Commutative Endomorphism Rings of Simple Abelian Varieties over Finite Fields

dc.contributor.advisorWashington, Lawrence Cen_US
dc.contributor.authorBradford, Jeremy Scotten_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2013-04-04T05:48:10Z
dc.date.available2013-04-04T05:48:10Z
dc.date.issued2012en_US
dc.description.abstractIn this thesis we look at simple abelian varieties defined over a finite field $k =\mathbb{F}_{p^n}$ with $\End_k(A)$ commutative. We derive a formula that connects the $p$-rank $r(A)$ with the splitting behavior of $p$ in $E = \mathbb{Q}(\pi)$, where $\pi$ is a root of the characteristic polynomial of the Frobenius endomorphism. We show how this formula can be used to explicitly list all possible splitting behaviors of $p$ in $\mathcal{O}_E$, and we do so for abelian varieties of dimension less than or equal to four defined over $\mathbb{F}_p$. We then look for when $p$ divides $[\mathcal{O}_E : \mathbb{Z}[\pi, \bar{\pi}]]$. This allows us to prove that the endomorphism ring of an absolutely simple abelian surface is maximal at $p$ when $p \geq 3$. We also derive a condition that guarantees that $p$ divides $[\mathcal{O}_E: \mathbb{Z}[\pi, \bar{\pi}]]$. Last, we explicitly describe the structure of some intermediate subrings of $p$-power index between $\mathbb{Z}[\pi, \bar{\pi}]$ and $\mathcal{O}_E$ when $A$ is an abelian 3-fold with $r(A) = 1$.en_US
dc.identifier.urihttp://hdl.handle.net/1903/13853
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledAbelian Varietiesen_US
dc.subject.pquncontrolledEndomorphism Ringen_US
dc.subject.pquncontrolledFinite Fielden_US
dc.titleCommutative Endomorphism Rings of Simple Abelian Varieties over Finite Fieldsen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bradford_umd_0117E_13737.pdf
Size:
317.98 KB
Format:
Adobe Portable Document Format