Calculations for the etale fundamental group of curves of genus one or two

dc.contributor.advisorRamachandran, Niranjanen_US
dc.contributor.authorLizzi, Adam Josephen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2018-09-07T05:32:56Z
dc.date.available2018-09-07T05:32:56Z
dc.date.issued2018en_US
dc.description.abstractThe \'etale fundamental group $\pi_{1, \text{\'et}}(C)$ is a profinite group which classifies covers of algebraic-geometric objects. Its abelianizaton classifies torsors over $C$ with a finite, abelian structure group. When $C$ is a curve over a number field $K$, $\pi_{1, \text{\'et}}^{\textsf{ab}}(C)$ possesses a finite subgroup $\Ker(C/K)$ which records which abelian \'etale covers of $C$ come from geometry. In this thesis multiple algorithms for calculating $\Ker(E/K)$ are presented when $E$ is an elliptic curve over a number field. We indicate how to generalize one of these algorithms to the Jacobian of a genus two curve $C$, allowing for progress to be made on calculating $\Ker(C/K)$.en_US
dc.identifierhttps://doi.org/10.13016/M2TB0XZ7N
dc.identifier.urihttp://hdl.handle.net/1903/21123
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledelliptic curvesen_US
dc.subject.pquncontrolledetale fundamental groupen_US
dc.subject.pquncontrolledjacobianen_US
dc.subject.pquncontrollednumber theoryen_US
dc.titleCalculations for the etale fundamental group of curves of genus one or twoen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lizzi_umd_0117E_19305.pdf
Size:
656 KB
Format:
Adobe Portable Document Format