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This paper presents the VLSI architecture to achieve high-throughput and 

improved-quality stereo vision for real applications. The stereo vision processor 

generates gray-scale output images with depth information from input images taken by 

two CMOS Image Sensors (CIS). The depth estimator using the sum of absolute 

differences (SAD) algorithm as stereo matching technique is implemented on hardware 

by exploiting pipelining and parallelism. To produce depth maps with improved-quality 

at real-time, pre- and post-processing units are adopted, and to enhance the adaptability 

of the system to real environments, special function registers (SFRs) are assigned to 

vision parameters. The design using 0.18um standard CMOS technology can operate at 

120MHz clock, achieving over 140 frames/sec depth maps with 320 by 240 image size 

and 64 disparity levels. Experimental results based on images taken in real world and 

the Middlebury data set will be presented. Comparison data with existing hardware 

systems and hardware specifications of the proposed processor will be given. 
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Chapter 1: Introduction 

1.1. Research Backgrounds 

Neurons sensitive to binocular disparity have been found in the visual cortex of 

many mammals, and respond differentially to binocular stimuli providing cues for 

stereoscopic depth perception [1][2]. This biological evidence has been the base for 

stereo vision systems. Stereo vision can produce depth information from two images 

taken on slightly different positions. The advantage over prevalent distance 

measurement devices like ultrasonic or laser equipments is that a complete scene is 

captured at once, yielding a contact-free acquisition of the spatial impression [14]. 

Therefore, it is useful and important in many visual applications such as 3-D TV, 

autonomous navigation, object recognition and surveillance systems to provide more 

detailed information than devices based on wave reflection. These application domains 

require the stereo vision system to guarantee high-throughput and high-quality depth 

maps at real time. 

Generating the depth information from two images by triangulation requires the 

establishment of correspondence between a pair of images known as stereo matching. 

Since stereo matching has computational complexity and the matching technique 

directly affects the accuracy of disparity map, various matching algorithms have been 

devised. They can be classified as area-based [3], feature-based [4] and phase-based 

[5][6]. In the area-based approach, the correspondence problem is solved by matching 

image intensity patterns. The feature-based methods first detect edges and then seek 

matches between intersections of these edges. Resulting maps are not as detailed as the 

area-based type to calculate the depth for every pixel. This technique also becomes less 

effective in image regions without edges. In the phase-based algorithm, the disparity is 

estimated in terms of phase differences in the spectral components of stereo image pair. 

Recently, these algorithms have been implemented on hardware instead of 

software in order to achieve the real-time performance. [7], [8] and [9] employed the 

area-based approaches such as dynamic programming, sum of absolute differences 

(SAD) algorithm and Census transform respectively on FPGAs. [10] and [11] 
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configured FPGA-based stereo systems using the phase-based method. [12]-[16], 

[27][28] reported ASIC design of stereo vision processors. However, further 

improvement is required for stereo vision to be used in practical applications. Since the 

stereo matching is the process of comparing everywhere of two images in order to find 

out the corresponding points, it has a very high computation demand. This burden can 

be drastically mitigated by laying image rectification prior to the matching process. On 

the other hand, the stereo vision system is exposed to various environments and 

variations in real applications. For example, two input imagers may not be identical, 

and furthermore they may produce noisy images. These problems should be alleviated 

to avoid the accuracy degradation of depth map. 

Our research aims to design a stereo vision processor to provide high-throughput 

and high-quality depth maps. We integrate a depth estimator based on SAD algorithm, 

an image rectifier, a bilateral filter, a left-right (LR) consistency check, a median filter, 

and special function registers on a single processor. This design can run at 120MHz 

clock frequency, achieving over 140 fps dense depth maps with image size of 320*240 

and 8-bit disparities. Our processor has the following advantages over existing stereo 

vision hardware systems. 

First, an image rectifier as pre-processing was employed to solve the 

correspondence problem more efficiently. Image rectification is to transform the 

images so that epipolar lines are aligned horizontally, and thus it simplifies stereo 

matching from two dimensional (2-D) area searches to one dimensional (1-D) searches 

along the epipolar line. In case of arbitrary placement of the camera, which is common, 

the epipolar line is skewed and the 1-D search will be ineffective. Therefore, the 

rectification is indispensable for stereo vision to be applicable to real world.  

 Secondly, we adopt a bilateral filter to improve the accuracy of depth maps. 

Using image filtering as another pre-processing is obviously necessary for preserving 

signal details while removing the noise. Besides, any stereo algorithm should 

compensate photometric variations between cameras of the stereo rig. Considered for 

the real-time requirement, conventional filters with iterative property in algorithm are 

not suitable to vision applications. It has been verified that the bilateral filtering is 

suitable for these goals [18].  
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 Thirdly, post-processing units such as LR consistency check and median filter 

were integrated for better image accuracy. The LR consistency checker compares 

results of two operations, LR matching and RL matching. Matched points are 

confirmed only when the minimum disparity of LR matching is very close to that of RL 

matching. Consequently, the technique can detect incorrect matches caused by 

occlusion regions where areas visible to one camera only exist. The median filter is 

effective in diminishing outliers in disparity maps, which are caused by occlusion 

regions [24], and in eliminating erroneous matches. 

Finally, the processor had the flexibility to control the accuracy of depth map. 

This is achieved by assigning vision parameters to special function registers. The 

function not only enhances the adaptability of processor in various stereo vision 

systems, but also eliminates complication to reconfigure FPGAs. We can easily control 

the quality of depth map by adjusting register values in each block.  

 

1.2. Thesis Organization 

This paper is organized as follows. Chapter 2 reviews the backgrounds of stereo 

vision applied to our processor such as projection matrix, camera’s parameters, epipolar 

geometry, image rectification, bilateral filtering, SAD matching algorithm, and so on. 

Chapter 3 describes the hardware architecture of proposed stereo vision processor. First, 

its top level architecture is presented, and then the function of each component will be 

described with block diagrams. Chapter 4 shows experimental results based on 

Middleburry stereo data as well as images taken from real scene, and analyzes their 

output images. Besides, hardware specifications of designed processor and comparison 

data with previous hardware designs will be given. In chapter 5 the conclusion of this 

work will be found. 
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Chapter 2: Backgrounds of Stereo Vision 

2.1. Image and Camera Model 

The image is obtained by projection of the object in three dimensions on camera. 

As a camera model, a pinhole camera model is usually used, and the image by this 

model is called perspective projection. The camera has not only intrinsic parameters 

such as focal length and coordinate of image center, but extrinsic parameters such as 

rotation and translation. The extrinsic parameters explain the transformation between 

camera coordinate system and world coordinate system. The projection and camera 

parameters can be concisely described using linear algebra. 

2.1.1. Digital Image and Image Coordinate System 

The digital image is produced from the arrays of two dimensional pixels. In 

grayscale images, the brightness of each pixel has 8-bit data and its level is one of 256 

values ranging from 0 to 255. In case of color images each pixel is composed of three 

small and very close but still separated RGB light sources. Each 8-bit RGB component 

can have 256 possible values ranging from 0 to 255. Figure 2.1 shows the coordinate 

system of digital image. The origin is at upper-left corner. The horizontal axis of right 

direction is u and the perpendicular axis of downward direction is v, and (u, v) is called 

the digital image coordinate. 

 
Figure 2.1: The Coordinate System of Digital Image 
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2.1.2. Pinhole Camera Model and Projection Matrix 

The pinhole camera model with image plane in front of a focal point (or 

pinhole) is given in Figure 2.2. This model explains the relation between coordinate of 

object in three dimensions and its two dimensional image as follows. 

Z
Xfx  , Z

Yfy    (1) 

 

 

Figure 2.2: Pinhole Camera Model 

We call this projection as the perspective projection in which a point M on the object, a 

pinhole and a point m on image plane I are in the straight line. Equation (1) can be 

expressed as (2) in the linear form 
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PMm s . The 3 by 4 matrix P is called the projection matrix of perspective projection.  
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2.1.3. Camera Parameters 

The world and camera coordinate systems are related by a set of physical 

parameters, such as the focal length of lens, the size of pixels, the position of principal 

point, and the position and orientation of camera. The projection matrix can be 

represented as a general form by using camera’s intrinsic and extrinsic parameters like 

P=A[R | t]. (3) 

The projection matrix means that one 3-D point described by the world coordinate 

system is projected on image plane through the intrinsic parameters (A) and the 

transformation ([R, t]) to the camera coordinate system. The camera’s intrinsic matrix 

A in equation (3) consists of intrinsic parameters only and is given as 















 

100
sin/0
cot

0

0

vfk
ufkfk

v

uu




 where f is the focal length, ku and kv indicate unit length of each 

axis on image plane,   is an angle between two axes of image plane, and (u0, v0) tells 

the coordinate of image center. Recently, we may regard the angle   as 2


 and the 

shape of pixel as square due to the advance of manufacturing technology. Therefore, 

the intrinsic parameters are now composed of three elements: the focal length and the 

coordinate of image center. On the other hand, the 3 3 matrix R  and the 3 1 matrix t  

denote rotation and translation respectively for 3-D displacement from the world 

coordinate system to the camera coordinate system. The camera coordinate system can 

be obtained by rotating the world coordinate system first and then translating it, and the 

two matrices are called the camera’s extrinsic parameters. 

 

2.2. Camera Calibration and Lens Distortion  

The geometric camera calibration is a process to estimate the intrinsic and 

extrinsic parameters of a camera. We assume that the camera observes a set of features 

such as points or lines with known positions in fixed world coordinate system. The 

camera calibration can be modeled as an optimization process, where the discrepancy 
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between observed image features and their theoretical positions is minimized with 

respect to the camera’s intrinsic and extrinsic parameters. Figure 2.3 shows the setup 

for camera calibration. The calibration frame is formed by three grids drawn on 

orthogonal planes. Other patterns such as lines or geometric figures could be used as 

well. The calibration process can be decomposed into the computation of the 

perspective projection matrix (P) and the estimation of camera’s intrinsic and extrinsic 

parameters. 

 

Figure 2.3: Camera Calibration Setup 

2.2.1. Linear Approach to Camera Calibration 

The most commonly used camera calibration method is perhaps the direct linear 

transformation (DLT) method using a set of control points whose object plane 

coordinates are known. The control points are normally fixed to a calibration rig. The 

problem is essentially to calculate the mapping between 2-D image coordinates ( im ) 

and 3-D object space coordinates ( iM ). For correspondence between the 3-D and the 2-

D, the mapping takes the form of a 3 4 projection matrix P  such that ii PMm   for all i. 

[21] presents mathematical explanations associated with this method. 

2.2.2. Lens Distortion 

We have assumed that the camera is equipped with a perfect lens. Real lenses, 

however, suffer from radial distortion by which the camera itself may produce distorted 

images and will lead to wrong correspondences especially in the outer regions of the 
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image. The radial distortion is a type of aberration to depend on the distance separating 

the optical axis from the point of interest. The applications using wide-angle or low-

cost lenses suffer from more distortions. It has been reported that a typical 0.5-1% 

distortion is equivalent to a positional error of 1.25 to 2.5 pixels at the extremes of the 

image [20]. The lens’s radial distortion parameters should be estimated along with the 

camera’s intrinsic and extrinsic parameters. [21] deals with mathematical expansions 

from the projection process. 

 

2.3. Epipolar Geometry  

The epipolar geometry came from the correspondence problem in stereo vision. 

Figure 2.4 shows the epipolar geometry between two camera systems. We assume that 

the intrinsic parameters of each camera are known. Let OL and OR be the optical center 

of left and right cameras respectively. A 3-D point M and two optical centers build the 

epipolar plane, and the intersections of this plane and each image become the epipolar 

lines denoted by l and l’. Given a point m in the left image, the corresponding point on 

the right image is constrained to lie on the epipolar line of m , called the epipolar 

constraint. The points e and e  are known as the epipoles of left and right image, 

respectively. We observe that all epipolar lines on the left image pass through e and 

similarly all epipolar lines on the right image pass through e . 

 

Figure 2.4: Epipolar Geometry between a Pair of Images 
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Let’s suppose that the 3-D coordinates in camera coordinate system are m  and m  for 

the image correspondences m  and m , respectively. The movement of one camera to 

any position of the other one is represented with the rotation ( R ) and the translation ( t ). 

Since image correspondences and lens centers are built on same plane, the three vectors 
m , t  and tmR   are coplanar. Therefore, one of them must lie in the plane spanned by 

the other two, or 

0))((  tmRtmT . (4) 

Here, tmR   denotes the coordinate of point m on the camera coordinate system for 

the left image. Using the transform  
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the equation (4) is written as 

  0)())((   mEmtmRtmtmRtm TTT , (5) 

where   Rt   is the essential matrix E , and the notation  t  indicates the skew-

symmetric matrix such that   xtxt   is the cross-product of the vectors t  and x . The 

equation (5) is called the epipolar equation, and takes 2-D image coordinates and 

camera movements only as the variables. 

 

2.4. Image Rectification 

The image rectification is an essential operation to simplify the correspondence 

problem. The task transforms the images so that the epipolar lines are aligned 

horizontally, which is equivalent to mapping the epipole e  to a predetermined point 

  001i  (a point at   of horizontal line) by applying the homography matrix H  to 

each image. Figure 2.5 illustrates the stereo pair to rectify figure 2.4. Through this 

process stereo matching can easily take advantage of the epipolar constraint, and the 
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search area is reduced from two dimensional areas to one dimensional horizontal line. 

Moreover, image rectification is indispensable in real applications where the epipolar 

line may be skewed by the arbitrary arrangement of cameras. The following formally 

describes the rectification of stereo images. 

 

Figure 2.5: A Rectified Stereo Pair 

Given the homography matrices H  and H  to be applied to images I and I’ respectively, 

let m  and m  be corresponding points to satisfy equation (4). Rectified image points 

can be expressed as  
Hmm   and mHm  . 

From equation (4), we obtain 

      0  FmmmHFHmHmFmHmFm ΤΤΤ , 

where it is a convention that the fundamental matrix for a rectified image is defined as 

  .
010
100

000
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
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


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This points out that any point m  corresponding with m  must line on the epipolar line 
Fm . On the other hand, the fundamental matrix and the projection matrix satisfy the 

following relation [19]: 




  PPpPF ][ ,  (6) 
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where p  is a null vector of matrix P  and P  is the pseudo-inverse of P . Note that 

the fundamental matrix and the homography matrix satisfy a relation 

  HiHF Τ
 .   (7) 

Therefore, we can find a pair of the homography matrix from the equations (3), (6) and 

(7), using camera’s intrinsic and extrinsic parameters known by calibration. 

2.4.1. Control of Homography Matrix by Special Function Registers  

We have assumed that the H matrices in one vision system don’t change. However, 

it is worth noticing that positions of two cameras may not be always fixed. This occurs 

sometimes by camera replacement, or vibration generated from vision system’s 

movement, and these makes the epipolar line be skewed so that the 1-D search will be 

ineffective. In addition, the unwanted situation can come from camera itself. Even 

though a pair of camera is highly analogous in appearance, they are not identical so that 

they have different focal lengths and different coordinates of image center. 

Consequently, camera’s intrinsic and extrinsic parameters can vary according to each 

camera and stereo rig, which require the change of homography matrices. The former 

processors using FPGAs cannot avoid source code modifications and its logic synthesis 

in order to reconfigure the devices every that situation. In proposed design, however, 

we can control the parameters outside the processor without hardware reconfiguration 

because elements in the homography are assigned as special function registers.   

 

2.5. Image Filtering 

Pixel’s point operations are a very simple class among the techniques of image 

enhancement which makes images look better, but they don’t mean a change in a small 

neighborhood. New classes of operations are necessary which combine the pixels of a 

local neighborhood in an appropriate manner and yield a result to form a new image. If 

gray value doesn’t change in a small neighborhood, it implies an area of constant gray 

values such as an object. If the value changes, it may be at the edge of an object. Edge 

detection aims at estimating the boundaries of the object, while smoothing gives 

adequate averages for the gray values within the object. The followings describe the 
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base to handle a wide range of image processing tasks: simple smoothing and edge 

detection, and introduce the bilateral filter employed to our stereo vision system as pre-

processing. 

2.5.1. Smoothing 

The smoothing operations are used primarily for suppressing spurious effects 

produced by poor sampling systems or transmission errors. We briefly present 

smoothing techniques in both spatial and frequency domains. 

Neighborhood averaging is a spatial-domain method for image smoothing. 

Given an NN   image ),( yxf , the procedure is to produce a smoothed image ),( yxg  

whose gray level at every point ),( yx  is obtained by averaging the gray-level values of 

the pixels of f contained in a predefined neighborhood of ),( yx . In other words, the 

smoothed image is obtained by using the relation 





Smn

mnf
M

yxg
),(

),(1),(  (8) 

for x, y = 0, 1, …, N-1. S is the set of coordinates of points in the neighborhood of (but 

not including) the point ),( yx , and M is the total number of points defined by the 

coordinates in S. 

Edges and other sharp transitions such as noise in the gray levels of an image 

contribute heavily to the high frequency content of its Fourier transform. Therefore, 

blurring can be achieved by attenuating a specified range of high frequency 

components in the transform of a given image. Let ),( yxg  be an image formed by the 

convolution of an image ),( yxf  and a position-invariant operator ),( yxh  like 
),(),(),( yxfyxhyxg  .  (9) 

From the convolution theorem, we have the frequency-domain relation 
),(),(),( vuFvuHvuG  ,  (10) 

where ),( vuF  is the Fourier transform of the image ),( yxf . The problem is to select a 

function ),( vuH  which yields ),( vuG  by attenuating the high frequency components of 
),( vuF . The inverse transform of ),( vuG  will then generate the desired smoothed image 
),( yxg . Since high frequency components are filtered out, and information in the low 
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frequency range is passed without attenuation, this method is commonly called low-

pass filtering. The function ),( vuH  is referred to as transfer function of a filter. 

2.5.2. Edge Detection 

The edges are points where brightness in an image sharply changes. Edge 

detection [22] is a sharpening technique to be useful as enhancement tools. Sharpening 

is analogous to differentiation, while averaging to integration. Detecting edges requires 

a filter operation to emphasize the change in gray values and to suppress areas with 

constant gray values. The derivative operators are suitable for such an operation.  The 

first derivative has an extremum at the edge, while the second derivative crosses zero 

where the edge has the steepest ascent. Both of them can be used to detect edges. In 

two dimensions, the sum of the two second partial derivatives is called the Laplace 

operator and is denoted by Δ . The Laplacian of a two-variable function ),( yxf  is 

defined as  

2

2

2

2
2 ),(

y
f

x
fyxff








Δ . (11) 

On the other hand, there is a filter called a Laplacian of Gaussian (LoG) which first 

smoothes the image with the Gaussian operator and then applies the Laplacian operator. 

The LoG edge detectors are isotropic so that its response is composed of an average 

across an edge and one along the edge. This means that adding some percentage of this 

response back to the original image yields a picture in which edges have been 

sharpened and details are easier to see. 

2.5.3. Bilateral Filtering 

Toward an improved stereo vision, a filtering that does not blur across range 

discontinuities like edge and compensates photometric variations between a pair of 

cameras takes an important position. The method aims at preserving the signal details 

while removing the noise. This is achieved by locally adaptive recovery methods such 

as Anisotropic Diffusion (AD), Weighted Least Squares (WLS), or Robust Estimation 

(RE). However, since all these methods have an iterative property, there has been no 

low-cost mechanism for smoothing in homogeneous regions while sharply preserving 
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edges. Complex schemes to extract this information would conflict with the real-time 

requirement. In 1998, Tomasi and Manduchi [17] proposed an alternative non-iterative 

bilateral filter. As an edge-preserving smoother, this is a weighted average of local 

neighborhood samples, where the weights are computed based on spatial and intensity 

differences between the central pixel and its neighbors. In [18], Ansar suggested a 

novel approach incorporating a bilateral filter into a background subtraction step, and 

verified that it is superior to conventional methods such as Laplacian filtering, 

Difference of Gaussians filtering (DoG), Rank and Census Filtering. We adopt the 

bilateral filter as another pre-processing stage, and the following describes its algorithm.  

Typical background subtraction method is composed of a low-pass filtering and 

a subtraction of the low-pass filtered image from an original image as follows; 

)( arg elGIII   (12) 

where I is an original image, )( argelG   is a Gaussian mask with a variance el arg . In 

Ansar’s approach, the low-pass filtering with a Gaussian mask is replaced with a 

bilateral filtering. The filter returns B(x) at x in I  as follows; 
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where   is the filter support and )(xI  is the intensity at x. ),( xc   measures the 

geometric closeness between a center x and a nearby point   , while ))(),(( xIIs   

measures the photometric similarity between them. The weight functions ),( xc   and 

))(),(( xIIs   are typically Gaussian distributions defined as 
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where c  and s  are the standard deviations of spatial component and intensity 

component, respectively. The geometric spread c  is chosen based on the desired 

amount of low-pass filtering. A large c  blurs more, that is, it combines values from 
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more distant image locations. Similarly, the photometric spread s  is set to achieve the 

desired amount of combination of pixel values. Note that the closer the Euclidean 

distance between the central pixel and its neighbor is, the larger ),( xc   will be, and the 

smaller the intensity difference between them is, the larger ))(),(( xIIs   will be as well. 

Thus, the filtered output is finally obtained as 

BII  . (16) 

2.5.4. Control of Bilateral Filter Offset by SFR 

When input imagers take pictures, they are affected by background illumination. 

The effect can propagate to disparity maps, resulting in increase of erroneous matches 

or unmatches. Thus, we integrated the function able to alleviate the effect of variant 

surrounding illumination by register controls. Located between the bilateral background 

subtraction in the equation (16) and the output of bilateral filter, one SFR can add or 

subtract light intensity on the output image. 

 

2.6. Stereo Matching and 3-D Reconstruction  

Combining the images produced by a pair of camera and exploiting the disparity 

between them provides us depth information. Stereo vision involves two processes: the 

correspondence of features observed by two cameras and the reconstruction of their 3-

D information. 

2.6.1. Ambiguity in Correspondence Problem 

Figure 2.6 shows the ambiguity in correspondence problem of stereopsis. There 

are three points on the epipolar line of each image. The nine points in 3-D are possible 

as the combination of corresponding points, and A to I denote their positions. 

Considered all possible correspondences for each point on left image, only three points 

on the epipolar line of right image can be candidates. However, if each picture consists 

of hundreds of thousands of pixels with lots of image features, the number of possible 

combination will be drastically increased. Consequently, some techniques are necessary 
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in order to establish the correct correspondences and avoid erroneous depth 

measurements. In principle, three candidates to each point can be answers, but 

essentially human’s eyes see one candidate only. This is because the disparity of 

matches varies smoothly almost everywhere in the image [3]. 

 

 
Figure 2.6: Ambiguity in Correspondence Problem 

2.6.2. Stereo Matching by Correlation 

It is called the stereo matching to establish correspondences between a pair of 

images. In the area-based matching algorithms the correspondence problem is solved 

by matching image intensity patterns, and this is also called the correlation technique. It 

finds pixel-wise image correspondences by comparing intensity profiles in the 

neighborhood of potential matches. Our stereo matching is based on a correlation 

method known as sum of absolute differences (SAD). Figure 2.7 depicts how to find 

the corresponding pixel in the SAD approach. Suppose that a pair of images is rectified 

by rectification process. The baseline T denotes a line connecting centers of two lenses, 

and the focal length f means a distance from a center of lens to image plane. One point 

P on a 3-D object is projected onto two image planes by the perspective projection as 

indicated by A and B, respectively. Then, A and B are called the corresponding pixel to 

each other. Once two images are rectified, each point in one image must be observed in 

the other image along the epipolar line by the epipolar constraint.  
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Figure 2.7: Finding Corresponding Pixels in SAD Algorithm 

 

Consider windows of M by N size on each image as shown in Figure 2.7. When the 

disparity d denotes a distance between the centers of two windows, the SAD algorithm 

is defined as 
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where IL and IR are intensities in left and right image, respectively. In order to find out 

the corresponding point of A from the right image, the SAD between two windows is 

calculated with the manner that the right window moves from zero to the maximum 

disparity level dmax, while the left window is fixed at the position centered at point A. 

Corresponding points are determined on the disparity exposing the smallest SAD. If the 

SAD computation shows zero value, it means the exact matching of two windows, that 

is, full correlation. 

2.6.3. 3-D Reconstruction  

Once the correspondence between images is established, we can calculate the 

depth of 3-D point using both the disparity measured by SAD and the triangulation 
)/1( dTfZ   as presented in Figure 2.8. The 3-D scene is now reconstructed by 

assigning light intensities proportional to disparity and then collecting them. Here, a 

zero disparity indicates the depth of infinity. 
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Figure 2.8: Relation between a 3-D point and 2-D images 

 

2.7. Occlusion Region and Handling It 

Since stereo images are taken from a different position, there is an area to be 

visible to one camera only. This is because protruded objects hide objects in the 

background. It is called the occlusion region and leads to erroneous or unmatched 

pixels. Figure 2.9 illustrates the situation that one point B is visible to both cameras but 

the other A to left camera only. The point A is called half-occluded because it is 

occluded in one of the views and not the other. This problem can be detected by left-

right (LR) consistency check and be alleviated by median filtering. The methods were 

adopted in our design as post-processing to improve the accuracy of disparity map.  

2.7.1. LR Consistency Check 

The LR consistency check is also referred to as bidirectional matching, in which 

stereo matching is performed twice from left to right (LR) and from right to left (RL). 

Matches are confirmed only when LR matching is consistent with RL matching. The 

technique has been proven to be effective in discarding the erroneous matches by area-

based algorithms in presence of occlusions [23]. However, this approach is 

characterized by a significant computational cost due to two matching process. 
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Figure 2.9: Occlusion Region 

2.7.2. Control of LR Consistency Check by SFR 

In LR consistency check, LR SAD can differ from RL SAD, especially, in the 

occlusion regions. Therefore, it is important in the accuracy of depth map to decide 

how much difference is acceptable. Our system parameterized the difference by SFR. 

When the difference between two SAD computations falls into a threshold, the pixels 

are finally recognized as matching points. High threshold increases the number of 

candidates of matches while the accuracy of disparity map decreases. On the contrary, 

low threshold decreases the number of candidates and even some points can be left as 

unmatched points. Consequently, the vision processor with the parameterized threshold 

will be able to control the quality of depth map. Our design assigned the threshold as 

SFR so that we can write the value outside the processor. 

2.7.3. Median Filtering 

The median filtering is commonly used to diminish outliers in disparity maps, 

which are often caused by occlusion regions [24], and to eliminate erroneous matches. 

It selects a medium value within a filter mask. Finding the medium requires the sorting 

of pixels according to intensity, thus the median filter belongs to the rank value filter. 

Figure 2.10 shows how the filter with the window size of 3*3 works. In order to filter 

one pixel, 9 pixels including its neighbors are sorted, and then the medium is chosen as 
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the filtered output. Intuitively, we can know that the performance of this filter depends 

on the window size and a sorting algorithm. 

 

 
Figure 2.10: 3 by 3 Median Filter 
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Chapter 3: Architecture of Proposed Stereo Vision Processor 

3.1. System Prototype 

Figure 3.1 shows the prototype of our stereo vision system. This consists of 

camera module, Xilinx FPGA-based board, external interface, and power system. The 

camera module is composed of two CMOS Image Sensor (CIS) cameras generating the 

color image of VGA (640*480) size at the speed of 30 frames per second. The camera’s 

lens has focal length of 6 mm, and the baseline distance between two cameras is 9 cm. 

The Xilinx FPGA board emulates not only stereo vision processor to integrate image 

rectification, bilateral filtering, depth estimator, and post-processing units, but also CIS 

interface. The external interface allows us to communicate with personal computers 

through IEEE 1394 protocol.  

 

 
 

Figure 3.1: Prototype of Our Stereo Vision System 
 

3.2. Top level Architecture 

Figure 3.2 presents the top level hardware architecture of our stereo vision 

processor. Image Rectifier, Bilateral Filter, Depth Estimator, Median Filter, and SFRs 

are integrated on a single processor. With the 0.18um CMOS technology, the proposed 

stereo vision processor can operate at 120 MHz clock and achieve 144 frames/sec depth 

maps with 320 by 240 image size and 64 disparity levels. A pair of CIS camera 

producing the color image of VGA resolution (640 by 480) consists of a stereo camera. 
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CIS Interface first synchronizes data and timing signals coming from two CIS cameras, 

and downsizes image data to 320 by 240. This block makes the processor independent 

on the kind of input imagers by providing a consistent image size as well as consistent 

frame, line synchronization signals. In Image Rectifier, images delivered from CIS 

Interface are rectified using the homography matrices. Bilateral Filter produces smooth 

and edge-preserving images from the rectified outputs. In Depth Estimator, bilateral 

filtered images are processed to extract disparity maps with 3-D information. Median 

Filter diminishes outliers and erroneous matches in disparity maps. External Interface 

transfers dense depth maps with 8-bit disparity to the host or user’s machine, and 

receives host’s inputs in order to set SFRs. 

In the design phase of the processor, we build models to imitate two CIS cameras 

and the host, and use them in the verification phases including a gate-level simulation. 

The CIS model exactly provides sequences of YCbCr color data as well as timing 

signals such as frame, line syncs and their blanking times. Moreover, it imitates the 

situation that two imagers generate images at different time each other, which is 

common. The host model imitates to capture the output image of each stage stored in 

FIFO memory of External Interface, and to deliver parameterizable values to SFRs. 
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Figure 3.2: Top Level Architecture of Proposed Stereo Vision Processor 
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3.3. Image Rectifier 

Figure 3.3 shows the hardware architecture of image rectifier. Two rectifiers are 

needed in stereo vision systems. RECT Control embeds the finite state machine to 

control the overall operations of rectification block. The controller generates control 

signals such as address, enable, byte select in order to store input stream into frame 

buffer, and provides the 2-D coordinate (xidx, yidx) of input pixel to RECT Core by 

counting the number of line sync and pixels within it. This block also detects a new 

frame and let Output Control know it by transferring a signal. Frame Buffer stores 

output images from CIS Interface, and sends data to RECT Core to be interpolated. 

Since our rectifier was designed to transform the color image and to store 

approximately half of input image to the buffer, the buffer size of 96Kbyte is required 

for each camera. RECT Core finds the position of pixel transformed by the 

homography, and produces its data. Output Control makes rectified pixel, frame and 

line sync signals synchronized, and delivers them to next stage. 

Frame 
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Output
Control

new
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data
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Rectified 
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Figure 3.3: Hardware Architecture of Image Rectifier 

3.3.1. RECT Core Block 

RECT Core performs main operations in image rectifier. The diagram shown in 

Figure 3.4 incorporates the pixel transformation, the compensation of radial distortion 

and the bilinear interpolation. Matrix Calculation presented in Figure 3.5 depicts how to 

obtain the position of transformed pixel by the homography H given through SFR, and 

delivers it to Radial Distortion block that offsets radial distortion of lens using lens 
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parameters [20]. Note that xidx, yidx, x, y, rx and ry are the pixel positions in the 

camera coordinate system, not data. Essentially, rx and ry are outputs in RECT Core 

block, but they usually have floating point values so that the bilinear interpolation was 

employed in order to get fine data corresponding to its coordinate. Fetch Pixels finds 

addresses of 4 neighboring pixels with an integer position around the coordinate (rx, ry), 

and fetches their data fa, fb, fc and fd from Frame Buffer. Finally, the rectified image 

comes out after interpolation based on 4 pixels in Bilinear Interpolation block. Remind 

that computations are mainly composed of finding address because the rectification is a 

mapping of pixel onto a new location. 

 

 
Figure 3.4: RECT Core Block in Image Rectifier 

 
 





 
 

Figure 3.5: Matrix Calculation Block in RECT Core 
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3.4. Bilateral Filter 

We adopted the bilateral filter with c = 3.7, s = 30 in equations (14) and (15), 

and the window size of 11*11. Figure 3.6 illustrates how the bilateral filter works. In 

order to filter one pixel, 11*11 pixels are required and they are stored at vertical buffers. 

The vertical buffers were implemented by shift registers to discard the oldest one pixel 

and simultaneously to fill one new pixel every clock cycle. Weight Calculation blocks 

find weights depending on both spatial and intensity difference between the central 

pixel and its neighbors. The spatial and intensity difference values are stored at tables 

with 121 levels and 256 levels, respectively. Divider performs the division in equation 

(13), taking the summation of weights over intensity difference as a numerator and that 

over spatial difference as a denominator. In ABS block, absolute difference between the 

weighted average and the original image pixel is computed, that is, BII  in 

equation (16). This logic also has the SFR to alleviate the effect of variant surrounding 

illumination on disparity maps. 

3.4.1. Weight Calculation Block 

Our bilateral filter has 121 weight calculation blocks since the window size is 11 by 11. 

As shown in Figure 3.7, SUB and ABS blocks calculate the spatial difference between 

a central pixel (M061) and its local point (Mxxx). The difference is used as index to 

look-up the table of EXP_CAM containing values of the weight function ),( xc  . The 

input EXP_D denotes the value of the weight function ))(),(( xIIs   which was already 

computed according to intensity difference between two pixels. Thus, the first 

multiplier performs multiplication of ),( xc   and ))(),(( xIIs  , and its result becomes the 

WEIGHT. The second multiplier produces the CP_WEIGHT, the output of 

multiplication of )(I  and  ))(),((),( xIIsxc  . index to look-up the table of EXP_CAM 

containing values of the weight function ),( xc  . The input EXP_D denotes the value of 

the weight function ))(),(( xIIs   which was already computed according to intensity 

difference between two pixels. Thus, the upper multiplier performs multiplication of 
),( xc   and ))(),(( xIIs  , and its result becomes the WEIGHT. The lower multiplier 

produces the CP_WEIGHT, the output of multiplication of )(I  and  ))(),((),( xIIsxc  . 
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Figure 3.6: Hardware Architecture of Bilateral Filter 

 

 
Figure 3.7: Weight Calculation Block in Bilateral Filter 

3.4.2. SUM Block 

The SUM block illustrated in Figure 3.8 performs the summation of weight 

functions in equation (13). The operation is very simple because it is composed of 

additions only. However, note that the block has the large number of inputs. This 

requires the high fan-in of a digital logic gate so that the speed of the gate can be 

degraded. The rising (or falling) time of two identical transistors connected in series 

will be approximately double that for a single transistor with the same capacitive load.  
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Figure 3.8: SUM Block in Bilateral Filter 

 

In order to achieve the best speed-performance we restrained the number of inputs to 

two as the figure. 

 

3.5. Depth Estimator and LR Consistency Check 

The depth estimator performs stereo matching to establish the correspondences 

between a pair of image. To find matching points efficiently and effectively, it is 

necessary for input images to be rectified and filtered, respectively, before matching. 

So we call those steps as pre-processing. Also to enhance the accuracy of depth maps 

and to avoid erroneous matches, several techniques such as LR consistency check and 

median filtering are employed after matching, called post-processing. The depth 
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estimator integrated in our processor has the structure presented in Figure 3.9. Its input 

is rectified and filtered image, and output is the disparity between a pair of image. Left 

and Right Buffer store scan-line data of image and dispatch them to SAD blocks 

synchronizing to the control signals of hard-wired Controller. The Controller not only 

 

 
Figure 3.9: Hardware Architecture of Depth Estimator 

 

determines output timing of two Buffers and two SAD blocks, but delivers the value of 

special function register to LR Consistency Check block. In LR SAD block, a window 

with the size of 11*11 around candidate pixel is taken at each image along epipolar 

lines, and then the SAD is computed with the manner of left fixed window and right 

moving window by 64 disparity levels. RL SAD block also computes the disparity, 

however, with the opposite manner of left moving window and right fixed window. In 

LR Consistency Check block, the LR SAD value is compared with the RL SAD one. 

Only when the difference falls into a threshold, the matching is successful. Otherwise, 

the result is discarded regarding as unmatched point. Consequently, the threshold 

affects the quality of depth map so that it should be parameterized if the LR consistency 

check is employed.  In our processor the parameter is controlled by SFR. 

3.5.1. Pipelined and Parallelized Implementation of SAD Algorithm 

Figure 3.10 shows SAD computation based on 5 by 5 window sizes. The 

illustration implies that the SAD algorithm can be implemented with the techniques of 
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pipelining and parallelism. Let us suppose that here is only one processing element 

(PE) to calculate absolute difference between two pixels and the element takes one 

clock cycle to perform the pixel operation like Figure 3.10 (a).  It takes five cycles to 

compute the first line in the window. If we configure one line-based processing element 

(LPE) with five PEs, the time cost will be decreased to one cycle for the line 

computation as drawn in Figure 3.10 (b), by exploiting parallelism based on more 

hardware resources. The LPE can process another line in one cycle by pipelining so 

that five cycles are taken for the window computation. Now consider an SAD 

computation with disparity ranging from 0 to 63 like Figure 3.10 (c). For one pixel 

matching, this requires 64 times as much computation as Figure 3.10 (b). Besides, note 

that image’s line data come into the depth estimator sequentially even though they 

seem to get together in the window at one moment. In other words, the second line is 

actually delivered later than the first one to the estimator.  

Due to this constraint and much computation we devised the pipelined and 

parallelized method using LPEs and its hardware architecture as shown in Figure 3.11 

and Figure 3.12, respectively. The characteristic of this technique is that each LPE was 

assigned to process each line in left and right windows. The LPE1 processes the first 

lines only in two windows, and the LPE2 does the second lines and so on. This 

approach enables the SAD value to be computed every cycle after filling out pipeline. 

Figure 3.11 depicts first 3 cycles finding absolute differences between the two windows 

in left-right SAD computation. Our depth estimator has the window size of 11 by 11, 

but 5 by 5 was drawn for convenience. At cycle 1, LPE1 only operates for disparity 

level of zero. At cycle 2, LPE1 calculates absolute differences at disparity level of 1, 

while LPE2 does at disparity level of zero and the others don’t work. Following this 

manner, the SAD computation at one disparity level, (for example, d=0), take 11 cycles 

in our system. We know that latency between LPE1 and LPE11 operations is 10 cycles. 

Consequently, the depth estimator with 64 disparity levels consumes total 74 cycles to 

match one pixel, that is, (64+11-1) cycles. Due to pipelining, however, 73 cycles will 

be hided, and the processor actually produces a disparity output every cycle. 
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Figure 3.10: SAD Computation based on 5 by 5 Windows 

 

 

 
Figure 3.11: Pipelined and Parallelized Operations of Line-based Processing Elements 

in Left-Right SAD Computation 
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3.5.2. Left-Right SAD Block 

 Figure 3.12 illustrates the structure of LR SAD block based on the concept in 

previous subsection. The hardware integrates total 11 LPEs, and each LPE embeds total 

11 pixel-based processing elements (ABS) to find the intensity difference between two 

pixels. Since left image is reference in this block, left image data remain as same during 

the SAD operation of 64 disparity levels, while right image data come from Right 

Buffer every cycle. This manner is opposite in RL SAD block. The Disparity Range is 

dispatched by control logics to comparator, synchronized to output of shift registers and 

summation block. The values of absolute difference reaching SUM block at certain 

time are the computation results for same disparity level. The COMPAR block selects 

the minimum SAD among 64 candidates and sends its disparity to the LR Consistency 

Check block. 

 

 
Figure 3.12: Left-Right SAD Block in Depth Estimator 

 

3.6. Median Filter 

We adopted the median filter with the window size of 3*3 as another post-

processing unit. Figure 3.13 shows the hardware architecture of median filter similar to  
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Figure 3.13: Hardware Architecture of Median Filter 
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Figure 3.14: SORTER Block in Median Filter 
 
 

the bilateral filter. In order to filter one pixel, 3*3 pixels are required and they are 

stored at vertical buffers. The vertical buffers were implemented by shift registers to 

discard the oldest one pixel and simultaneously to fill the new one every clock cycle. 

The 9 pixels are given to the SORTER block that sorts the pixels by decreasing order, 

and then selects the medium as the filter output. Figure 3.14 presents how the SORTER 

block was implemented. Nine pixels conveyed from vertical buffers are divided into 

three groups. The first two groups are sorted with decreasing order at Sub-Sorter, 
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respectively. Merger block combines them with decreasing order, and extracts two 

middle values to send into COMPA logic. For data synchronization, the third one is 

delayed as much time as the computation of Sub-Sorter and Merger takes. It is 6 clock 

cycles. In COMPA block, P009 is compared with C001 and C002. The logic chooses 

the median value among them as the output of median filter. 
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Chapter 4: Performance Evaluation and Comparison with 

Previous Works 

In this chapter we evaluate the performance evaluation of the proposed processor 

by comparison with previous hardware works. The test images are Teddy obtained 

from Middleburry stereo data sets [26], and pictures taken at real world. [26] provides 

valuable test images able to apply to stereo vision systems so that many researchers 

associated with computer vision have used them as reference images. However, since 

they are very clear and rectified images, stereo vision systems applied to real world 

should be verified with different images taken at real world as we present. The 

evaluation results according to different inputs include output images of each block in 

processor and output images controlled by SFRs. We also confirm the functionality of 

bilateral filter and median filter. 

 

4.1. Experiments based on Middleburry Stereo Data and Its Analysis 

Figure 4.1 shows input image Teddy, and output image in each stage of our 

processor. Figure 4.1 (a) and (b), Middleburry color images, are converted to gray scale 

images with the size of 320 by 240 (QVGA) at the front part of bilateral filter. Remind 

that the rectification process is not required since [26] provides rectified images. Figure 

4.1 (c) and (d) are outputs of bilateral filter to operate as an edge-preserving smoother. 

It is worth observing that the first five horizontal lines don’t produce meaningful values 

because we employed the window size of 11*11 in this filter. From the images we can 

confirm that the bilateral filter smoothes homogeneous regions while sharply preserves 

discontinuities like edges. Figure 4.1 (e) shows the depth map, output of depth 

estimator, where closer objects are represented with higher intensity. It is verified that 

the LR consistency check in area-based stereo algorithms is effective in detecting and 

discarding erroneous matches at occlusion regions and around edges, although there are 

a few erroneous ones like pepper noise. Median filter can mitigate the effect of  
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(e)                                                               (f) 

 

Figure 4.1: Experimental Results using Middleburry images in Designed Processor: (a) 

left input (b) right input (c) left bilateral filtering output (d) right bilateral filtering 

output (e) depth estimator output (f) median filtering output 
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Figure 4.2: Results of SFR Control in Depth Estimator:  

(a) high threshold (b) its median filtering output (c) middle threshold (d) its median 

filtering output (e ) low threshold (f) its median filtering output 
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occlusion regions and erroneous matches by interpolating neighboring disparities [24], 

and Figure 4.1 (f) presents its result applied to the depth map.  

Figure 4.2 illustrates how disparity map varies as we control one of SFRs in the 

processor. The value is a threshold to decide how close the LR SAD is to the RL SAD 

in LR consistency checker. High threshold implies that the disparity difference between 

them is large, and thus leads to many candidate matches. However, if the value is so 

large, the accuracy of depth map will be decreased. Figure 4.2 (a) has a threshold of 3, 

which means that if the disparity difference is smaller than 3, the match is finally 

confirmed as valid one. The value in Figure 4.2 (c) is 2, and Figure 4.2 (e) has 1. From 

the images we can know that as the threshold decreases, unmatched points increases. It 

is worth noticing that Figure 4.2 (e) is a result confirming matches only when there is 

no disparity difference between two SAD computations. Figure 4.2 (b), (d) and (f) 

present outputs of 3*3 median filtering for each threshold case. Although Figure 4.2 (a) 

and (c) have significant difference in the accuracy, the median filter compensates them 

well so that it is not easy to find out distinctive difference between Figure 4.2 (b) and 

(d). 

 

4.2. Experiments based on Real Scene and Its Analysis  

In this section we verify the designed hardware with test scenes obtained at real 

world. The images were taken by two low cost CMOS Image Sensors (CIS) with VGA 

resolution. As shown in Figure 4.3 (a) and (b), unrectified and unfiltered stereo images 

are used as test inputs. Note that the left image is a little obscure due to photometric or 

geometric variations of left camera, which can lead to poor disparity map. Figure 4.3 

(c) and (d) are color-rectified ones. We find that the bilateral filter operates as an edge-

preserving smoother in Figure 4.3 (e) and (f). Figure 4.3 (g) is the depth map extracted 

from filtered images, and closer objects have more intensity in our system. Unmatched 

pixels around background objects came mainly from the obscurity of left input image 

generated by unfocused imaging. This blurs object’s features like edge, and weakens 

object’s intensity making it similar with neighbors. The obscurity propagates to the left 
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Figure 4.3: Test Results of Each Block in Designed Processor: 

(a) left input (b) right input (c) left rectification output (d) right rectification output (e) 

left bilateral filtering output (f) right bilateral filtering output  

(g) depth estimator output (f) median filtering output 
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bilateral-filtered image as shown in Figure 4.3 (e), and causes incorrect matches or 

unmatches in depth estimator. Figure 4.3 (h) is a median-filtered output of the disparity 

map. 

 

4.3. Hardware Specifications  

The stereo vision processor described in this paper generates 320 by 240 depth 

images with 64 disparity levels. At the 120MHz operating clock frequency, dense 

disparity maps can be produced at the rate of 144 frames per second. The design 

integrates an image rectifier, a bilateral filter, a depth estimator with the LR consistency 

check, and a median filter using 0.18um CMOS technology. The hardware specification 

of the design including SFRs is summarized in TABLE I. At the condition of 60MHz 

system clock and 0.18um CMOS technology, the total gate count, memory usage and 

dynamic power consumption are estimated to 1.5 million, 235KBytes and 1.48W, 

respectively. As indicated in the table, two rectifiers of left and right color images take 

almost amount of memory embedded in the processor, since their memory were 

implemented able to accommodate approximately half of input images. Besides, their 

power consumption takes the largest portion in the processor, even though the logic 

count of depth estimator is more than that of image rectifiers. This is because the 

memory access in image rectifiers is more frequent than in depth estimator. 

 

Table I: Hardware Specifications (0.18um CMOS Technology, 60MHz Clock) 
 Gate  

Count 
Memory  
Usage 

Dynamic Power 
Consumption 

CIS Interfaces 1.7K 8KB 2mW 
Image Rectifiers 495K 194KB 680mW 
Bilateral Filters 355K 7.8KB 290mW 
Depth Estimator 661K 24KB 500mW 

Median Filter 4K 1.4KB 3.37mW 
Total 1,516K 235.2KB 1,475mW 
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4.4. Comparison with Previous Hardware Works  

In Table II, the performance of our system is compared with previous hardware 

works. It says that the proposed design shows better performance and integrates more 

hardware features enhancing the accuracy of disparity map. We apply one metric, 

Stereo Computation, to each system in order to compare the amount of computation 

used for stereo matching. It is obtained from the multiplication of the size of depth map 

output, the throughput, the window size and the disparity level. The metric is fairly 

reasonable in that the amount of stereo computation is proportional to all of them. Even 

though some of works presented in the table didn’t clearly show the size of depth map, 

we calculate the amount assuming that the output size is same to the input size. Based 

on the result of multiplication (320*240*144*11*11*64), our processor has the better 

computational ability in stereo matching than any other work. (For the stereo 

computation of [25], we applied the disparity level of 20 from their actual experimental 

result.) 

 

Table II: Comparison with Previous Hardware Implementations 
 P. J. Burt 

[13] 
M. Kuhn 

[14] 
M. Hariyama 

[15] 
M. Hariyama 

[27] 
K. Ambrosch 

[8] 
S. Longfield 

[25] 
Our 

Processor 
System 
Type 

ASIC 
(0.25um) 

ASIC 
(0.25um) 

ASIC 
(0.18um) 

ASIC 
(0.18um) 

FPGA FPGA ASIC 
(0.18um) 

Clock 
Freq. 

100MHz 75MHz 125MHz 100MHz 65MHz 58MHz 60MHz 

Input 
Image Size 

512*480 256*192 320*240 32*32 320*240 320*240 640*480 

Throughput 
(Max.) 

(80GOPS) 50fps 10fps 1,000fps 425fps 300fps 144fps 

Window 
Size 

N/A 10*3 Variable: 
3*3 to 5*5 

4*4 3*3 Variable: 
3*3 to 13*13 

11*11 

Disparity 
Level 

N/A 25 N/A N/A 100 Variable: 
2 to 40 

64 

Stereo 
Computation* 

N/A 1,843M N/A N/A 29,376M 77,875M 85,642M 

Pre-
processing 

Filter Without Without Without Without Without Rectifier, 
Bilat. Filter 

Stereo 
Algorithm 

SAD SSD & 
Census 

SAD SAD SAD Census SAD 

Post-
processing 

LR Check LR Check, 
Med. Filter 

Without Without Without Without LR Check, 
Med. Filter 

Other 
Features 

Motion 
Estimator 

N/A N/A N/A N/A N/A SFRs 
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Chapter 5: Conclusions 
 

We have presented a stereo vision processor extracting disparity maps with high-

throughput and improved-quality. Since the system was designed considering uses in 

real applications, it integrates pre- and post-processing units such as rectifier, bilateral 

filter, LR consistency checker and median filter using 0.18um CMOS technology. The 

proposed processor has the flexibility to control the quality of depth maps according to 

real environments. This characteristic was achieved by assigning vision parameters to 

special function registers. The SAD algorithm as stereo matching technique was 

implemented on hardware exploiting pipelining and parallelism in order to achieve 

higher throughput. The proposed design is independent of the types of CIS camera or 

host computer, since we used typical models of them at the functional verification and 

the gate-level simulation. We evaluated the performance of the proposed stereo vision 

processor through experiments based on Middleburry data sets and images taken from 

real scenes. 
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