An Architecture for High-throughput and Improved-quality Stereo Vision Processor
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
This paper presents the VLSI architecture to achieve high-throughput and
improved-quality stereo vision for real applications. The stereo vision processor
generates gray-scale output images with depth information from input images taken by
two CMOS Image Sensors (CIS). The depth estimator using the sum of absolute
differences (SAD) algorithm as stereo matching technique is implemented on hardware
by exploiting pipelining and parallelism. To produce depth maps with improved-quality
at real-time, pre- and post-processing units are adopted, and to enhance the adaptability
of the system to real environments, special function registers (SFRs) are assigned to
vision parameters. The design using 0.18um standard CMOS technology can operate at
120MHz clock, achieving over 140 frames/sec depth maps with 320 by 240 image size
and 64 disparity levels. Experimental results based on images taken in real world and
the Middlebury data set will be presented. Comparison data with existing hardware
systems and hardware specifications of the proposed processor will be given.