λ′ we are likely to take a standard

cocycle on Λ to a nonstandard cocycle on Λ′. Thus a general computation of the

gap labeling group in dimension two still seems out of reach.

In another direction, our results do not give a full computation of the gap

labeling group in higher dimensions, even for marked lattices with standard cocycles.

We were able to apply linear maps to a marked lattice, and this allowed us to realize

any standard cocycle as the restriction of the symplectic cocycle on R2d in a number

of different ways. For each linear map with A∗σ = θ, we got a class in K0(Aθ).

However, linear maps alone are not enough to fill out all the classes in K-theory. A

linear deformation of a marked lattice ignores the colorings of points in the lattice,

essentially avoiding the complexities that make it a quasicrystal.

To summarize, there are two difficulties preventing a more complete compu-

tation of twisted gap labels. First, there is the problem of passing from a general

quasicrystal to a marked lattice, which really has to with extending our results from

standard cocycles to all cocycles. The second problem has to do with finding more

sophisticated deformations of a quasicrystal so that we can represent all classes in
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K0(Aθ) when the dimension of Λ is greater than two. Actually, it seems reasonable

to hope that a solution to the second problem will also resolve the first. Namely,

we might expect that even given a nonstandard cocycle c we can find a deformation

ϕ so that σ|ϕ(Λ) = c. In fact this was already evident when we were describing the

difficulties in dimension two.

Thus we present the following strategy for improving our results on the twisted

gap labeling. First, we must get a sense of the types of cocycles by which we can

twist. This involves computing the second cohomology group H2(RΛ, S
1). Ideally

H2(RΛ, S
1) should be computable in terms of the cohomology of ΩΛ. Next, we fix a

cocycle c and give sufficient conditions for a deformation ϕ to yield the cocycle c on

ϕ(Λ). To expand upon this, we first assume that ϕ(Λ) is a quasicrystal with RΛ
∼=

Rϕ(Λ). Kellendonk has given sufficient conditions on a map ϕ : R2d → R2d which will

ensure this isomorphism of groupoids [19]. Furthermore, we need σ|ϕ(Λ) = c. Once

we have this, Hϕ(Λ) gives a class in K0(Ac) with trace equal to 1
Dens(ϕ(Λ))

. Ideally,

constructing enough maps of this form should exhaust the classes in K0(Ac) and

give us a full computation of the gap labeling group.
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Appendix A

K-theory for C∗-algebras

The discussion in these appendices is modeled largely on the explanations of

K-theory in [10], [22]. We begin with some basic facts about C∗-algebras.

Definition A.1. A C∗-algebra A is a C-algebra equipped with a norm || · || and

an involution a → a∗ such that A is complete with respect to the norm, ||ab|| ≤

||a|| · ||b||, and ||a∗a|| = ||a||2 for all a, b ∈ A. Although a C∗-algebra need not

have a multiplicative identity, all of our examples will. A homomorphism between

C∗-algebras is a simply a homomorphism of C-algebras which is continuous and

preserves the involution.

C∗-algebras and Banach algebras differ only by the final condition in the above

definition. Small though it may seem, this additional axiom makes C∗-algebras

especially amenable to topological techniques.

Example A.1. C itself is a C∗-algebra, as is any matrix algebra MN(C). Here the

norm is given by the operator norm, and the involution is by conjugate transpose.

Similarly, for any C∗-algebra A,MN(A) is also a C∗-algebra. Finally, B(H), the

bounded linear operators on a Hilbert space, is a C∗-algebra. In fact it can be shown

that any C∗-algebra embeds as a subalgebra of B(H).

Example A.2. Let L ⊂ R2 be a lattice and consider the family of time-frequency
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shifts

{π(z) | z ∈ L}.

The closure of this family of operators in the operator norm on B(L2(R)) is a C∗-

algebra known as a noncommutative torus.

Example A.3. Let X be any compact, Hausdorff topological space. The algebra

C(X) of complex valued functions on X forms a C∗-algebra, where we use the sup

norm and the involution is given by complex conjugation.

This last example is perhaps the most important to keep in mind, given the

following theorem:

Theorem A.1 (Gelfand-Naimark). Suppose A is a commutative, unital C∗-algebra.

Then there exists a compact Hausdorff space X such that A ∼= C(X).

The Gelfand-Naimark theorem demonstrates the intrinsic link between C∗-algebras

and topology. In light of this theorem, one is tempted to translate as much of topol-

ogy as possible into C∗-algebraic language. The goal is to use topological techniques

to study C∗-algebras which are not necessarily commutative (like the noncommuta-

tive torus above), and thus have no realization as an algebra of functions on some

topological space. This is the goal of noncommutative topology. While it is pos-

sible to translate the ideas of homology and cohomology into C∗-algebraic language,

it ends up being difficult. K-theory, however, admits a relatively simple transla-

tion into the world of C∗-algebras, and has been strikingly effective in a variety of

programs which seek to classify C∗-algebras.

In preparation, we review some facts about K-theory for topological spaces.
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Definition A.2. Let X be a compact, Hausdorff topological space. A vector bun-

dle over X is a topological space E equipped with a projection π : E → X such that

for each x ∈ X, the fiber π−1(x) is a complex vector space of a fixed dimension n.

Additionally, for each x ∈ X there exists a neighborhood Ux such that π−1(Ux) is

homeomorphic to Ux × Cn, where the homeomorphism preserves the fibers and is a

linear isomorphism on each fiber.

We can think of a vector bundle as a family of vector spaces parametrized by X.

Two vector bundles E and F over X are isomorphic if there is a map from E → F

which commutes with the corresponding projections to X and is a linear isomor-

phism on each fiber. We can take the direct sum of two vector bundles E ⊕ F by

taking the direct sum of the fibers over each point in X. We denote by Vect(X) the

abelian semigroup of isomorphism classes of vector bundles over X where the addi-

tion operation is direct sum. We can complete this semigroup to a group by formally

adding inverses for each element, which gives us an abelian group known as K0(X).

The association X → K0(X) is a contravariant functor, which means that whenever

f : X → Y is a continuous map, there is an induced map f ∗ : K0(Y ) → K0(X).

The group K0(X) is a homotopy invariant of a topological space, and carries with

it much interesting topological information.

We shall now indicate how one can translate the concept of a vector bundle

into the language of C∗-algebras. First we must make note of the following lemma:

Lemma A.1. Given any vector bundle E over X, we can find a trivial bundle of

the form X × Cn such that E embeds as a subbundle of X × Cn .
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In other words, we can find a (potentially large) n so that each of the fibers of

E exists as a subspace of Cn in a way which is continuous over X. We can think

of this in a slightly different way. The bundle E, considered as a subbundle of

X ×Cn, specifies a projection matrix at each point of X. Namely, the projection at

x ∈ X is the projection from Cn to the fiber of E over x. Furthermore, this choice

of projection matrix is continuous over X, so gives a continuous map from X into

MN(C). However, C(X,MN(C)) ∼= MN(C(X)), so we naturally get a projection in

the C∗-algebra MN(C(X)).

We can also consider the continuous sections Γ(E) of the bundle E, which are

maps s : X → E such that π(s(x)) = x. Given any section, we can always multiply

it pointwise by a function in C(X). Thus Γ(E) becomes a C(X)-module, and we

can check that it will always be finitely generated and projective. So now we have

two ways to express the concept of a vector bundle in the language of C∗-algebras.

First it gives us a projection in a matrix algebra over C(X), and second it give us a

finitely generated, projective C(X)-module. We shall see that these points of view

are actually equivalent, and will allow us to extend K-theory to noncommutative

C∗-algebras.

Motivated by K-theory for topological spaces, for a C∗-algebra A we denote

by PN(A) the collection of projections in MN(A) and let P∞(A) =
⋃∞
N=1PN(A).

We can take the direct sum of two projections p, q ∈ P∞(A) by

p⊕ q =

p 0

0 q

 .

Two projections p, q ∈ PN(A), are called Murray-Von Neumann equivalent,
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denoted p ∼ q, if there exists v ∈MN(A) with vv∗ = p and v∗v = q. We can extend

this equivalence relation to P∞(A) by defining p ∼0 q if there exist matrices of all

zeros 0n, 0m of sizes n and m respectively so that p ⊕ 0n and q ⊕ 0m are the same

size and p⊕ 0n ∼ q ⊕ 0m. This is a well defined equivalence relation on P∞(A) and

respects the direct sum operation. We denote by D(A) the set of equivalence classes

P∞(A)/ ∼0 . This gives us an abelian semigroup D(A), and after completing D(A)

to a group we arrive at K0(A), the C∗-algebraic K-theory group. The assignment

A→ K0(A) is a covariant functor, so that whenever ϕ : A→ B is a homomorphism

there is a corresponding map ϕ∗ : K0(A) → K0(B). To complete the analogy with

the K-theory of topological spaces, we have:

Theorem A.2. When X is a compact Hausdorff space, K0(C(X)) ∼= K0(X).

Alternatively, we could have constructed the K0 group by examining finitely

generated, projective left (or right) A-modules. The isomorphism classes of such

modules form an abelian semigroup under direct sum. After completing this to a

group by adding formal inverses for the elements, we end up with a group isomor-

phic to K0(A). To see the connection between this construction and the one above,

choose p ∈ Pn(A). Then Anp is a finitely generated, projective left A-module. This

association p→ Anp gives a map between the two different versions of C∗-algebraic

K-theory we have described. When A has a unique normalized trace, we can as-

sign each finitely generated, projective A-module a dimension. We simply find a

projection p ∈MN(A) which represents the module in K0 and apply the trace to p.

The terminology comes from looking at projections in MN(C), where applying the

82



usual matrix trace gives the dimension of the range of the projection. Thus to any

trace we can define a homomorphism from K0(A) to R simply by applying the trace

to classes of projections in P∞(A). For C∗-algebras coming from quasicrystals, the

image of the trace map has a physical interpretation. Determining this image is the

subject of Bellissard’s gap labeling conjecture, described in Chapter 1.

Appendix B

Hilbert C∗-modules and Morita Equivalence

In Appendix A, we have seen how isomorphism classes of finitely generated,

projective A-modules can be used to construct K0(A). In this section we will explore

the concept of A-modules further. It is possible to endow all finitely generated,

projective A-modules with the structure of a Hilbert C∗-module, which is meant

to emulate the inner product structure on a Hilbert space.

Definition B.1. A (left) pre-C∗-module over a C∗-algebra A is a complex vector

space E which is also an A-module with a pairing A〈 · , · 〉 : E ×E → A satisfying the

following conditions for all r, s, t ∈ E and a ∈ A :

1. A〈r + s, t〉 = A〈r, t〉+ A〈s, t〉

2. A〈ar, s〉 = aA〈r, s〉

3. A〈r, s〉 = A〈s, r〉∗

4. A〈s, s〉 > 0 when s 6= 0

The last condition means that A〈s, s〉 gives a positive element of the C∗-algebra A.
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We can use the inner product to define a norm on E by

||s||E :=
√
||〈s, s〉A||.

We call the completion of E in this norm a Hilbert C∗-module. Denote by A〈E , E〉

the linear span of all elements of the form A〈r, s〉. We call E a full Hilbert C∗-module

if A〈E , E〉 is dense in A. When A is unital, this implies A〈E , E〉 = A.

Example B.1. A itself is a Hilbert A-module, where the inner product is given by

A〈a, b〉 = ab∗.

Moreover, An is a Hilbert A-module with inner product

A〈(a1, . . . , an), (b1, . . . , bn)〉 :=
n∑
i=1

aib
∗
i .

Example B.2. Whenever P ∈ Pn(A) is a projection, AnP becomes a Hilbert A-

module with inner product

A〈~a,~b〉 := ~aP~b∗.

This last example shows how K0(A) can be described using the (seemingly more

complicated) concept of Hilbert A-modules. Any finitely generated, projective A-

module is represented by a projection P ∈ Pn(A) for some n. Thus it is isomorphic to

AnP for some projection P, which comes with a natural Hilbert A-module structure.

The beauty of Hilbert A-modules is that they let us to construct new C∗-

algebras which are related to A but not equal to A, allowing us to understand the

structure of A using a variety of techniques.
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Definition B.2. Let E and F be Hilbert A-modules. A map T : E → F is ad-

jointable if there exists a map T ∗ : F → E , called the adjoint of T, such that

F
A〈r, Ts〉 = E

A〈T ∗r, s〉

whenever r ∈ F , s ∈ E .

We shall be primarily concerned with EndA(E), the space of adjointable operators

from E to itself. An important class of adjointable operators is given by the A-finite

rank operators, which are operators of the form A〈 · , r〉s where r, s ∈ E . The A-

finite rank operators form a vector space denoted by End00
A (E), and the closure of

End00
A (E) will be known as the collection of A-compact operators, denoted by

End0
A.

Example B.3. If P ∈ Pn then AnP is a Hilbert A-module and End0
A(AnP ) =

PMn(A)P. See [10] Lemma 2.18 for details.

We can think of A acting on E on the left while B = End0
A acts on E on the

right. Additionally, we can give E the structure of a right Hilbert B-module by

defining the inner product

{r, s}B := A〈 · , r〉s.

This leads to the definition of a Hilbert A-B bimodule.

Definition B.3. A pre-C∗A-B-bimodule is a complex vector space E which is

both a left Hilbert A-module and a right Hilbert B-module where the inner products

satisfy the following compatibility condition:

A〈r, s〉t = r{s, t}B for all r, s, t ∈ E .
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A pre-C∗A-B-bimodule is called full if A〈E , E〉 and {E , E}B are dense in A and B

respectively.

For bimodules, we could define a norm on E using either of the inner products. As

it turns out, these norms are equivalent, and the completion of E with respect to

either norm is known as a Hilbert A-B-bimodule. Two C∗-algebras A and B

are called Morita equivalent if there exists a full Hilbert A-B-bimodule E . In this

case, B = End0
A(E).

Morita equivalence is a sort of “homotopy equivalence” for noncommutative

spaces. When A and B are Morita equivalent, we have K0(A) ∼= K0(B). Given a

trace TrA on A, we can define a trace TrB on the finite rank operators in B by

TrB({r, s}B) := TrA(〈s, r〉A)

when r, s ∈ E . This extends to a trace on B and defines a bijection between the

traces on A and B. There is much more to be said about Morita equivalence, however

these facts will be enough to understand the analysis in the text above.
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[14] K. Gröchenig. Foundations of Time-Frequency Analysis. Birkhäuser, 2001.
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