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Chapter 0: Introduction

The main goal in this thesis is to compute certain abelian covers of curves

that “come from geometry,” in the sense that no part of them can be explained by

a base change CL → C along an abelian extension L/K of the field of definition

of C. The group that measures such covers is a subgroup of the group π1(C)ab

classifying all étale covers. Due to an exact sequence in which it sits, we follow Katz

and Lang [32] in calling it Ker(C/K). The main theorem of [32] (Theorem 1.1.1)

states that Ker(C/K) is always finite for varieties over number fields. Our goal will

be to calculate what we can regarding Ker(C/K) when C is a curve of genus one or

two.

Genus one curves with a rational point are elliptic, which opens up the door to

applying techniques from arithmetic to attack the problem. The preliminaries are

discussed in §1. The key result we need to get us off the ground is that of Katz [31]

(Thoerem 2.2.6) which tells us how to detect whether an elliptic curve could have a

p-cover by looking at its reductions modulo primes ` of good reduction.

The new results of the thesis are concentrated in §2 and §3, where we give three

(two and a half?) algorithms to calculate Ker(E/Q), indicating how to adapt them

to higher-degree ground fields. In some sense these algorithms are dual to Vélu’s
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formulas [55], in that Velu’s formulas provide an algorithm for an isogeny with

known domain, while our algorithms provide a procedure for creating an isogeny

with known target.

As far as we are aware these are the first methods that compute Ker(E/Q) for

an general elliptic curve. In Katz and Lang [32, p. 302] the group Ker(X0(N)/Q)

is calculated, where here X0(N) represents the usual compactified modular curve

SL(2,Z)/Γ0(N). (This result is ultimately due to work of Mazur.) For elliptic

curves, we’ll see in §1.6 that Ker(E/Q) can be identified with a certain subset of

Tors(E(Qab)), a group which was conjectured finite by Katz and Lang, proven finite

by Ribet [48], and calculated by Chou [10]. His characterization is Theorem 1.6.2.

Note that Chou determines Tors(E(Qab)) only as an abelian group, while Ker(E/Q)

cares about the Galois action on abelian torison points. See the discussion following

Example 2.2.5 for information about the difference between the two. For example,

Chou shows that 163 can divide # Tors(E(Qab)), but it cannot divide # Ker(E/Q).

The first of our procedures, Algorithm 2.3.1, works by constructing so-called

µ-type subgroups of E directly; this involves studying the factors of the division

polynomials of E. This algorithm involves constructing points on E defined over

extensions of its field of definition. Attempting to stay within the ground field leads

us to Algorithm 3.3.1, which works by studying the modular equation. This object

will tell us the j-invariant of the relevant cover. Then we’ll have to solve a “twisting

problem” to turn that one number into the curve we desired. In §3.4 we indicate

how to avoid the modular polynomial by working with complex numbers—this latter

method is similar in spirit to the procedures discussed in Cremona [16, §3.8].
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Throughout multiple examples are given, in line with the over-arching phi-

losophy of this thesis that anything worth doing is worth doing concretely. For

instance, Example 2.3.3 uses Algorithm 2.3.1 to demonstrate a nontrivial element

of Ker(E/Z[
√

29]) for a certain elliptic curve E.

We were motivated to search for multiple algorithms for genus one because

we were hoping for a way to expand the scope to genus two. All abelian covers

of a genus two curve come via pullbacks of isogenies targeting its Jacobian, so we

can again approach the problem from arithmetic. The third approach from §3 does

admit a generalization to the Jacobians of genus two curves. We give the relevant

arithmetic facts in §4 and explain how to port the algorithm to this larger setting

in §5. At the moment we can only control one kind of isogeny, those which go

between two Jacobians—these are called (n, n)-isogenies. To do this we need to

find points in the Siegel upper half-space corresponding to lattices (p, p)-isogenous

to a given one. These are cataloged by the coset representatives of the subgroup

Γ
(2)
0 (p) ⊂ Sp(4,Z). A correct set of coset representatives does not appear to have

existed in the literature; the accurate list is in Proposition 5.4.3. This is the key

piece needed to complete Algorithm 5.5.1, and an example of it in action is given in

§5.6. The genus two twisting problem is much more complicated than in genus one,

so we limit ourselves to the easiest case (where Aut(C) ∼= Z/2).

In §6 we indicate future trails which are invited by our lines of inquiry.

One fact from arithmetic needed in §4, regarding the cardinality of a Jacobian

mod p, is proven in Appendix A. Its generalizations to higher genus are discussed as

well; for instance, Formula A.1 is the correct combination of #C(Fp), #C(Fp2), and
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#C(Fp3) needed to calculate the cardinality of a Jacobian of a curve of genus three.
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Chapter 1: Preliminaries

1.1 The étale fundamental group

In this section only we’ll approach the subject with “highbrow” language,

that is, the Grothendieck language of algebraic geometry. Since this is a relatively

isolated phenomenon, we refer you to Hartshorne [23] for relevant background.

The material in this section largely comes from Katz and Lang [32].

Let X and Y be varieties defined over a field K.1 A morphism f : X → Y is

called étale if it is smooth of relative dimension zero. (This is equivalent to being

flat and unramified.) In your head you should picture a topological covering space:

the preimage of each point in Y needs to be a dimension zero subset of X, i.e., a

finite number of points. Taken in aggregate X should look like a “stack of pancakes”

over Y . Note that if Y = Spec k is the spectrum of a field, étale maps to Y are

the spectra of appropriately-named étale algebras, that is, finite products of field

extensions of k.

If étale maps are the analogue of covering spaces, then there should be an

object like the fundamental group that catalogs them, and indeed this will be our

1The theory works in more generality, but ultimately we’re going to study abelian varieties, so

let’s not strain ourselves with the preliminaries.
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object of study. To avoid technicalities regarding base points, we’ll proceed as one

does in topology and consider only the abelianization of (π1)ét, henceforth referred

to as πab
1 . The object πab

1 (Y ) is a profinite group which classifies (fppf) torsors over

Y with finite abelian structure group. By “classifies” I mean that for any finite

abelian G there is a canonical isomorphism

Homab(π
ab
1 (Y ), G) ∼= H1

ét(Y,G),

with the object on the right being étale cohomology. The étale cohomology group

H1
ét(Y,G) classifies “G-torsors,” that is, morphisms Z → Y whoes structure group

is isomorphic to G. The structure group of a torsor π : X → Y is the collection of

maps f : X → X that form a commutative triangle, i.e., π = π ◦ f . Note that πab
1

packages together information about all torsors simultaneously with every possible

abelian structure group. This makes πab
1 quite large. πab

1 , and indeed π1 itself, is

covariant functorial in its input.

The most basic example of an étale map is a group homomorphism between

finite groups φ : G→ H. The fibers of a group homomorphism are always of equal

cardinality, and the inverse image of the various points of H are torsors for the

kernel K = kerφ. The “structure group” in this case is K itself, since a map of the

form g 7→ g + k will wash out upon applying φ. If K is abelian, this is exactly the

situation we wish to analyze.

If Y is a variety defined over K, the map Y → SpecK induces by functoriality

a homomorphism πab
1 (Y ) → πab

1 (SpecK). Since Hom is contravariant, we then get
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for any finite abelian group G a map

Hom(πab
1 (SpecK), G)→ Hom(πab

1 (Y,G)).

If we interpret these Hom groups as H1-s, then this map is the “inverse image”

function that pulls back a G-torsor over SpecK along the structure morphism.

The kernel of the map πab
1 (Y ) → πab

1 (SpecK) is our main object of study.

We’ll denote it by Ker(Y/K). By definition it sits in an exact sequence

0→ Ker(Y/K)→ πab
1 (Y )→ πab

1 (SpecK).

In the situation where the structure morphism Y → SpecK has a section ε (i.e.,

Y has a K-rational point y0), the kernel group classifies those torsors on Y whose

inverse image via ε is trivial on SpecK. The trivial G-torsor is #G many copies of

SpecK, permuted by the group G. Concretely a G-torsor classified by Ker(Y/K) is

an étale map f : X → Y for which f−1(y0) is a finite number of K-rational points

on X.

If L/K is a finite abelian extension, the base change YL → Y is étale, and

therefore is classified by πab
1 (Y ). Note how the inverse image of a K-rational point

of Y is naturally going to be an L-rational point of YL. That suggests that these are

the kinds of maps that we wish to avoid; they are the image of πab
1 (Y ) in πab

1 (SpecK).

In fact there is an exact sequence

0→ Ker(Y/K)→ πab
1 (Y )→ Gal(K /K)ab → 0

assuming that Y (K) 6= ∅. In this sequence πab
1 (K) shows up as the group Gal(K /K)ab,

since étale covers of SpecK are abelian extensions of K. (The structure group is the
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Galois group!) In the situation where Y (K) = ∅, things are a little more compli-

cated; there is an action of Gal(K /K) on πab
1 (YK) coming from the action of Galois

on the equations defining étale covers of Y . The coinvariants of this action are the

object that sit in the exact sequence above:

0→ πab
1 (YK)Gal(K /K) → πab

1 (Y )→ Gal(K /K)ab → 0.

There is a surjection from these coinvariants to Ker(Y/K) which is only assuredly

a isomorphism if Y has a K-rational point.

The main theorem of Katz and Lang is that the kernel group is finite.

Theorem 1.1.1 (Katz-Lang [32], 1981). Let K be an field finitely generated over its

prime field, and let f : Y → SpecK be a variety. The group Ker(Y/K) is finite if

K has characteristic zero, and it is the product of a finite group with a pro-p group

if K has characteristic p.

The basic outline of the proof is to relate the group of coinvariants πab
1 (YK)Gal(K /K)

to the coinvariants of Tate module of an extension of the Jacobian of Y . We then

enter the realm of abelian varieties. The next step is to reduce the question of the

finiteness of the coinvariants of the Tate module of the generalized Jacobian to the

finiteness of the coinvariants of the Jacobian itself (as well as that of Gm). We then

can dominate this group with the group of Gal(Fq /Fq)-coinvariants for the reduc-

tions of these abelian varieties, and those quantities turn out to be the cardinality

of Fq-rational points, which is plainly finite.

Ker(Y/K) is a group defined through abstract nonsense, and it is known to

be finite. What can we say about its cardinality? If we cannot state its cardinality
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exactly, can we at least say whether a given prime p divides it? This will occupy us

for the rest of this thesis.

The next several chapters are concerned with calculating Ker(E/Q) for E an

elliptic curve. Later I’ll also present calculations that calculate representatives for

nontrivial classes in Ker(J/Q) for J the Jacobian of a curve of genus two. Since we

won’t need the genus two theory for some time I’ll postpone it until it’s needed in

Chapter 4.

1.2 Elliptic curves

Many things stated without proof in this section are in Silverman [51].

An elliptic curve over a field k is a curve of genus one, together with a marked

point P defined over k. The Riemann-Roch theorem implies that any elliptic curve

can be presented in so-called “Weierstrass form,” that, is, as the zero locus in A2
k of

an equation which has the shape2

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with the ai ∈ k, together with one additional k-rational point called the point at

infinity.3 This point at infinity livees at the top of the vertical axis and is the

2The subscript numbering is chosen so that the polynomial is homogenous of degree 6 should

y be given weight 3 and x weight 2. This will be cosmetic for our purposes.
3Perhaps it’s better to say that the elliptic curve is the projective closure of this zero locus in

P2—the closure will always contain the lone additional point [0 : 1 : 0]. Or perhaps a homogeneous

equation would be more honest. But in what follows we’ll typically work with this affine version.
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common point of intersection of all vertical lines. If the characteristic of k is not 2,

then completing the square on the left side of the equation converts it into the form

y2 = x3 + b2x
2 + b4x+ b6,

and if the characteristic is not 3 then depressing the cubic on the right side gives us

y2 = x3 + c4x+ c6.

See [51, §III.1] for more details on this process. This will be referred to as “short

Weierstrass form.” We’ll endeavor to avoid characteristics 2 and 3 whenever possible

and will try to present curves in short Weierstrass form.

Conversely, a choice of two elements A, B ∈ k will create an elliptic curve over k

with equation y2 = x3+Ax+B precisely when the cubic equation f(x) = x3+Ax+B

has simple roots. This is controlled by the discriminant −4A3 − 27B2. This

quantity will be called ∆(E), though be forewarned that it is a number attached

to the equation we’ve chosen for E—it’s not intrinsic to the curve itself. See §1.2.2

regarding changes of coordinates for a fuller treatment.

For any K ⊇ k, the points of E with coordinates in K (henceforth denoted

E(K)) form an abelian group. The group law is most succinctly stated as follows:

three points in E(K) sum to zero if and only if they are collinear, and the point

at infinity is the neutral element.4 If E is in short Weierstrass form then it’s easy

to see that a rational point (x0, y0) ∈ E(K) will come with a “mate” (x0,−y0). As

these two points are connected by the vertical line x = x0, the point at infinity is

4Technically any rational point can serve as the neutral element, but we’ll stick to it being the

point at infinity, as it is a natural choice when the curve is presented in Weierstrass form.
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collinear with these two points. It follows from the description of the group law that

(x, y) and (x,−y) are negatives of each other. This explains the placement of the

point P +Q in the schematic below.

•
•

•

◦

P

Q

P+Q

The structure of the points on elliptic curve over a number field is explained

by the following fundamental theorem.

Theorem 1.2.1 (Mordell-Weil). Let E be an elliptic curve defined over a number

field k. The group of points E(k) is finitely generated.

1.2.1 Torsion

The Mordell-Weil theorem tells us that there is a decomposition of the form

E(k) = Zr ⊕ T

for a nonnegative integer r (the “rank”) and a finite abelian group T (the “torsion”).

While the rank is mysterious, the torsion group is relatively well-understood. For

instance, the Lutz-Nagell theorem gives an succinct algorithm for calculating the

torsion points of an elliptic curve over Q:

11



Theorem 1.2.1.1 (Lutz-Nagell). Suppose E/Q is an elliptic curve in short Weier-

strass form, y2 = x3 + ax + b, with a, b ∈ Z. Torsion points defined over Q have

integer coordinates. If (x, y) is a torsion point defined over Q, then y = 0 or

y2 | 4a3 + 27b2.

Points with y = 0 are 2-torsion, since the discussion above tells us that those

points are equal to their negatives. Assuming we can factor the quantity 4a2 + 27b2,

the other torsion points will be laid bare among the factors.

Mazur showed that there’s a finite list of options for the torsion group over Q.

Theorem 1.2.1.2 (Mazur). Let E/Q be an elliptic curve. The torsion subgroup of

E(Q) is on the following list of sixteen groups:
Z/n for n = 1, 2, . . . , 10, 12, or

Z/2× Z/n for n = 2, 4, 6, 8.

Similar theorems are true over number fields of a fixed degree: Kenku and Mo-

mose [34] give the full characterization of possible torsion structures over quadratic

fields, and various progress has been made on the cubic case [28] [44].

The n-torsion of an elliptic curve is endowed with a nondegenerate, Galois-

invariant, alternating pairing called the Weil pairing. It is a map E[n]×E[n]→ µn.

The knowledge that the Weil pairing exists is powerful: one basic consequence of

its existence is that a field containing all of E[n] must contain µn as well. Formulas

for calculating it are given in [51, III §8].
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1.2.2 Changes of coordinates, invariants

An isomorphism of elliptic curves f : E1 → E2 is a regular (polynomial)

function from one curve to another with a rational inverse. In the situation where

both E1 and E2 are presented in Weierstrass form, such a map must look like

x 7→ u2x+ r, y 7→ u3y + u2sx+ t,

with u 6= 0, since we would prefer to fix the common point at infinity. Once we are

in short Weierstrass form, linear shifts to either x or y will regenerate some of the

missing terms like x2 or xy. As such we become limited to the centered equations

with r = s = t = 0; you can only scale x and then scale y by an appropriate amount

to keep the cubic polynomial monic.

A change of variables of the form x 7→ u2x, y 7→ u3y will affect the discriminant

by the twelfth power of u. This further emphasizes the fact that the discriminant is

only a statistic for the particular equation we have and does not necessarily record

truths about the underlying geometric object. The quantity that is shared by all

members of an isomorphism class is the j-invariant, defined by

j =
c3

4

∆
.

If E came to us in short Weierstrass form y2 = x3 +Ax+B, then c4 is a fancy way

to say A; the j-invariant in this case is

j(E) = 1728
4A3

4A3 + 27B2
.

In general c4 is a combination of a1, . . . , a6 generated from the process described

earlier that takes long Weierstrass equations to short ones.
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1.2.3 Reduction mod p

If we are given an equation of the form y2 = f(x) defining an elliptic curve E

over Q, provided the polynomial f(x) does not have repeated roots modulo p the

same equation will define an elliptic curve modulo p. This is the reduction of E

mod p. The condition on repeated roots is asking for p not to divide the discriminant

of f . In this case we say E has good reduction mod p.5

Note that if p12 divides the discriminant of f(x) it is possible that a change

of variables could remove p from the discriminant. (See §3.2 where we investigate

something similar.) We call an equation for E minimal at p if no change of variables

can reduce the power of p in its discriminant any further. An equation is globally

minimal if it is simultaneously minimal for all primes. A global minimal equation

for E is only guaranteed to exist when the class number of the field of definition is

one; see [51, VIII, Prop. 8.2] for a precise statement. Note that the minimal equation

need not be in short form. The behavior of an equation minimal at p is the “true”

(geometric) behavior of the curve E at p.

When the reduction is not good the curve will have a singularity modulo p.

Since the degree of f is so small there are only two options for what the singularity

could be: a node or a cusp. The reduction is called multiplicative if it has a node

modulo p and additive if it has a node. Heuristically a node looks like y2 = x3+Ax2

5Things are a little more complicated modulo 2 and 3 since not every elliptic curve admits an

equation in short Weierstrass form modulo those primes. This is another reason why we’re doing

our best to avoid p = 2 and p = 3.
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and a cusp looks like y2 = x3. Specific conditions for the reduction type are given

by [51, VII, Prop. 5.1]:

Proposition 1.2.3.1. Let E/K be an elliptic curve with a long Weierstrass equation

that is minimal at p. Let ∆ be the discriminant of this equation and c4 the constant

constructed above.

1. E has good reduction at p if p - ∆.

2. E has multiplicative reduction at p if p | ∆ and p - c4.

3. E has additive reduction at p if p | ∆ and p | c4 (in this case p necessarily

divides c6 as well).

The reduction types are often packaged into an invariant called the conductor

of E, written NE. When E is defined over Q, the conductor is a product over all

primes

NE =
∏
p

pap

with exponents ap = 0 if E has good reduction at p, ap = 1 if E has additive

reduction at p, and ap = 2 if E has multiplicative reduction at p.6 (For larger

number fields a more conceptual definition of NE is needed, but we’ll largely stay

over Q in what follows.)

One way in which good reduction is appropriately named is that the global

torsion of E injects into the finite group E(Fp) for any prime of good reduction.

6The exponents on 2 and 3 could be higher if there is additive reduction at those primes.
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1.3 Isogenies

We have groups (elliptic curves) to study. An obvious next step is to discuss

the homomorphisms between those groups.

Definition 1.3.1. Let E1 and E2 be elliptic curves over a field k. An isogeny

between them is a morphism of varieties sending the point at infinity on E1 to the

point at infinity on E2.

It may seem strange not to ask for our maps to be homomorphisms in the

definition, but this turns out to be unnecessary: every isogeny is automatically

a homomorphism. One could instead say define an isogeny as a homomorphism

E1 → E2 with finite kernel. (We need to exclude the zero map.) The degree of an

isogeny is the cardinality of its kernel. Some caution is needed in finite characteristic

because p-isogenies in characteristic p can be “inseparable”, like the Frobenius

endomorphism (x, y) 7→ (xp, yp). This has only the point at infinity in its kernel,

yet is degree p. Since étale covers need to have preimages that consist entirely of

rational points, inseparable isogenies will not rear their heads in what follows.

An isogeny from a curve E to itself is called an endomorphism. A typical

endomorphism is the “multiplication-by-n” map, [n] : E → E, defined by

[n](P ) = P + · · ·+ P︸ ︷︷ ︸
n times

= nP .

The degree of multiplication by n is n2; the kernel is the points of order n, which

we had denoted E[n]. Over the algebraic closure, E[n] ∼= Z/n×Z/n. We’ll sketch a

proof of this in §1.5. Under most circumstances, these are the only endomorphisms
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that an elliptic curve E defined over Q has—as a ring, End(E) ∼= Z. A special subset

of curves over Q have extra endomorphisms, called complex multiplication since

End(E)⊗Q is always an imaginary quadratic field when this occurs.7

If φ : E1 → E2 is an isogeny, there is always an isogeny φ̂ : E2 → E1 going

the other way called the dual isogeny. This stems from the fact that an elliptic

curve is isomorphic to its own Jacobian variety; see [51, III §6]. The composition of

an isogeny with its dual is the endomorphism [deg φ] : E1 → E1, where deg φ is the

degree of the map as defined above. Consequently we can impose an equivalence

condition on elliptic curves by saying E1 ∼ E2 if there is an isogeny between them.

The conductor is an isogeny invariant: isogenous primes share the same reduction

type at every prime [51, §16].

Let E1 : y2 = f1(x) and E2 : y2 = f2(x). In more down-to-earth terms an

isogeny will be a pair of rational maps X(x, y), Y (x, y) which have the property

that if (x, y) is a point satisfying y2 = f1(x), then (X, Y ) satisfies the equation

Y 2 = f2(X). For instance, an isogeny of degree two between the curves y2 = x3 +4x

and y2 = x2 − 16x is given by the rational maps

(x, y) 7→
(
x2 + 4

x
,
y(x2 − 4)

x2

)
.

An isogeny is k-rational, and the two curves are called isogenous over k, if the

equations defining the isogeny have coefficients in k. The isogeny is defined over

the same field as its kernel, but beware: the field of definition of the kernel may be

7Modulo p there is a possibility that End(E) could be an order in a quaternion algebra! These

are called supersingular curves. If E is defined over Q, the set of primes at which the reduction

modulo p is supersingular is infinite. This is a result of Elkies [18].
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different from the field of definition of the points in the kernel. An isogeny is defined

over the same field as its dual.

If E/Q is an elliptic curve, there are limits to how many isogenies E can have

that are defined over Q. A large research program culminated in a characterization

of which degrees are possible. The precise statements here come from Chou [10].

Theorem 1.3.2 (Kenku, Mazur, Ogg, · · · ). Let E/Q be an elliptic curve and φ :

E → E ′ a cyclic isogeny defined over Q. Then deg φ ≤ 19 or

deg φ ∈ {21, 25, 27, 37, 43, 67, 163}.

In fact, if you have an isogeny, that “crowds out” others.

Theorem 1.3.3 (Kenku [33]). Up to isomorphism over Q, at most eight other

curves are isogenous to a given curve.

There are specific rules about how many isogenies are possible if one is known;

for example, if a curve possesses a Q-rational 7-isogeny, it cannot possess any other

isogenies except possibly one 2-isogeny or one 3-isogeny. The full set of stipulations

are in Kenku’s paper.

For elliptic curves there is a pleasing dictionary between finite subgroups of E

and isogenies out of E: every finite subgroup H determines an isogeny, the “mod

out by H” isogeny, to an elliptic curve whose points are abstractly isomorphic to

E/H. See [51, III Prop. 4.12]. We’ll discuss the this isogeny in detail in the next

section.
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1.3.1 Vélu’s formulas

These formulas give in full detail the equations for the isogeny between two

elliptic curves when the kernel is specified. As mentioned above, there is a dictionary

between isogenies out of E and finite subgroups H ⊂ E(K) which could serve as the

kernel. We’re only going to use the situation where H is cyclic, which will simplify

matters somewhat. These formulas are, as the name implies, due to Vélu [55]; the

treatment here is adapted from Washington’s book [56, §12.3].

Formulas 1.3.1.1. Let E be an elliptic curve defined over a field K of characteristic

zero with a short Weierstrass equation

y2 = x3 + a4x+ a6

for constants a4, a6 ∈ K. Choose C ⊂ E(K) a finite cyclic subgroup generated by a

point P of order n. Let α be the isogeny out of E whose kernel is C and let E2 be

the codomain of α.

For a point Q = (xQ, yQ) 6=∞ in C, define the quantities

gxQ = 3x2
Q + a4

gyQ = −2yQ

vQ =


gxQ if 2Q =∞

2gxQ if 2Q 6=∞

uQ = (gyQ)2.
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Let S be the set
{
P, 2P, 3P, . . . ,

⌊
n
2

⌋
P
}

. Set

v =
∑
Q∈S

vQ, w =
∑
Q∈S

(uQ + xQvQ) .

The isogenous curve E2 has equation

Y 2 = X3 + (a4 − 5v)X + (a6 − 7w) ,

and the isogeny E → E2 is given by

X = x+
∑
Q∈S

(
vQ

x− xQ
+

uQ
(x− xQ)2

)

Y = y −
∑
Q∈S

(
uQ

2y

(x− xQ)3
+ vQ

y − yQ
(x− xQ)2

−
gxQg

y
Q

(x− xQ)2

)
.

These equations work in positive characteristic as well, though the isogeny α

is only unique if we ask it for it to be separable. They can also be adapted to deal

with the case where the kernel is not cyclic.

Idea of proof. Showing that the formulas work amount to a calculation in the formal

group of the elliptic curve. Develop x and y as Laurent series in the uniformizer

t = x
y

at infinity. One then checks that the equations given for X and Y , as power

series in t, satisfy the Weierstrass equation suggested for E2. It follows that the

assignment x 7→ X, y 7→ Y determines a function from E to E2. The fact that the

denominators of X and Y are zero at the points of C implies that the points of C

on E map to infinity on E2, i.e., they are in the kernel of the isogeny.
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1.4 The Tate module and the Galois representation

Let p be a prime and E an elliptic curve defined over a field k. Repeated

multiplication by p creates a projective system of groups

· · · → E[pn]→ E[pn−1]→ · · · → E[p2]→ E[p]→ 0.

The limit lim←−
n→∞

E[pn] of this sequence is called the p-adic Tate module, denoted

TpE. Since E[pn] ∼= Z/pn × Z/pn, the Tate module is abstractly isomorphic to

Zp × Zp, with Zp the ring of p-adic integers.

There is an interesting Galois action on the Tate module stemming from the

action of the absolute Galois group on the p-power torsion points. Form the tensor

product Vp = TpE ⊗ Qp; this is a two-dimensional vector space which carries that

action of Galois, extended linearly. Thus we have a representation ρp : Gal(k / k)→

GL2(Ql) called the p-adic Galois representation. When k is a finite field or a

number field, this representation is an isogeny invariant by the proven cases of the

Tate conjecture [51, III.7.7].

The Galois representation can be “built up” projectively much as the Tate

module was. The action of Galois on the pn-torsion points defines a map

ρp,n : Gal(k / k)→ GL2(Z/pn).

Explicitly, suppose E[pn] = 〈P,Q〉. An element σ ∈ Gal(k / k) must move P and Q

to other pn-torsion points, since multiplication by pn is an isogeny from E to itself

and therefore the equation “[pn](P ) = 0” is a collection of rational expressions that

the coefficients of P satisfy with k-rational coefficients. (In fact, the coefficients
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of [pn] are in Z.) As P and Q generate the pn-torsion, σ(P ) = aP + cQ and

σ(Q) = bP + dQ for some values a, b, c, d determined modulo pn. The effect

that σ has on pn-torsion is the same as the effect the matrix [ a bc d ] has on the two-

dimensional Z/pn-module E[n]. We therefore define ρp,n(σ) = [ a bc d ]. Assuming we

have chosen compatible bases for E[pn] for all n, the Galois representation ρp(σ) is

the inverse limit of these matrices in GL2(Qp).

1.5 Elliptic curves over C

When k = C, there is another way to describe elliptic curves: as the quo-

tient of C by a lattice Λ ⊂ C. Here a lattice is the Z-span of two complex

numbers {ω1, ω2} that are linearly independent over R; this makes the set Λ =

{n1ω1 + n2ω2 : n1, n2 ∈ Z} a discrete subgroup of C. The quotient C/Λ is topologi-

cally a torus; if

F = {r1ω1 + r2ω2 : r1, r2 ∈ R, 0 ≤ ri < 1}

is a fundamental domain for the quotient, F is a parallelogram with opposite sides

identified. Topologically, F is a surface of genus one which is a group under addition

of complex numbers. Every elliptic curve over C is isomorphic to a quotient of C

by some lattice—we’ll worry about how to find a lattice representing a given elliptic

curve in §3. Given a lattice Λ, one can create an equation for the elliptic curve

C/Λ using differential equations satisfied by the Weierstrass ℘-function whose set

of poles is Λ. See Silverman [51, § VI.3] for more information.

Two lattices determine isomorphic elliptic curves if you can scale one to create

22



the other. I’ll phrase this in a slightly different way with an eye to genus two.

Definition 1.5.1. Two lattices Λ1, Λ2 ⊂ C are called homothetic if there is a linear

transformation f : C → C whereby f(Λ1) = Λ2. The two lattices are isogenous if

there is a linear transformation f : C→ C whereby f(Λ1) ⊂ Λ2. The degree of an

isogeny is the index [Λ2 : f(Λ1)].

Since the only linear transformations from C to C are scalar multiplications,

this is the same as asking that there be a nonzero complex number α whereby αΛ1 ⊆

Λ2. Homothety and isogeny of lattices correspond to isomorphism and isogeny of

elliptic curves—if two lattices are isogenous then there will be a homomorphism

C/Λ1 → C/Λ2. A homothety is an isogeny of degree one.

The j-invariant of the elliptic curve C/Λ can be calculated from any represen-

tative in the homothety class of Λ. Define the quantities

g2(Λ) = 60
∑
ω∈Λ
ω 6=0

ω−4 and g3(Λ) = 140
∑
ω∈Λ
ω 6=0

ω−6.

Then

j(Λ) = 1728
g2(Λ)3

g2(Λ)3 − 27g3(Λ)2
.

By using α = ω1

ω2
or its reciprocal, every lattice is homothetic to one spanned

by {1, τ} for a complex number τ whose imaginary part is positive. The entire

upper half-plane is much larger than the space of isomorphism classes of elliptic

curves, since lattices have multiple bases. The lattice spanned by {1, τ} is the same

as the lattice spanned by {aτ + b, cτ + d} whenever a, b, c, d are integers satisfy-

ing det [ a bc d ] = 1. Again applying a homothety, this shows that the elliptic curve
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C/ 〈1, τ〉 is isomorphic to the elliptic curve C/
〈
1, aτ+b

cτ+d

〉
. If we define an action of

SL(2,Z) on the upper half-plane by a b

c d

 · τ =
aτ + b

cτ + d
,

the orbit space is exactly the set of isomorphism classes of elliptic curves over C.

This construction gives a pithy explanation for the shape of the n-torsion

subgroup of an elliptic curve defined over a field of characteristic zero. The points in

a fundamental parallelogram for C/ 〈ω1, ω2〉 that are moved into Λ by multiplication

by n are exactly the points of the form
{
aω1

n
+ bω2

n

}
. As a group, this set is abstractly

isomorphic to Z/n⊕ Z/n. If E is defined over a number field, its field of definition

can be embedded into C, implying that E[n] is isomorphic to Z/n ⊕ Z/n as well.

Note that this is only true over Q; the points of E[n] need not be defined over the

field of definition of E. (This is good for us—we want E[n] to have an interesting

Galois action!)

For later reference, we will need the set of lattices p-isogenous to a given

lattice Λ. If Λ′ is such an isogenous lattice with isogeny f , Λ/f(Λ′) is a group of

order p. This implies f(Λ′) lives between Λ and pΛ. There are only p + 1 such

lattices, corresponding to the the p + 1 subgroups of Λ/pΛ ∼= Z/p ⊕ Z/p of order

p. Suppose that Λ1 and Λ2 are both p-isogenous to Λ via multiplication by α1 and

α2 respecively, and further suppose α1Λ1 and α2Λ2 land on the same sublattice of

Λ of index p. Then α1

α2
Λ1 = Λ2, so Λ1 and Λ2 are homothetic. So if we can present

one isogenous lattice corresponding to each sublattice of Λ of index p, we’ll have our
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set of representatives. As mentioned these are only determined up to homothety,

but that means there will be a representative of each homothety class whereby the

isogeny is multiplication by p. This representative will be a superlattice of Λ which

possesses Λ as a sublattice of index p. Here are those representatives, together with

which subgroup they correspond to in Λ/pΛ.

Proposition 1.5.2. Let Λ = 〈ω1, ω2〉. The following table lists representatives for

the p + 1 homothety classes of lattices that are p-isogenous to Λ. Let Λ/pΛ ∼=

Z/pZ⊕ Z/pZ via the isomorphism (ω1, 0) + pΛ 7→ (1, 0) and (0, ω2) + pΛ 7→ (0, 1).

basis for superlattice generator for subgroup of Λ/pΛ〈
ω1+jω2

p
, ω2

〉
p−1
j=0 〈(1, j)〉

〈
ω2

5
,−ω1

〉
〈(0, 1)〉

For information on how this works when p is not prime, see Cox [15, § 11.C].

1.6 Étale covers of abelian varieties

We return in this section to the question at hand: computing Ker(E/Q) for

E an elliptic curve. We’ve seen that all morphisms between elliptic curves are

necessarily group homomorphisms (isogenies). Let’s interpret this in terms of the

fundamental group. We know that Ker(E/Q) should classify maps φ : E ′ → E for

which the inverse image of a rational point on E is a collection of rational points on

E ′. The Riemann-Hurwitz formula [23, IV §2 2.4] together with the fact that φ is

unramified implies that the genus of E ′ must also be one. Now the fact that both

curves have rational points means that we can apply translations to arrange it so
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that the rational points in question on both curves are their origins. By the theory

above, φ is a homomorphism, and the inverse image of the identity element will be

the kernel of this homomorphism. Thus we have shown the following.

Proposition 1.6.1. Let E/Q be an elliptic curve. The group Ker(E/Q) classifies

elliptic curves E ′ which possess an isogeny into E for which the kernel consists

entirely of rational points.

Note that the ground field could be any number field without changing the

argument. Similar logic applies to abelian varieties in any dimension, since the

only covers of abelian varieties are other abelian varieties of the same dimension via

isogenies [43, §18].

When A is an abelian variety over a number field K, Katz and Lang point

out the following upper bound for the size of Ker(A/K) on page 301 of [32]. The

Weil pairings for abelian varieties are defined as maps en : A[n] × A∨[n] → µn,

where A∨ is the dual variety to A. (Non-cognoscenti can think A = A∨ = E, since

elliptic curves are self-dual.) Now taking limits and colimits as appropriate leads to

a Galois-equivariant pairing

T (A(K))× TorsA∨(K)→ Q/Z(1).

Here T ( · ) is the product of all the Tate modules: the inverse limit along multiplica-

tions by n, for all n. Twisting by the inverse of the cyclotomic character will scrub

out the action of Galois on the right.

T (A(K))× TorsA∨(K)(−1)→ Q/Z.
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This duality, upon applying Galois invariants and coinvariants, becomes a perfect

pairing of the shape

T (A(K))Gal(K /K) × TorsA∨(K)(−1)Gal(K /K) → Q/Z.

The former object is isomorphic to Ker(A/K) under the reductions from the proof of

the main theorem. It follows that this last pairing is one between two finite groups,

and that the size of Ker(A/K) is that of the group TorsA∨(K)χ of rational points

of A∨ which are transformed under Galois by the cyclotomic character.

In the case A = A∨ we are asking to find torsion points P ∈ Tors(A(K))

for which the Galois action on P matches that of the cyclotomic character (hence

the action of Galois on the roots of unity). Such points are necessarily defined

over an abelian extension of K; 〈P 〉 ⊂ A is a sub-Galois module isomorphic to a

group of roots of unity. A group admitting such an action is called µ-type. Thus

we are hunting for the maximial µ-type subgroup of A, in the sense that all of its

cyclic subgroups should be µ-type. This group can be expressed as a limit, as on

page 302 of [32]; namely, lim←−N HomK-gpsch(µN , A). Again, is the Pontrjagin dual to

Ker(A/K).

It follows from the above discussion that Tors(A(K))χ ⊆ Tors(A(K(µ))),

where K(µ) is the field obtained by adjoining all roots of unity to K. This lat-

ter group was proven to be finite for any abelian variety A over a number field by

Ribet in the appendix to Katz-Lang [48]. In the case K = Q, note Q(µ) = Qab. In

the case A is an elliptic curve, the classification of possible torsion structures over

Qab was recently completed by Chou [10]:
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Theorem 1.6.2 (Chou). If E/Q is an elliptic curve, Tors(E(Qab)) is one of the

following groups:

Z/N N ∈ {1, 3, 5, . . . , 19, 21, 25, 27, 37, 43, 67, 163}

Z/2× Z/2N N ∈ {1, 2, . . . , 9}

Z/3× Z/3N N ∈ {1, 3}

Z/4× Z/4N N ∈ {1, 2, 3, 4}

Z/5× Z/5

Z/6× Z/6

Z/8× Z/8

We’ll discuss the question of whether equality holds in the containment

Ker(E/Q) ⊆ Tors(E(Qab)) in the next chapter.
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Chapter 2: g = 1, first way: Division polynomials and

Vélu’s formulas

In this chapter we’ll characterize under what circumstances an elliptic curve

E/K possesses an étale cover of degree p. We’ll largely work under the assumption

K = Q, but when facts hold in more generality they will be pointed out.

2.1 Division polynomials

In the first chapter we considered the important multiply-by-n endomorphisms

[n] : E → E. The kernel of this map consisted of torsion points on E whose order

divided n. As these isogenies consist of rational functions with coefficients in the

ground field, their kernels will be defined over the ground field. This means the

coordinates of these torsion points must satisfy a polynomial with coefficients in the

ground field—we’ll give a name to this polynomial.

Definition 2.1.1. The n-th division polynomial for E, written ψn,E(t) = ψn(t),

is the polynomial whose roots are the x-coordinates of the n-torsion points on E.1

For example, if E has a short Weierstrass equation y2 = x3 + Ax+B we saw

1That is, the unique x-coordinates. If P = (x, y) ∈ E[n] and P is not of order 2, then

−P = (x,−y) ∈ E[n] as well. Nonetheless (t− x) divides ψn to the first power.
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the 2-torsion points are the points of the form (x, 0), so ψ2(t) = f(t). The division

polynomials quickly get more complicated. ψ3(t) = 3t4 + 6At2 + 12Bt − A2 and

so on. The degree of ψm is m2−1
2

. There is a recursive procedure that calculates

the division polynomials in terms of previous ones which is implemented in any

computer algebra system that has routines for elliptic curves.

Note that the minimal field of definition for the m-torsion subgroup of E is

not exactly Km = K[x]/ψm(x). The issue is that we didn’t try to include the y-

coordinates in our definition of division polynomial. The minimal field of definition

turns out to be either Km or a quadratic extension of it.

In a similar manner we can define the kernel polynomial for any isogeny

leaving E: its roots are the x-coordinates of the points in the kernel of the isogeny.

If the isogeny φ : E → E ′ has degree m, then all the points in the kernel must

be contained in E[m]. Following the logic as above, the points in the kernel of the

isogeny defined over the ground field must have x-coordinates which are the roots of

a polynomial with coefficients in the ground field, and this polynomial must divide

ψm(x). So the division polynomials indirectly know about isogenies leaving E.

If deg φ is odd, the degree of the kernel polynomial is deg φ−1
2

, as the points in

the kernel of φ will pair up into packets of the form {P,−P}. Each packet contains

two points with the same x-coordinate. If deg φ is even and the kernel of φ contains

s points of order two, the same logic implies the kernel polynomial will have degree

deg φ−s
2

.
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2.2 Detecting µ-type subgroups

Let E/Q be an elliptic curve. Recall some of the concepts from §1: For

n > 1, the N -torsion subgroup of E is the group E[n] = E(Q)[n]. It is abstractly

isomorphic to Z/n×Z/n. As such, the action of Galois on this group determines a

homomorphism

ρn : Gal(Q /Q)→ Aut(Z/n× Z/n)

which we’ll call the mod-n Galois representation. Almost always we’ll pick a basis

for E[n], as doing so allows us to identify Aut(Z/n × Z/n) with GL2(Z/n). We’ll

often abuse notation even further, by conflating an element σ ∈ Gal(Q /Q) with

the matrix obtained in this process.

It’s a standard consequence of properties of the Weil pairing en(·, ·) that, should

a field K satisfy E[n] ⊂ K, necessarily as well µn ⊂ K. Galois will also act on µn,

and it’s natural to ask whether we can interpret the action on the roots of unity

in terms of the representation of the previous paragraph. We’ll refer to the answer

frequently, so I’ll record it here:

Basic Fact 2.2.1. Suppose {P,Q} is a spanning set for E[n]. If σ ∈ Gal(Q /Q),

identify ρn(σ) with a matrix in GL2(Z/n). Then σ acts on µn by raising to the

det ρn(σ) power.

Proof. Suppose ρn(σ) corresponds to the matrix [ a bc d ], i.e., σ(P ) = aP + bQ and

σ(Q) = cP + dQ. Since P and Q generate E[n], applying the Weil pairing to them

will produce a primitive n-th root of unity. Denote this by ζ = en(P,Q). Then act
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on both sides by σ. All the conjugates of ζ are powers of ζ, so on the left we get a

mystery power: σ(ζ) = ζw. On the right, we apply the fact that the Weil pairing is

Galois-equivariant, alternating, and bilinear:

σ(ζ) = ζw = σ (en(P,Q))

= en(σ(P ), σ(Q))

= en(aP + bQ, cPQ)

= en(aP, cP ) en(aP, dQ) en(bQ, cP ) en(bQ, dQ)

= en(P,Q)ad + den(Q,P )bc

= en(P,Q)ad−bc = ζad−bc.

Although we phrased this result in terms of a specific generating set for E[n],

this wasn’t essential: any other generating set will pair to a different primitive n-th

root of unity, and σ must act the same way on each primitive n-th root of unity. If

χn denotes the n-th cyclotomic character, then our Basic Fact says that det ρn = χn.

We are searching for subgroups of E[n] that are isomorphic to µn as Galois

modules. Recall that the maximal µ-type subgroup represents (the dual of) the

group Ker(E/Q) of interest. We’ll say that a point P ∈ E[n] “transforms according

to the (n-th) cyclotomic character” if σ(P ) = χn(σ)P for all σ ∈ Gal(Q /Q). This

is saying in symbols that the cyclic subgroup generated by P is isomorphic to µN ,

as the map P 7→ ζ for any primitive n-th root of unity ζ will be a Galois-equivariant

bijection. Such a point P has φ(n) Galois conjugates and the Galois group acts on it
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by multiplication by scalars. Thus P will be defined over an abelian extension of Q of

degree φ(n). This is not a major surprise, as we saw Tors(E(Q))χn ⊆ Tors(E(Qab)).

If P ∈ E[n] is a point that transforms according to the cyclotomic character

and we choose P as one of our elements for a generating set for E[n], then the

matrices appearing in the image of the Galois representation ρn will all have the

form  χn(σ) b

0 d

 .

Our basic fact says that the determinant of this matrix should be χn(σ), so evidently

d = 1. The following construction uses this logic to give us a source of points that

transform according to the cyclotomic character.

Proposition 2.2.2. Let E/Q be an elliptic curve that possesses a Q-rational point

P of order N . If φ : E → E/ 〈P 〉 is the isogeny emanating from E whose kernel is

the subgroup generated by P , then the quotient curve E/ 〈P 〉 possesses a point that

transforms under the cyclotomic character.

Proof. Let Q be an independent point of order n on E, so that {P,Q} forms a

generating set for E[n]. Since P is rational, Galois acts on E[n] via matrices of the

form  1 b

0 d

 .

As above, the basic fact tells us that d = χn(σ). Thus an element σ ∈ Gal(Q /Q)

acts on Q by the formula σ(Q) = bP + χn(σ)Q. If we apply the homomorphism φ,

P is killed. Since the kernel of φ consists of rational points, Velú’s formulas imply
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that φ has rational coefficients. Therefore it commutes with the action of Galois,

and we see that

σ(φ(Q)) = φ(σ(Q)) = φ(bP + χn(σ)Q) = φ
(
χn(σ)(Q)

)
= χn(σ)φ(Q),

so φ(Q) transforms according to the cyclotomic character.

Notice the similarities of the two centered matrices above. This construction

shows that the isogeny φ is reversing the roles of rational subgroups (Z/n) and µ-

type subgroups. Despite being phrased in terms of elliptic curves defined over Q,

the result holds for curves over arbitrary fields, as Velú’s formulas aren’t limited

to isogenies over Q. This construction admits a converse; these two propositions

together fully characterize when an elliptic curve possesses a subgroup isomorphic

to µn.

Proposition 2.2.3. Let E/Q be an elliptic curve possessing a point Q which trans-

forms according to the n-th cyclotomic character. There exists an elliptic curve E ′

with a rational point P ∈ E ′[n](Q) which is isogenous to E via the quotient-by-P

map.

Proof. Let ψ be the isogeny emanating from E whose kernel is the subgroup gener-

ated by Q. By our assumption on Q, we have that R ∈ kerψ implies σ(R) ∈ kerψ

for all points R and all automorphisms σ ∈ Gal(Q /Q). This means that the sub-

group kerψ is defined over Q, and consequently the coefficients of ψ are defined over

Q. The codomain of ψ will then also be defined over Q. This will be our E ′.

Now let R represent an independent point of order n on E. Then as we’ve

seen the Galois representation ρn has an image consisting of matrices of the form
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[
χ b
0 1

]
, and so by the logic of the previous proof ψ(R) will be a point of order n with

rational coordinates. Now consider the isogeny dual to ψ, which we’ll call ψ̂ for the

moment. We know ψ̂ ◦ ψ = [n], so ψ̂(ψ(R)) = nR = 0 as R was a point of order

n. However R is not in the kernel of ψ, since we constructed that isogeny to have

kernel precisely 〈Q〉. Therefore ψ(R) is in the kernel of ψ̂. By considering degrees,

we see that degψ = deg ψ̂ = n, so the kernel of ψ̂ can only have n points in it and

must be exactly 〈ψ(R)〉. Then ψ̂ is the quotient-by-ψ(R) isogeny, so by taking P to

be ψ(R) we achieve our goal.

Our construction shows that the µ-type subgroups of an elliptic curve are

related to rational torsion on isogenous ones. In light of Mazur’s classification of

the possibilities for Tors(E(Q)), it follows that # Ker(E/Q) can only be divisible

by the primes 2, 3, 5, and 7. We also learn a basic fact that, while # Ker(E/Q) is

finite for any specific E, it can grow arbitrarily large:

Proposition 2.2.4. Let p be a prime number. There exists a number field K and

an elliptic curve E/K with the property that p | Ker(E/K).

Proof. We need only to find a K-rational point on some elliptic curve, since the

construction above will convert that into a µp on a quotient. To attain such a

point, we could take an elliptic curve over Q and base change to a field K where

the p-rank of Tors(E(K)) is equal to one. The “other” subgroup of order p inside

E(K) will then be µ-type.2 Now the Theorems 3.6 and 5.7 in González-Jiménez

2Note that if we base change to Q(E[p]), µp will live in our base field, and there will be no

difference between µ-type and rational. This is perhaps more convenient—why worry about a
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and Najman in [22] says that there exists an elliptic curve E/Q whose mod-p Galois

representation has a small enough image that that a point P ∈ E[p] is defined over

a number field smaller than Q(E[p]). This is the example we needed.

In fact, combing through the results of [22] slightly more carefully, a Ker(E/K)

divisible by p is attainable by a base-change from an elliptic curve defined over Q

to a number field of degree at most p2−1
3

. If p ≡ 1 (mod 3), we can do dramatically

better and achieve this over a field of degree 2(p− 1).

Non-example 2.2.5. Let E/Q be an elliptic curve that has no rational 5-torsion,

but attains a point P of order 5 over Q(
√

5). Such a point must look like (a, b
√

5)

with a and b rational. Since
√

5 = ζ5 − ζ2
5 − ζ3

5 + ζ4
5 , elements of the Galois group

with cyclotomic character 1 and 4 will fix
√

5 while elements with character 2 and 3

will negate it. Thus the action of Galois on 〈P 〉 is in fact determined by the square

of the cyclotomic character: σ(P ) = (χ(σ))2P . Owing to our basic fact and the

knowledge that χ5 = χ, it follows that the Galois representation of E takes the form χ2 ∗

0 χ3

 .

In this case when we pass to the quotient E/ 〈P 〉, we get a point that transforms

according to the inverse of the cyclotomic character. Thus this group is not µ-

type: it is off by a twist. Nonetheless, P is defined over an abelian number field.

This shows that the containment Tors(E(Q))χ ⊆ Tors(E(Qab)) can be strict. The

Galois action when you can slaughter it?—but we can do better in terms of minimizing the degree

of the number field needed.
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subgroup 〈P 〉 is, however, defined over Q. So the requirement that E ′ possesses a

rational point cannot be taken out of our construction.

According to Najman [44, Theorem 2c], there is exactly one such elliptic curve:

Cremona’s 50A3, with short Weierstrass model

y2 = x3 − 97875x+ 14208750.

The 5-torsion point in question has coordinates (255, 1080
√

5).

The intuition you should take away from our theory and the above example is

that there is an inverse relationship between the degree of definition of an abelian

point and its membership in Ker(E/K). The most extreme case is when P is

rational, that is, defined over an abelian extension of K of smallest possible degree

([K(P ) : K] = 1!). Then it is an étale cover of the quotient by P . On the other

extreme, if P is defined over an abelian extension of K of largest possible degree,

it possesses an étale cover. In the middle are curves like 2.2.5, which possess points

defined over an abelian extension of K of “intermediate” degree. Then the quotient

by such a point is also defined over an intermediate extension.

Each µ-type subgroup of E can be detected as the kernel of a rational isogeny

emanating from E. This means if we seek to calculate Ker(E/Q) we should start

by looking for rational isogenies. Suppose E possesses a rational isogeny whose

codomain E ′ possesses a rational point of order p. If we reduce the setup modulo a

common prime ` of good reduction, then #E ′(F`) will be a multiple of p. Since the

number of points modulo ` is an isogeny invariant, #E(F`) will be a multiple of p

as well. Thus, for all common primes of good reduction, p | #E(F`). According to
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Katz, the converse holds as well:

Theorem 2.2.6 (Katz [31]). Let E be an elliptic curve over a number field K, and

let m ≥ 2 be an integer. Suppose that there exists a set of primes of density one, all

of whose members are primes of good reduction for E, and for which the congruence

#E(Fp) ≡ 0 (mod m) holds. Then there exists an elliptic curve E ′, defined over K

and K-isogenous to E, with the property that # Tors(E ′(K)) ≡ 0 (mod m).

2.3 Algorithm

Katz’s result implies that we can try to detect rational isogenies by checking

for common factors of #E(F`) as ` varies. This observation motivates the first step

of the following algorithm.

Algorithm 2.3.1. Given an elliptic curve E/Q, this algorithm determines all el-

liptic curves E ′/Q possessing an isogeny E ′ → E whose kernel consists entirely of

points defined over Q.

1. Calculate #E(F`) for the smallest fifty primes ` for which E has good reduc-

tion. Let d be the greatest common divisor of these cardinalities.

2. In what follows, assume p is a prime dividing d. For each such prime, calculate

ψp(x), the p-th division polynomial, and factor it.

3. If ψp(x) has no factor of degree p−1
2

, then p does not divide # Ker(E/Q). In

what follows, assume f(x) is a factor of ψp of degree p−1
2

. For each such f ,

do steps 4 and 5.
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4. Calculate the roots of f and let Q be a point of E whose x-coordinate is a root

of f . Using Velu’s formulas, calculate the isogeny emanating from E whose

kernel is 〈Q〉.

5. Find the codomain of φ and check to see if it possesses a rational point of order

p. If it does, remember φ.

6. Output all isogenies remembered in step 5.

Proof of correctness. As mentioned above, if a prime p merits our consideration it

must divide #E(F`) for all primes `. If a prime doesn’t survive the first step, E

won’t have any rational isogeny of degree p, let alone one to a curve that has a

rational point.

If φ is one of our desired isogenies, its kernel consists of points of order p, and

therefore its kernel polynomial divides the p-th division polynomial. Since the kernel

is supposed to be isomorphic to µp, a group with p − 1 nonidentity elements, its

kernel polynomial will have degree p−1
2

. This explains the statement in step 3. Once

we’ve found candidate polynomials f , it remains to check whether they correspond

to isogenies that possess all the correct properties. We do that in steps 4 and 5.

Note step 5 can be accomplished quickly with the Lutz-Nagell theorem.

Some remarks are in order:

1. To calculate all of Ker(E/Q) we should then check whether our p-covers have

further p-covers. This is done by recursively calling the algorithm until nothing

is found. Note that in these second rounds of running the algorithm we have
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alredy decided on the prime p, so we can skip step 1. We are also guaranteed

to find the isogeny dual to the one we discovered at the previous step. Since

ψ ◦ ψ̂ = [degψ] = [p], we should only include that isogeny if the entirety of

E[p] is rational. For curves over Q this is only possible when p = 2.

2. It may happen that E/Q possesses a point of order p; in this case p will

certainly come up as a factor of every #E(F`)! This will also always happen

in a “second round” detailed in the previous remark. In this case, step 1 does

nothing to increase our confidence that E possess an étale cover of degree p.

But the division polynomial will still check for a subgroup with the desired

property—the only quirk here is that the division polynomial will possess many

linear factors, corresponding to the rationally defined p-torsion.

3. If the ground field is not Q then the action of the absolute Galois group on µn

may be smaller than the action of Gal(Q /Q). This necessitates altering the

degrees of the factors we examine in step 3. For example, if we are calculating

Ker(E/Q(
√

5)), then the Galois group acts on µ5 via ±1 only, so the question

of whether 5 | # Ker(E/Q(
√

5)) should be answered by searching for linear

factors of ψ5(t) rather than quadratic ones.

Example 2.3.2. Take K = Q and E the curve y2 = f(x) = x3−16875x−9956250.

This curve has a cardinality which is a multiple of five over every prime p satisfying

10 < p < 1000. Factoring the 5-division polynomial for E reveals a quadratic factor:

ψ5(x) =
(
x2 + 150x− 34875

)
(degree 5) (degree 5) .
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This quadratic polynomial is intriguing. Its discriminant is 24 · 34 · 53, so it splits

over Q(
√

5). In that field its roots are −75± 90
√

5. The quantity f(−75 + 90
√

5) is

not a square, but extracting a further square root of this quantity gives us the field

M = Q
(√
−1822500 + 3645000

√
5

)

over which E attains a 5-torsion point. Asking Sage to apply Velu’s formulas to

quotient by this subgroup produces an isogeny to the curve y2 = x3 − 2446875x +

1776093750 which, lo and behold, is defined over Q. As a sanity check, Sage confirms

that this curve has 5 torsion points over Q. Note also that Gal(M /Q) = Z/4, so

the point we constructed in this process is indeed defined over an abelian number

field.

We can reduce the entire construction modulo a prime of good reduction and

achieve an admissible cover modulo that prime. As such, although the algorithm

as stated calculates Ker(E/Q), in fact it is calculating Ker(E/Z[ 1
N

]), where N is

the product of all the primes of bad reduction. More work will need to be done to

determine the situation at a prime of bad reduction. But in some cases, as in the

next example, we can circumvent this issue.

Example 2.3.3. Let K = Q(
√

29), ε = 5+
√

29
2

its fundamental unit, and E/K the

elliptic curve with equation

y2 + xy + ε2y = x3 − 5ε2x− ε2 − 7ε4.

This curve comes from Kagawa [30]; it has discriminant ε14, and so has good reduc-

tion everywhere over OK . The curve possesses no rational torsion over K. Checking
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the cardinality of the reduction modulo the fifty smallest primes of OK , we discover

all of them are divisible by 3. This prompts us to examine the 3-division polynomial

of E:

ψ3(x) = 3 ·
(
x+

1

3

)
·

(
x3 +

−243− 45
√

29

2
x− 9828− 1825

√
29

)
.

The point with x-coordinate −1
3

is defined over a quadratic extension of K. Sage

calculates that the quotient isogeny that kills this point maps from E to the curve

isomorphic3 to the one with equation

y2 + xy + ε2y = x3.

This curve has K-rational torsion isomorphic to Z/3, and so we deduce Ker(E/K) ∼=

Z/3. In fact, as this curve has good reduction everywhere, we can promote this

statement all the way down to the ring of integers:

Ker(E/OK) ∼= Z/3.

According to Zhao [57], there is actually one example over a smaller field: the

curve

y2 = x3 +
(
−5134860 + 2096280

√
6
)
x+

(
−6324738336 + 2582063568

√
6
)

has Ker(E/Z[
√

6]) = Z/3.

For p = 5, let K = Q(
√

37) and ε = 6 +
√

37 the fundamental unit. The curve

y2 − εy = x3 +
3ε

2
x2 − 1669ε+ 139

2
− 7(5449ε+ 451)

3This curve was known to Tate; it was the first example written down of a curve with good

reduction everywhere.
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has good reduction everywhere and possesses a cover of order five, namely4

y2 − εy = x3 +
3ε+ 1

2
x2 +

11ε+ 1

2
.

4This example is in Kagawa [29], wherein he notes that the covering curve in this case was

known to Shimura. I believe this is the smallest example, but I cannot claim to have confirmed

this. Comalada’s tables [13] limit the possibilities for a smaller example to being over Q(
√
d) for

d = 26, 29, or 33.
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Chapter 3: g = 1, second way: modular polynomials

Herein we present a second plan based on the j-invariant. Suppose, as above,

that we have high confidence (possibly by checking the divisibility of #E(F`) for

many `) that an elliptic curve E ought to possess an étale cover of degree p. Call

the isogenous curve E ′.

3.1 Modular polynomials

When two elliptic curves are related by a cyclic-isogeny, their j-invariants are

related by a polynomial called the modular polynomial. This is a manifestation of

the fact that the field of modular functions for Γ0(m) is generated over C by j(τ)

and j(pτ). See Cox [15, §11.B] for the theory behind the modular polynomial. We’ll

only need the polynomial for p prime, so our definition will be artificially limited.

For p a prime, let C(p) denote he set of p+ 1 matrices consisting of
[

1 a
0 p

]
for

0 ≤ a ≤ p−1, together with the one extra matrix
[
p 0
0 1

]
. These are the matrices that

move a point in the upper half-plane τ to the points corresponding to the lattices

which are p-isogenous to 〈1, τ〉. (See §1.5 for a refresher.)

Definition 3.1.1. Let p be prime and C(p) the set of matrices as above. The p-th
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modular polynomial Φp(x, y) is the element of Z[x, y] satisfying the relationship

Φp

(
x, j(τ)

)
=

∏
σ ∈C(p)

(
x− j(στ)

)
.

From the definition, the modular polynomial knows when two lattices are

isogenous: when 〈1, τ〉 is p-isogenous to 〈1, τ ′〉, then Φp

(
j(τ), j(τ ′)

)
= 0. It is also

clear from the definition that once we have plugged in y = j(E), the resulting

polynomial is monic in x.

The curve E ′ that we seek will have a j-invariant that is a rational root of

the single-variable polynomial Φp(x, j(E)). It’s computationally feasible to produce

this polynomial for, say, p < 300 (see Sutherland [53]). Then we can use the

rational root theorem to search for candidate j-invariants for E ′. It’s possible to

generate an elliptic curve from a j-invariant, so we might expect that this process

will reconstitute a curve isogenous to E.

3.2 Twisting theory of elliptic curves

The elephant in the room is that the j-invariant only determines an elliptic

curve up to isomorphism over Q. Over Q there are many curves with the same

j-invariant and only one sliver of them will be isomorphic over Q to the curve we’re

searching for. The small glimmer of hope we can cling to is that two curves with the

same j-invariant will be quadratic twists of each other, and as such we only need to

decide which twist to take. The next two propositions make this precise and explain

what we should look for.

Definition 3.2.1. Let E be an elliptic curve defined over a field k of characteristic
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zero; suppose E has the Weierstrass model y2 = x3 + a4x + a6. The quadratic

twist of E by d is the elliptic curve with model dy2 = x3 + a4x+ a6.

Equivalently, by multiplying through by d3 and scaling x and y, we can say the

quadratic twist has equation y2 = x3 + d2a4x + d3a6. Recall that isomorphisms of

short Weierstrass equations are enacted by a change of variables of the form x 7→ u2x,

y 7→ u3y; this produces a new cubic polynomial of the form x3 + u4a4x + u6a6. As

such, a quadratic twist is “half” of an isomorphism. Twisting twice by the same d

is the same as performing an isomorphic (i.e., doing nothing). This also means that

we may limit our twisting constant to the classes of k×/(k×)2.

Proposition 3.2.2. Let E ′ and E ′ be two elliptic curves both defined over Q. Sup-

pose j(E) = j(E ′), with j(E) 6= 0, 1728. Then E and E ′ are related by a quadratic

twist.

Proof. Suppose E has the short Weierstrass model y2 = x3 +Ax+B and E ′ has the

model y2 = x3 + Cx + D. Our assumption that the common j-invariant isn’t 0 or

1728 implies A, B, C, and D are all nonzero. Since E and E ′ are isomorphic over

Q, there exists a u ∈ Q× satisfying A = u4C and B = u6D. The quotient B
A

= u2D
C

is in Q, implying u2 ∈ Q. Then B is the quadratic twist of A by u2.

Note that j 6= 0, 1728 corresponds to Aut(E) = ±1, that is, E has “no extra

endomorphisms.”1 We’ll come back to this idea later in genus two.

1A curve with j = 0 defined over Q has the model y2 = x3 +Ax for some A ∈ Z. These curves

can be quartically twisted to the curve y2 = x3 + dAx. Similarly, a curve with j = 1728 defined

over Q has the model y2 = x3 + B for some B ∈ Z. This curve can be sextically twisted to the
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Proposition 3.2.3. Let E : y2 = x3+Ax+B be an elliptic curve with good reduction

at a prime p ≥ 5, and suppose d is a squarefree integer such that p | d. The quadratic

twist of E by d has additive reduction at p. Conversely, if p6 || ∆, then the twist of

E by d has good reduction at p if and only if p divides both A and B.

Recall from Proposition 1.2.3.1 that when E is in short Weierstrass form, if

a prime divides ∆ and the coefficients A and B the reduction is additive at that

prime.

Proof. Write d = pr with (p, r) = 1. Assume that the Weierstrass equation for E

has been chosen to be globally minimal. By this I mean that the discriminant of

E, call it ∆ = 4A3 + 27B2, cannot be made smaller by any change of variables.

The minimal discriminant is only divisible by primes of bad reduction for E. Our

assumption implies p - ∆, meaning p doesn’t divide at least one of A or B. Following

the above, the quadratic twist has Weierstrass equation y2 = x3 + p2r2Ax+ p3r3B.

The discriminant of the twist is p6r6∆ which is divisible exactly by p6. This factor

can’t be removed by an isomorphism (isomorphisms change the discriminant by

a twelfth power), so p is a prime of bad reduction for the twist. Since the twist

becomes isomorphic to E over Q(
√
d), the bad reduction must be potentially good,

implying it’s additive.

For the converse, start with the fruitful case: p | A and p | B. Write A = pkA′

and B = pmB′. The discriminant of the curve is

∆ = 4p3k(A′)3 + 27p2m(B′)2.

curve y2 = x3 + dB.
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The first term has a valuation which is a multiple of 3 while the second term has a

valuation which is a multiple of 2. As such to get p6 out of the sum we must have

p2 | A and p3 | B, with one of these divisibilities being exact. Suppose that p2 || A

(the other option proceeds similarly). The discriminant then factors as

p6
(
4(A′)3 + 27p2(m−3)(B′)2

)
= p6∆′,

with p - ∆′. The twist has equation y2 = x3 + p4A′x + pm+3B′. Performing the

change of variables x′ = p2x, y′ = p3y leads to a model with discriminant ∆′, so the

twist has good reduction at p.

In the upsetting case, p6 || ∆ but p divides neither A nor B. The quadratic

twist of E will have a model with p12 | ∆, but only p2 and p3 dividing its coefficients

a4 and a6. An isomorphism of E with itself will alter these coefficients by a fourth

and sixth power respectively, so this model for the twist is in fact minimal. (You

can’t clear p from A or B, hence you cannot decrease the p-adic valuation of ∆ with

an isomorphism.) The factor of p12 in the discriminant is essential, and the twist

has bad reduction at p.

We should make a few remarks here as this result was unexpectedly delicate.

1. Our proof made use of the fact that Q has class number one, so that E had

a global minimal model. This isn’t strictly necessary: one could invert primes

away from p in order to kill all the ideal classes, or start from an equation that’s

only minimal at p, since the p-adic valuation at ∆ is the point of contention.

2. Twisting is not a panacea for bad reduction. Typically twisting takes you
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from a curve with bad reduction to another curve with bad reduction. As an

example, both y2 = x3 + 5x + 5 (discriminant −24 · 52 · 47) and its quadratic

twist by d = 5 with equation y2 = x3 + 53x + 54 (discriminant −24 · 58 · 47)

have bad reduction at p = 5. Both of these equations are globally minimal

and the reduction at 5 for each curve is additive. This demonstrates that the

conditions outlined in the converse are needed.

3. The bad case of the converse does happen. As an example, y2 = x3 + 7x+ 792

(discriminant −26 · 56 · 271) has a factor of 56 in its discriminant which cannot

be subdued with a twist by 5. (Of course, by sight 5 doesn’t divide either of

the coefficients 7 or 792.)

4. In writing the converse we really should consider ∆ up to twelfth powers: p6 is

not the only power of p that could be remedied by a twist. The case of higher

p-adic valuations is typically a mashup of the two cases. In the notation of

the proof, this would manifest itself as a factor of p12 dividing ∆′, and these

factors of p12 may either be essential or be removable by an isomorphism as

in the previous remark. So really the condition should be p6+12k || ∆, and the

first step should be to pass to an equation minimal at p. If the valuation of

the minimal discriminant at p is 6, then proceed as in the proof.

3.3 Algorithm

Owing to the fact that twisting twice by the same constant will return you to

the curve you started with, this proposition gives us some clues as to what primes
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will divide the appropriate twisting constant. This insight leads to the following

algorithm.

Algorithm 3.3.1. Let E/Q be an elliptic curve without complex multiplication.

The following steps will calculate the model of an elliptic curve defined over Q and

rationally isogenous to E via an isogeny of degree p.

0 Become confident that E possesses an étale cover of degree p.

1. Calculate j(E) and use it to create the polynomial f(x) = Φp

(
x, j(E)

)
.

2. Use the rational root test to search for rational roots of f(x). If none exist, no

such cover exists; output nothing.

3. Let j0 be a root discovered in the previous step. Generate an elliptic curve Ej

defined over Q which has j0 as its j-invariant.

4. Factor the discriminants ∆(E) and ∆(Ej). Let d be the product of every prime

that divides one of these two discriminants but not the other.

5. Twist Ej by d. If E
(d)
j is an étale cover of E of degree p, output E

(d)
j . (To

do this, check if it possesses a rational point of degree p and if the quotient by

that point is isomorphic to E.)

6. Systematically traverse every product d of primes of bad reduction for E. For

each, test if E
(d)
j is an étale cover of E of degree p. If so, output E

(
jd).

Proof of correctness. By the propositions above, if j0 is a rational root of f(x) then

an isogenous curve E ′ exists, and that curve will have j-invariant j0. Since E and
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E ′ are isogenous, they share the same reduction type at every prime. A curve with

the same j-invariant as E ′ must be a quadratic twist of E ′. Say the twist is by d.

If p is a prime of good reduction for E that divides d, then E ′ will have

good reduction at p while Ej will not. Such a prime will then be a divisor of the

discriminant of Ej but will not divide the discriminant of E. These primes are

tallied in step 4. We need to do slightly more work than this, though—it’s possible

that the twist from E ′ to Ej included twisting at a prime of bad reduction for E ′

which becomes good after a twist. In that case p will divide ∆(E) but not ∆(Ej).

We include those primes in our twisting constant d as well. The work above shows

that the twist we generate in step 5 will have the correct j-invariant and the correct

primes of bad reduction, and hence the correct conductor. It therefore could be the

curve we are searching for.

If it is not the curve we sought, it is because the “mystery twist” included

factors that were primes of bad reduction for E. We traverse every possibility in

step 6. The isogenous curve must be among the set of curves considered.

We avoided the situation of having to twist curves with j = 0 or j = 1728

in a heavyhanded way by decreeing that our starting curve cannot have complex

multiplication. Those cases cannot come up if End(E)⊗Q 6∼= Q(i) or Q(µ3).2

This algorithm has the advantage of never leaving the rational numbers. On

the other hand, it involves calculating some scary objects: Φp is notoriously mon-

strous, and we’re being asked to factor potentially massive numbers in step 4. Nev-

2I believe that the algorithm works in these cases if you replace “quadratic twist” in step 5 with

“quartic twist” or “sextic twist” respectively, but am not confident in this.
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ertheless, for typical inputs this algorithm is practical. In the situation described

above where the ground field is Q, the list of possible isogeny degrees is small, and

Φp has already been calculated for every such degree. So we can look the polynomial

up instead of computing it.

The curve with a given j-invariant for step 3 also can be computed from a

formula:

Ej : y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
.

This will typically be the “start” curve of Step 3.

Example 3.3.2. Let E be the elliptic curve y2 = x3 − 1323x − 42714, with j-

invariant −2401
6

and discriminant −213 · 313 · 72. At each of the 21 two-digit primes

E(Fp) is a multiple of 7, so we have reason to believe that a curve 7-isogenous to E

may be out there somewhere. Sage calculates the polynomial Φ7(x, j(E)) without

difficulty:

Φ7(x, j(E)) = x8 +
213040394078304357485519137

279936
x7 +

17661906410035531644497191135081212918101

46656
x6

+
1410555319940980331987073409241420228562791475007867211

23328
x5

− 1152523601114246426547158277599677214082609530047623552106759

8748
x4

+
3606479300246324042807156700608374611249151304897342977760220202403

46656
x3

+
20857846576370879649306663336267794477998841073858975391514312896705021

11664
x2

− 21509466497902086531812835080145216777088176888375619725536996617023937151

34992
x

+
392517463848357692086411098083947242717793357417123038753321102313521034771201

1679616
.

This polynomial has one rational root, j0 = −6329617441
279936

. Let Ej be the elliptic

curve from the formula above which has this j-invariant. For simplicity, I’ll complete
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the square and give Ej a short Weierstrass form; we get the model

y2 = x3 − 170899670907

6813346849
x+

341799341814

6813346849
.

The discriminant of Ej is

−1× 219 × 319 × 72 × 197−6 × 419−6 × 9676,

which suggests twisting Ej by 197× 419× 967 since those primes of bad reduction

are unique to Ej. That curve is

y2 = x3 − 159806402368755723x+ 25511200349980609846701126.

Sage confirms that this curve is isogenous to the original E. It has a superfluous

factor of 96712 in its discriminant;3 after an isomorphism we get a minimal model

for E ′, y2 = x3 − 182763x+ 31201254.4

3.4 Alternative method to find j(E ′): via C

There is an alternative to using the polynomial Φm(X, Y ) for large m. As

noted, these polynomials become unruly as m grows, and the operations we would

like to do with them may prove implausible if we can’t even get the polynomial into

working memory! As such in this section we present an alternative to acquiring the

j-invariant of the isogenous curve, based on passage through the complex numbers.

3This could have been avoided if we twisted by 197·419
967 instead. Since twisting by p alters the

discriminant by a factor of p6, we could see this factor of 96712 coming and we could have taken

evasive maneuvers.
4E has Cremona label 294b1 and E′ has Cremona label 294b2.
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Suppose the j-invariant of E is written as m
n

in lowest terms. Then the poly-

nomial Φp(x,
m
n

) we considered in the previous section will be monic in x of degree

p + 1 and have a constant term whose denominator is at worst np+1. The ratio-

nal roots of this polynomial will have denominator bounded by np+1, so if we have

some method for calculating them to precision finer than 1
np+1 , we can round off to

determine them as exact rational numbers.

Such a method is possible via passage into the complex numbers. Recall the

following facts from §1.5. E can be represented by the quotient of the complex

numbers by a lattice Λ with a basis {1, τ} for a τ ∈ C which lives in the typical

fundamental domain for the action of SL(2,Z) on the upper half-plane. The p-torsion

points of E(C) are the cosets of Λ with representatives 1
p
(aτ+b) for 0 ≤ a, b ≤ p−1.

There are p + 1 different subgroups of E[p] of order p. One is generated by 1
p

and

the other p of them are generated by τ+i
p

for 0 ≤ i < p. The p + 1 curves that

are p-isogenous to E are the quotients of C by the p+ 1 lattices with bases
{

1
p
, τ
}

and
{

1, τ+i
p

}
for 0 ≤ i < p. Note that these lattices are not guaranteed to be in

standard form as written. Also note the first of these is homoethetic to the lattice

with basis {1, pτ}. It’s true that the numbers in the upper half-plane may not live

in the fundamental domain, though if desired we could use the action of SL(2,Z) to

move them there. This won’t be strictly necessary in what follows.

As suggested in [6] we can calculate the j-invariant of a lattice efficiently by

using the eta-quotient formula

j(τ) =

(
(η( τ

2
)/η(τ))24 + 16

(η( τ
2
)/η(τ))8

)3

.
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So if we have a method to calculate τ from the equation of E to arbitrary precision,

we can then apply the centered equation to the values from the previous paragraph

to estimate the j-invariants of the curves that are p-isogenous to E.

Where does τ come from? The lattice corresponding to E come from evalu-

ating “periods,” that is, integrals of invariant differentials, around paths forming a

basis for the homology group H1(E,Z). Algorithm 7.4.7 in Cohen [12], reproduced

below for the situation of interest here, describes how to calculate these complex

periods ω1 and ω2 of E in terms of the arithmetic-geometric mean of the roots of the

cubic polynomial defining E. These periods form a basis for a lattice homothetic

to Λ. Calculating the AGM can be done to arbitrary precision (Sage has a built-in

function for this, which I’ll freely use in the example to come). From these periods

we can get our hands on τ .

Algorithm 3.4.1. Given a Weierstrass equation of the form y2 = x3 +Ax+B with

A, B ∈ Q, this algorithm computes a basis {ω1, ω2} of the period lattice for E. The

basis created will have ω2 ∈ R, Im(ω1/ω2) > 0, and Re(ω1/ω2) = 0 or −1
2
.

(a) Calculate ∆, the discriminant of E. Depending on whether ∆ is positive or

negative, go to step (b) or (c).

(b) If ∆ > 0, let e1, e2, and e3 be the three roots of f(x), ordered so that e1 >

e2 > e3. Return the quantities

ω2 =
π

AGM(
√
e1 − e3,

√
e1 − e2)

and ω1 =
π
√
−1

AGM(
√
e1 − e3,

√
e2 − e3)

(c) If ∆ < 0, let e1 be the unique real root of f . Set a = 3e1 and b =
√

3e2
1 + A.
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Return the quantities

ω2 =
2π

AGM(2
√
b,
√

2b+ a)
and ω1 = −ω2

2
+

π
√
−1

AGM(2
√
b,
√

2b− a)

Some comments on this algorithm:

1. The value of τ we want is ω1/ω2, since the lattice with basis {ω1, ω2} is homo-

thetic to the lattice with basis {1, ω1/ω2}.

2. Owing to the fact that the j-invariant has a power series expansion in terms

of q = exp(2πiτ), j is real-valued on the lines Im(τ) = 0 and Im(τ) = −1
2
.

On those two lines q is real and positive or real and negative respectively, and

as the power series for j has all positive integer coefficients it follows that j

is real and positive or real and negative on those two lines respectively. Since

the input to the algorithm was an elliptic curve over Q, it makes sense that

the value of τ that comes from this algorithm will live on one of those two

lines.

3. This algorithm isn’t guaranteed to give us a τ in the fundamental domain. The

function j(τ) takes the arc between exp(2πi
3

) and exp(πi
4

) to the real interval

[0, 1728]. So if we input an elliptic curve whose j-invariant lies between those

two real numbers we must get something outside of the fundamental domain.

(It will be “below” the fundamentdal domain, inside the unit circle.)

4. If one cares about isogenies of high degree, they’ll necessarily be led to con-

sidering elliptic curves over number fields larger than Q. Nothing changes in

the above algorithm if we were to ask for E to be defined over a subfield of
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R instead of Q. In fact step (b) of the algorithm can be made to work if E

is defined over a non-real subfield of C, though caution is needed to deal with

the issue of the arithmetic-geometric mean being multi-valued. The precision

needed should be determined in light of the fact that the j-invariants sought

will be elements of this number field.

Example 3.4.2. Let’s revisit the curve y2 = x3− 1323x− 42714 from the previous

section. This curve had j-invariant −2401
6

, so when searching for the j-invariant of

the curve which is 7-isogenous to E we will need at precision of at least 68. As

68 ≈ 106.23 ≈ 220.68, seven digits or 21-bits of precision past the decimal point will

suffice. In this example I worked to 50 digits.

Following Cohen’s algorithm for the periods, the unique real root of f is

e1 = 47.2010357 · · · . The quantities a and b are a = 141.6031071 · · · and b =

73.2175752 · · · , leading to the periods

ω2 = 0.3686775 · · · and ω1 = −0.1843387 · · ·+ 0.4030362 · · · i.

Dividing gives us ω1/ω2 = τ = −1
2

+ 1.0931945 · · · i. As a sanity check, plugging

τ into our eta quotient gives us j(τ) = −400.1666667 plus a vanishingly small

imaginary part which can be attributed to rounding error. Now we calculate the

j-invariants for the curves 7-isogenous to E over C:

j
(τ

7

)
= −248712190019162.57933688− 132646662910561.41711712i

j

(
τ + 1

7

)
= −248712190019162.57933688 + 132646662910561.41711712i

j

(
τ + 2

7

)
= 1100561.13579798 + 340843.890361726i
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j

(
τ + 3

7

)
= 172.09442973 + 314.88559198i

j

(
τ + 4

7

)
= −22610.94479084 + 0.00000000i

j

(
τ + 5

7

)
= 172.09442973− 314.88559198i

j

(
τ + 6

7

)
= 1100561.13579798− 340843.890361726i

j(7τ) = −761032003141124103427.30178156 + 0.00000000i

The polynomial Φ7(x, j(E)) had two real roots.5 Multiplying j
(
τ+4

7

)
by 68

makes it look like an integer:

68 · j
(
τ + 4

7

)
≈ −37977704646.000000000000 · · ·,

while the second one does not look like an integer

68 · j(7τ) ≈ 1.278241528987882302102150909.15150771669 · · ·.

The former j-invariant is −6329617441
279936

which is the one calculated earlier, so it will

lead to the isogenous curve via the procedure of the previous section. As the other

one is not rational to within our tolerance, we conclude it isn’t an element of Q at

all.

5We could have forseen this: it has degree eight and the j-invariant we’re searching for is

rational, so there must be a second real root.
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Chapter 4: Middlebrow arithmetic of curves of genus two

In §5 we’ll demonstrate that the method of §3.4 can be made to work in genus

two. This chapter is devoted to the arithmetic of Jacobians that we’ll need. We’ll

also indicate what the theory of Jacobians over C looks like.

4.1 Genus two curves and their Jacobians

A curve of genus two is a curve whose complex points are topologically a

surface with genus two. It is a fact stemming from the Riemann-Roch theorem

that a curve of genus two will always be the zero locus of an equation of the form

C : y2 = f(x), where f is either degree five or six without repeated roots. (See for

example [9, §1.3].1) We say C is defined over a field k if f(x) ∈ k[x].

Two warnings are in order.

1. The curve is not the projective closure of the graph of y2 = f(x) in P2
k. That

1This is the equivalent of “short Weierstrass form.” The “long Weiesrtrass form” looks like

y2 + h(x)y = f(x)

for a polynomial f of degree five or six and a polynomial h of degree not exceeding three. Trans-

ferring from long Weierstrass form to short Weierstrass form cannot be done over a field of char-

acteristic 2, 3, or 5; we’ll avoid those.

59



object has a single point [0 : 1 : 0] at infinity, which is necessarily singular.

A nonsingular model for C can be created by blowing up this singular point.

This amounts to embedding C into P3 via (x, y) 7→ [1 : x : y : x2]. Note

that in the patch of P3 where the first homogeneous coordinate is nonzero, the

information in the final coordinate is redundant, and we can pretend that we’re

only looking at the affine coordinates (x, y). As such we often work as though

we are in A2, although under the hood we are secretly in a 3-dimensional open

set inside P3.

Suppose f(x) has leading coefficient a5 if it is degree five and a6 if it is degree

six. In the former case, the singularity at infinity is a cusp, and so there is

still one point at infinity [0, 0, 0, a5] on the model in P3. If f is degree six the

singular point in P2 is a node and so there are two points [0 : 0 : 0 : ±√a6] at

infinity in P3. These points are sometimes called ∞+ and ∞−.

This warning has a sub-warning: the single point at infinity is always k-rational

(i.e., a member of C(k)) if f is quintic. The two points at infinity are not

necessarily k-rational if f is sextic: they are if and only if the leading coefficient

a6 is a square.

2. For the purposes of algebraic geometry, i.e., when k = k, we can always assume

f has degree five. But if we work in the setting where k is not algebraically

closed, we can transform the degree-six case into the degree-five case only

when the degree six polynomial possesses a root e1 ∈ k. In that case,

y2 = (x− e1)g(x)
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with g of degree five can be birationally mapped to the model

v2 = u5g

(
e1 +

1

u

)

by using the transformation

u =
1

x− e1

, v =
y

(x− 1)3
.

On the other hand, if f is of degree five, we can always promote it to degree

six by using any transformation of the shape u = 1
x−a , v = y

(x−a)3
, so long as

f(a) 6= 0.

As you may have inferred from the above warning, two equations determine

the same curve when the variables are related by fractional linear transformations

of the form

x =
aX + b

cX + d
y =

eY

(cX + d)3
,

where ad−bc 6= 0 and e 6= 0 (this guarantees that the transformations are invertible).

The curve y2 = f(x) has good reduction at a prime if the equation makes sense mod

p; this occurs when p - disc(f), i.e., f has simple roots mod p—this is the same as

the genus 1 situation.

The points of C cannot be made into a group the way we did for the points

on an elliptic curve. The issue is that a line will intersect the curve in six points,

which is too many to impose a binary operation based on collinearity.2 Instead, the

2From a philosophical perspective, it’s a good thing that this doesn’t work. The groups that

we would get would be very small, due to Faltings’s theorem [19] that a curve of genus higher than

one has only finitely many points with coefficients in any fixed number field.
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numerology suggests that pairs of points on C might assemble themselves into an

abelian group. A cubic polynomial y = c(x) will intersect the graph of y2 = f(x)

in six points. If four points in the plane are specified, a unique cubic runs through

them; as such the remaining two points of intersection of the cubic with the curve

will determine a new pair of points. We can think of this cubic polynomial as being

determined by two pairs of points of C rather than four individual ones. Doing this

shows that we have a binary operation that takes in two pairs of points and returns

a third pair of points. (An example follows—see below.) Since the operation is

agnostic to the order of the points within each pair, the group operation is defined

on the symmetric square (C × C)/ {(P,Q) ∼ (Q,P )}. As usual we treat the pair

{P, P} as imposing the condition that the cubic polynomial meets the curve C to

multiplicity two at P , and intersections at infinity3 are actually determined in the

model in P3. Much as for elliptic curves, three pairs of points sum to zero when

they all lie on the graph of a cubic.

There’s one issue that needs to be overcome: just as with elliptic curves, if

(x, y) ∈ k(C) then (x,−y) ∈ k(C) as well, and it’s typically not possible for a the

graph of a function to go through two points with the same x-coordinate. As such

we have to exclude pairs of the form O = {(x, y), (x,−y)} from our domain. This

amounts to blowing down the set of pairs in O; they determine a copy of C sitting

diagonally inside the symmetric square. In the case deg f(x) = 5, {∞,∞} counts

3The short version is that if f is degree five, then y = c(x) of degree three intersects y2 = f(x)

at infinity precisely when the leading coefficient of c vanishes, i.e., c is actually quadratic. It

intersects y2 = f(x) at infinity to multiplicty two when c is actually linear.
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as a point together with its “negative”; when deg f(x) = 6, {∞+,∞−} is the pair

that is on the offending copy of C. Blowing this curve down amounts to imposing

an equivalence relation whereby all of the pairs of points in O are collapsed to

one point, leaving everything else untouched. This common point is the identity

element of the group. We can take {∞, ∞} as a representative for it when f is

quintic and {∞+, ∞−1} when f is sextic. With this definition, the negative of a

pair {(a, b), (c, d)} is {(a,−b), (c,−d)} since those four points join together to create

two elements of O. The group created in this way is called the Jacobian of C.

Toy example 4.1.1. Let C be the hyperelliptic curve

y2 = f(x) = (x− 3)(x− 1)(x+ 2)(x+ 4)(x+ 6).

We’ll add the pairs {(−6, 0), (−4, 0)} and {(0, 12), (3, 0)} on Jac(C). We first need

the cubic polynomial passing through all four of these points. Typically this requires

Lagrange interpolation, but since three of the four points are on the x-axis we know

the polynomial must look like c(x) = λ(x + 6)(x + 4)(x − 3) for some choice of λ.

Owing to the fact that c(0) = 12 we get λ = 1
6
. Next we search for the other points

of intersection of y = c(x) with y2 = f(x). This is accomplished by plugging c(x)

in for y, i.e., solving c(x)2 − f(x) = 0. This will tell us the six x-coordinates of the

points of intersection. We know ahead of time this polynomial will be divisible by

(x+ 6)(x+ 4)x (x− 3). Factoring, we get

c(x)2 − f(x) =
1

36
(x+ 6)(x+ 4)x (x− 3)

(
x2 − 29x+ 42

)
,

with roots α1 = 29−
√

1009
2

≈ −1.3824 and α2 = 29+
√

1009
2

≈ 30.3823. Plugging into

c(x) recovers the y-coordinates. Remembering that the third pair of intersections
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are the negative of the sum, we get that

{(−6, 0), (4, 0)}+{(0, 12), (3, 0)} =
{(
α1,−2850 + 90

√
1009

)
,
(
α2,−2850− 90

√
1009

)}
.

• • •

•

◦

(The other point of intersection is far to the right of the pictured window.)

This example illustrates two truths: first, the obvious fact that the coordinates

of the sum of two points can be much more complicated than the points we started

with. Second, the coordinates of the points comprising the sum will either be rational

or conjugate over a quadratic extension of the field of definition for C.4 This means

that Jac(C)(Q) consists of “rational pairs”, that is, Galois orbits of size two. This

is different from “pairs of rational points.” We’ll see this phenomenon in a different

guise in §3 when we work over a finite field.

Note that the Jacobian makes sense as long as the intersection theory of cubics

with the curve C makes sense, which only requires that C be non-singular. In

particular, we infer that the Jacobian will have good reduction mod p whenever C

4The x-coordinates satisfy a quadratic equation with coefficients in k[x], making them conju-

gates. The y-coordinates are values of c(x) ∈ k[x] at conjugate points, hence are conjugate as

well.
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does. (This hints at the deeper fact that C and Jac(C) comprise the same amount of

information: one determines the other. This is known as Torelli’s theorem [40, § 12].)

4.2 The Riemann-Roch formula; Jacobians as groups of divisors

In slightly higher language, the Jacobian can be understood as a group of

divisor classes of C. In this section we’ll state the version of the Riemann-Roch

theorem causing this phenomenon.

The notation is as follows. A divisor D is a formal sum of points on C; the

sum of its coefficients is its degree degD. It is called effective if all its nonzero co-

efficients are positive. If f ∈ k(C) is a rational function defined on C, the principal

divisor div f associated to it is
∑

P∈C ordf (P )[P ], where ordf counts the number

of zeros or poles of f at P with multiplicity. Principal divisors have degree zero.

Two divisors are linearly equivalent if their difference is principal. The group of

divisors modulo linear equivalence is the Picard group Pic(C). Inside Pic(C) is

the subgroup Pic0(C) consisting of divisor classes of degree zero.

Definition 4.2.1. The Jacobian of a curve C is the group Pic0(C).5

For a divisor D, L(D) is the vector space

L(D) = {f ∈ k(C) : div f +D is effective} ,

and the dimension of this vector space is `(D). The number `(D) is invariant under

linear equivalence. Since scaling functions doesn’t change their divisors, the projec-

5Cognoscenti will realize I’m abusing the self-duality of the Jacobian here. Since we won’t leave

the world of curves I’m taking liberties.
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tivization of the vector space `(D) is the set of effective divisors linearly equivalent

to D. A canonical divisor K is the divisor of a nonzero differential on C. Canon-

ical divisors are linearly equivalent and have degree 2g − 2, where g is the genus of

the curve.

Theorem 4.2.2 (Riemann-Roch). Let C/k be a curve of genus two over a field k.

Then

`(D)− `(K −D) = degD − 1.

In particular, suppose degD = 2. Then `(D) = 1 except when D is linearly equiva-

lent to K, in which case `(D) = 2.

Proof. The Riemann-Roch theorem proper is in Hartshorne [23, Theorem IV.1.3].

For the second statement, K−D will have degree zero. The only effective divisor of

degree zero is div(1), the empty sum. Since div(f) + (K −D) will always be degree

zero, there are elements in L(K − D) precisely when K − D is linearly equivalent

to zero, i.e., D is linearly equivalent to K. In that case `(K − D) = 1 and so the

Riemann-Roch formula produces `(D) = `(K) = 2. Otherwise L(K −D) is empty,

so the Riemann-Roch formula produces `(D) = 1.

Since the projectivization of a one-dimensional vector space is a point, it fol-

lows that if D is a divisor of degree two not in the canonical class, there is a unique

effective divisor linearly equivalent to D. From now on we may conflate a noncanon-

ical divisor class D of degree two with the unique effective divisor in that class. The

map D 7→ D + K exhibits a bijection between Pic0(C), our Jacobian, and the set

Pic2(C) of divisor classes of degree two. We impose a group structure on Pic2(C)
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by transporting the structure inherent in Pic0(C). The advantage of working with

Pic2(C) is that every class has a canonical representative, namely the unique effec-

tive divisor in that class. The lone exception is the canonical class, which is the

identity element of the group (note 0 ∈ Pic0(C) mapped to K ∈ Pic2(C)). Some

caution is needed because many effective divisors live in the canonical class; these

are all the same point of the Jacobian since they are all linearly equivalent.

When C is presented as the model y2 = f(x) with f of degree five or six,

the linearly equivalent effective divisors that make up the canonical class are the

divisors of the form [(a, b)] + [(a,−b)]. The group law presented above on pairs

of points matches the group law for divisors. Starting from two pairs of points

{P1, P2} and {P3, P4}, we found the graph of a cubic polynomial y − c(x) that

passed through those four points. If the third pair of intersections are {P5, P6}, then

div(y− c(x)) =
∑6

i=1[Pi], so this divisor is principal. Rearranging and adjusting by

points in the canonical divisor class, It follows that [P̃5] + [P̃6] is the effective divisor

that is linearly equivalent to [P1]+[P2]+[P3]+[P4], where (̃x, y) = (x,−y). Blowing

down O identified all of the effective divisors in the canonical class; those are all of

the form [(x, y)] + [(̃x, y)].

4.3 Étale covers of genus two curves

We have gone on at some length discussing the Jacobian of a curve C of genus

two. The following proposition explains why.

Proposition 4.3.1. Let C be a curve of genus two defined over a field k with C(k)
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nonempty. Suppose D → C is an étale cover with abelian structure group. There

exists an isogeny φ : B → Jac(C) with the property that D is the pullback of φ.

Proof. This is Proposition 9.1 in Milne [40]. See also Coombes and Grant [14] for a

slightly different point of view of the same underlying truth.

The proposition tells us that if we can find étale covers of the Jacobian, those

will in turn determine all the étale covers of the curve. This puts us back in a

familiar setting: we are now searching for isogenies that target Jac(C).

Warning 4.3.2. Under most circumstances the variety B in the theorem is going to

be the Jacobian of another curve C ′ of genus two. However C ′ and D are unrelated.

The Riemann-Hurwitz formula tells us that a curve D with a degree d étale map to

a genus two curve must itself have genus d+ 1.

We again will build from the paper of Katz:

Theorem 4.3.3 (Katz, [31]). Let A/Q be an abelian surface. The n = ` case of

Theorem 2.2.6 is true.

Explicitly, suppose #A(Fp) is divisible by ` for a set of primes p of density one.

Then there exists an abelian surface A′/Q which is isogenous to A via an `-power

isogeny with the additional property that ` | # Tors(A′(Q)).

This tells us that we can gain confidence in the fact that there exists an isogeny

targeting Jac(C) by calculating the number of points of Jac(C) modulo p for many

primes. For small primes p there is a convenient formula for the cardinality of the

Jacobian over Fp, which is proved in Appendix A.
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Proposition 4.3.4. Let C/Q be a curve of genus two and let p be a prime of good

reduction for C. Then

# Jac(C)(Fp) =
1

2

(
#C(Fp2) + #C(Fp)2

)
− p.

We now can determine the size of the Jacobian by counting points on the

hyperelliptic curve itself, which is practical for small p even by a näıve exhaustive

search: for each x ∈ Fp, calculate f(x) and decide whether it is a square mod p. If so,

there exists a y whereby (x,±y) ∈ C(Fp). Otherwise that x-coordinate contributes

nothing. Cassels and Flynn [9, § 8.2] derive the formula for # Jac(C)(Fp) with their

bare hands by counting how many pairs of points of C there are over Fp and how

many conjugate pairs of points C has over Fp2 .

4.4 Jacobians over C

Similar to the situation for elliptic curves, we can represent every Jacobian of

a genus two curve over C as the quotient of C2 by a full-rank lattice Λ; this time Λ

will be the span of four vectors {ω1, ω2, ω3, ω4}. As with elliptic curves, these four

vectors are the integrals of invariant differential forms along a basis for the homology

group H1(C,Z).

The notions of homothety and isogeny are the same: two lattices Λ1 and Λ2

are homothetic if there is a linear map M : C2 → C2 satisfying MΛ1 = Λ2. They

are isogenous if such an M exists whereby MΛ1 ⊂ Λ2. Homothety descends to

an isomorphism of abelian varieties on the quotient, while isogeny descends to a

homomorphism with a finite kernel.
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There is a new wrinkle in higher dimensions: there are relatively few complex

tori which are abelian varleties. The restriction comes from the fact that not every

discrete subgroup of Cn is the set of poles of a meromorphic function.

Definition 4.4.1. Let Λ ⊂ Cn be a lattice. A polarization for Λ is a Hermitian

form H on Cn whose imaginary part E is integer-valued when restricted to Λ.

E recovers H by the formula H(u, v) = E(iu, v) + iE(u, v), so one sometimes

sees E referred to as the polarization. Note that E is a skew-symmetric bilinear

(i.e., symplectic) real form, so if we identify C2 with R4 then this R4 is a symplectic

space. Riemann gave conditions that will tell us whether or not a given symplectic

form E is a polarization on a lattice Λ.

Theorem 4.4.2 (Riemann). Let Λ ⊂ Cn be a lattice. Write Π for the n × 2n

matrix whose columns are the 2n basis vectors of the lattice. A skew-symmetric

integer matrix A determines a polarization for Λ if and only if the following two

conditions hold:

1. ΠA−1Πtr = 0

2. iΠA−1Π
tr

is positive-definite.

Proof. See Birkenhake and Lange [1, § 4.2].

If Λ is a polarized lattice with symplectic pairing E, a process similar to the

process used to row-reduce integer matrices shows that there exists a basis for Λ of

the shape {a1, . . . , an, b1, . . . , bn} with the properties that E(ai, aj) = E(bi, bj) = 0,
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while E(ai, bj) = diδij for some integers d1, . . . , dn satisfying d1 | d2 | · · · | dn. As

such we can assume by changing the basis for Λ that E has the form
0 D

−D 0


where D is a diagonal matrix with diagonal entries d1, . . . , dn as above. If we can

take D = In, E is called a principal polarization and Λ is principally polarized.

In any case, {a1, . . . , an, b1, . . . , bn} is called a symplectic basis for Λ.

A polarization determines a map between a complex torus and its “dual torus”

of degree
∏
di. We will not need the theory of the dual because of the following

paragraph.

Jacobians of curves are automatically principally polarized; this comes from

the interpretation of the lattice associated to Jac(C) as arising from the homol-

ogy group H1(C,Z), where a topological intersection pairing exists. This means

Jacobians are isomorphic to their dual varieties.

Suppose Λ = 〈ω1, ω2, ω3, ω4〉 is a lattice in C2. The linear transformation with

matrix [ ω3 ω4 ]−1 will produce a homothety which transforms this lattice into one

with a basis {τ1, τ2, [ 1
0 ] , [ 0

1 ]}. Let Ω = [ τ1 τ2 ], so that post-homothety our lattice is

ΩZ2⊕Z2. The Riemann conditions applied to the standard matrix for the principal

polarization,

J =


0 I2

−I2 0

 ,

become the following.
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Proposition-Definition 4.4.3. An 2× 2 matrix Ω determines a principally polar-

ized lattice ΩZ2 ⊕ Z2 precisely when

1. Ω is symmetric and

2. The imaginary part of Ω is positive-definite.

The set of such matrices are called the Siegel upper half-space. A matrix in the

Siegel upper half-space will occassionally be referred to as a period matrix.

Much as in the one-dimensional case the upper half-space is much larger than

the space of principally polarized abelian varieties. The issue is again that a lattice

has multiple bases. However at this stage we’ve locked in that the symplectic form

on Λ should be given by E(u, v) = utrJv, and because of this we can only choose

amongst symplectic bases for Λ. This limits us to acting by a matrix in Sp(4,Z),

the group of 4×4 matrices with determinant 1 that preserve the pairing in the sense

that MJM tr = J . Changing basis and then applying a homothety to return to the

Siegel upper half-space produces a “fractional linear transformation” much as in the

one-dimensional case. Explicitly, if M ∈ Sp(4,Z) is written in block form as

M =


A B

C D

 ,

then M · Ω = (AΩ + B)(CΩ + D)−1. Note the similarity to the action of SL(2,Z)

in the one-dimensional setting.

One possible choice for a fundamental domain for the action of Sp(4,Z) on the

Siegel upper half-space is the set of those period matrices Ω =
[
x1+iy1 x3+iy3
x3+iy3 x2+iy2

]
which

satisfy the following three conditions:
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1. The real part of Ω is “size-reduced,” i.e., −1
2
≤ xi <

1
2

for all i.

2. The imaginary part of Ω is “GL(2,Z)-reduced,” i.e., 0 ≤ 2y3 ≤ y1 ≤ y2.6

3. For all M = [ A B
C D ] ∈ Sp(4,Z), we have | det(CΩ +D)| ≥ 1.

Streng [52, § 5.3] gives an algorithm for moving a given point in the upper half-

space into this fundamental domain. We’ll use this algorithm in the next chapter

as we attempt to recover a curve from its period matrix.

6This condition is Gauss’s condition for the binary quadratic form y1X
2 + 2y3XY + y2Y

2 to

be reduced—it is a somehow natural condition to impose on a positive-definite matrix.
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Chapter 5: Calculating a cover in genus two

5.1 Igusa invariants

Playing the role of the j-invariant in genus two are a trio of Igusa invariants.

These form the three coordinates on the moduli space of curves of genus two—they

determine the isomorphism type of a curve over the algebraic closure. Since Torelli’s

theorem forms a bridge between curves of genus two and principally polarized abelian

surfaces, we can also view the Igusa invariants as markers for orbits of the Sp(4,Z)

action on the Siegel upper half-space.

Definition 5.1.1. Let y2 = f(x) be the equation for a curve of genus two, with

f(x) =
∑6

i=0 aix
i a degree six polynomial. Write α1, . . . , α6 for the roots of f .

Given σ ∈ S6, write (ij) for the difference ασ(i) − ασ(j). The quantities

I2 = a2
6

15∑
σ

(12)2(34)2(56)2

I4 = a4
6

10∑
σ

(12)2(23)2(31)2 (452(56)2(64)2

I6 = a6
6

60∑
σ

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2

I10 = a10
6

∏
i<j

(αi − αj)2

are the four homogeneous Igusa-Clebsch invariants associated with C. The
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notation means to let σ vary over S6, including in the sum each unique expression

encountered. The upper index on each sum indicates how many terms are included.

For I2, there are fifteen ways to partition the six roots into three groups of two, and

each of those partitions determines a unique expression to the sum. I4 tallies the

ten ways there are to segregate the six roots into two groups of three. I6 counts

the six bijections between the two groups of three in each of those ten segregations.

Finally I10 is the discriminant of f .

The Igusa-Clebsch constants are defined assuming f(x) is sextic. This is not a

restriction: as we saw in the last chapter, every genus two curve has a model of the

form y2 = degree six, while a model of degree five may or may not exist depending

on whether f(x) possesses a root in the ground field. It is clear from the symmetry

involved that the Igusa-Clebsch invariants are defined over the same field as f(x)

itself.

Following Streng [52, § 2.1], set I ′6 = 1
2
(I2I4− 3I6). This will be convenient for

improving the rate of convergence of some series in what’s to come.

Removing the homogeneity produces the invariants we seek.

Definition 5.1.2. The three absolute Igusa invariants are1

i1 =
I4I
′
6

I10

, i2 =
I2I

2
4

I10

, and i3 =
I5

4

I2
10

.

1This is to some extent a matter of taste—for instance, van Wamelen [54] uses
I5
2

I10
,

I3
2I4
I10

, and

I2
2I6
I10

, while the “most standard” choice, that of Spallek, also involves some factors of 2. The

crucial fact is that the invariants are independent elements of the algebra of homogeneous degree

zero elements in Q[I2, I4, I6, I
−1
10 ]. We’ll follow Streng’s definition in what follows.
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Note that passing from a tuple (I2, I4, I
′
6, I10) to (∆I2,∆

2I4,∆
3I ′6,∆

5I10) will

not change the absolute invariants derived from them, hence why the Igusa-Clebsch

invariants are called homogeneous. Igusa proved [26] the absolute invariants of f

are isomorphism invariants of the curve y2 = f over the algebraic closure. If f has a

model over k, then its homogeneous Igusa-Clebsch invariants will be elements of k,

and therefore the absolute Igusa invariants will also be elements of k. The converse

is not true, however: while every triple of elements of k determine a genus two curve,

not all of those curves can be defined over k.

An algorithm of Mestre [38] accepts four numbers (the homogeneous invari-

ants) in a field k and outputs a conic and a cubic. If the conic has a rational point,

then there exists a curve defined over k with those homogeneous invariants; the

intersection of the conic with the cubic determines an equation for the curve. So,

provided the curve exists in the first place, Mestre’s algorithm promises to construct

a curve from its homogeneous invariants. This algorithm is implemented in Sage.

5.2 Theta constants

The Igusa-Clebsch invariants from the previous section were formulated in

a way that makes them easy to calculate from the equation for the curve. We

ultimately want to find genus two curves from points in the Siegel upper half-space,

so we won’t have an equation at hand. This will require us to calculate the invariants

in another way.

Definition 5.2.1. An element c = (c1, c2, c3, c4) ∈
{

0, 1
2

}4
is called a theta char-

76



acteristic. Let E be the function E(z) = exp(πiz). The theta constant with

characteristic c is the complex-valued function on the Siegel upper half-space θ[c]

defined by

θ[c](Ω) =
∑

n=(n1,n2)∈Z2

E

([
n1 + c1 n2 + c2

]
Ω

n1 + c1

n2 + c2

+2

[
n1 + c1 n2 + c2

]c3

c4

).

These are sometimes called “theta-null values” because a second paramater

z has been set to zero in the above series. Not all of these constants define in-

teresting values: six of them are zero. Using Dupont’s notation in [17], write

θ[c] = θ16c2+8c1+4c4+2c3 . A theta characteristic is even or odd depending on the

parity of the integer 4(c1c3 + c2c4). Six theta characteristics are odd and ten are

even. The six theta constants corresponding to the six odd theta characteristics are

zero. This is due to anti-symmetry in the series.2 The ten nonzero (even) theta

constants are θ0, θ1, θ2, θ3, θ4, θ6, θ8, θ9, θ12, and θ15.

The theta constants are the building blocks of the homogeneous invariants.

To state the formulas, first let T denote the set of the ten even theta constants. In

order to use Streng’s I ′6, we need to go one further step. Define

S =

{
C ⊂ T : #C = 4,

∑
c∈C

c ∈ Z4

}
.

The set S has cardinality fifteen and consists of so-called “Göpel quadruples”. Call

a set {b, c, d} ⊂ T syzygous if it is a subset of a Göpel quadruple; there are sixty of

2As an example, θ5 = θ[ 12 , 0,
1
2 , 0] is zero because the term indexed by (n1, n2) is the negative

of the term indexed by (−n1, n2). If you feel compelled to check this, keep in mind that E(z1) =

−E(z2) when z1 and z2 differ by an odd integer.
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these. Now set

h4 =
∑
c∈T

θ[c]8

h6 =
∑

b,c,d∈T
syzygous

±θ[b]4 θ[c]4 θ[d]4

h10 =
∏
c∈T

θ[c]2

h12 =
∑
C ∈S

∏
c∈T\S

θ[c]4.

The signs in h6 are determined by the fact that h6 is a modular form for

Sp(4,Z), normalized so that the sign on the term θ[0, 0, 0, 0]4 θ[0, 0, 0, 1
2
]4 θ[0, 0, 1

2
, 0]4

is +. Streng gives a four-line formula for the sign of each term on page 68 of [52].3

Proposition 5.2.2 (Igusa [27], pg. 848). Let Ω be a point in the Siegel upper

half-space. If h10(Ω) 6= 0, the principally polarized abelian variety corresponding to

Ω is the Jacobian of a curve C defined over C whose homogeneous Igusa-Clebsch

invariants satisfy

I2(C) =
h12(Ω)

h10(Ω)
, I4(C) = h4(Ω), I ′6(C) = h6(Ω), I10(C) = h10(Ω).

The theta constants are infinite series, but Streng estimated their tails in order

to decide how many terms are needed to reach a desired precision.

Proposition 5.2.3 (Streng [52], Algorithm II.7.15). Choose s ∈ N. To estimate

θ[c](Ω) with error at worst 2−s, first compute R =
⌈√

0.51s+ 2.55
⌉
. Then calculate

3This hints that perhaps this “direct” way of defining the hi was an obfuscation of what’s going

on. One can reach the hi via formulas involving Eisenstein series for Sp(4,Z). Since we ultimately

want to calculations, going deeper into the theory would lead us afield.
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the sum determining the theta constant, only including the terms for those (n1, n2) ∈

Z2 satisfying |ni| ≤ R; for summand meeting this criterion, calculate it to within a

precision of s+ 1 + b2 log2(2R + 1)c.

Armed with these propositions we now have some hope to come back to a

hyperelliptic curve from a point in the Siegel upper half-space. Of course, much as

in the one-dimensional case we could get a curve that is off by a twist. This will be

addressed in the next section.

5.3 Twisting theory of curves of genus two

In general, twists of an object C defined over a field K correspond to the

first Galois cohomology set H1(Gal(K /K),Aut(C)). The automorphism group of

a curve of genus two is always finite, and a list of what groups are possible is well-

known.4 These were worked out in characteristic zero by Bolza [3] and extended to

arbitrary characteristic by Igusa [26].

Not surprisingly, then, the possibilities for what twists are possible depends

on what automorphisms exist. In his thesis Cardona [8] gives models for twists de-

pending on the automorphism group of C. The most generic situation is when

4Be aware that the Jacobian of C can have lots of automorphisms: End(Jac(C)) could be

the ring of integers in a quartic CM-field. Dirichlet’s theorem says that such a ring will have

infinitely many units, giving infinitely many automorphisms of Jac(C). We are asking for invertible

morphisms C → C here, not Jac(C) → Jac(C). In fact the automorphism group of a curve of

genus g ≥ 2 over a field of characteristic zero is always finite and has cardinality at most 84(g−1).

This is a theorem of Hurwitz; see Hartshorne [23, Ex. IV.2.2].
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Aut(C) = Z/2, with the only automorphism being the hyperelliptic involution

(x, y) 7→ (x,−y). One might expect, mirroring the situation in genus one, that

when there are no extra automorphisms the only options will be quadratic twists,

and indeed this is the case.

Proposition 5.3.1. Let C/K be a curve of genus two defined over a field K, with

Aut(C) = Z/2. Suppose C has the model y2 = f(x). Then the set of twists of C is

in bijection with K×/(K×)2. Given d ∈ K×/(K×)2, the twist of C by d has equation

dy2 = f(x).

Proof. The hyperelliptic involution is defined over K, so Aut(C) is a trivial Galois

module. Therefore H1(K,Aut(C)) = H1(K,Z/2) = K×/(K×)2. Classes in this

H1 correspond to quadratic extensions of K. Explicitly, the cocycle corresponding

to d is ξ : σ 7→ σ(
√
d)√
d

. The matrix M =
[

1/
√
d 0

0 1/
√
d

]
satisfies σ(M) = ξ(σ)M ,

so the fractional linear transformations determined by this matrix (as in §4.1) will

determine a curve with the appropriately-twisted action.5 The transformation works

out to x 7→ x, y 7→
√
d y. So y2 = f(x) becomes dy2 = f(x).

By multiplying through by d and changing y to dy, we can also represent the

quadratic twist of y2 = f(x) by d by y2 = df(x). If deg f = 5, we have the other

option of changing variables by x 7→ dx, y 7→ d−3y to turn the curve with equation

dy2 =
∑n

i=0 aix
i with the equation y2 =

∑n
i=0 d

n−iaix
i.

There’s one other possible problem that needs to be addressed. We’ve dis-

cussed twisting curves C, but we really want to twist the Jacobian of C, since the

5The correspondence between cocycles and equations for twists is summarized well in [51, X.2].
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cover that we’re creating is a cover of the Jacobian. Thankfully these are the same.

Proposition 5.3.2. Let C(d) be the quadratic twist of the genus two curve C by the

nonsquare d. Then Jac(C(d)) = Jac(C)(d).

Proof. See Petersen [45, p. 5].

It’s easy to compute the effect that a quadratic twist has on our invariants,

since the roots of the polynomial f(x) don’t change. The only change relevant for

the invariants is the leading coefficient diminishing by a factor of 1
d
. This means I2

will be changed by a factor of d−2, I4 will be changed by d−4, I6 by d−6, and I10 by

d−10. We can use this fact to twist curves without having a model for them, i.e.,

before applying Mestre’s algorithm.

A quadratic twist is again “half an isomorphism,” since twisting twice produces

the same thing as the change of variables determined by the matrix [ d 0
0 d ]. So if C/Q,

when it comes time to twist C we need to answer the following question for each

prime number p: should p be included as a factor of d or not? The alternate model

for the quadratic twist makes it clear that a weak version of Proposition 3.2.3 holds

in genus two: if C has good reduction at p, its twist by p will not. This means that

if we know ahead of time that C should possess a twist with good reduction at p,

while C itself has bad reduction at p, we should try twisting by p to “clear” the bad

reduction.
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5.4 (p, p)-isogenies

The final ingredient needed to create an algorithm is a determination of those

points in the Siegel upper half-space that represent abelian varieties that are isoge-

nous to the one we’re starting with. Unlike in the one-dimensional situation, there

is a restriction on the type of finite subgroup that one can quotient by.

Proposition 1 (Poonen, [46]). Suppose A is a principally-polarized abelian surface

with no extra endomorphisms and H ⊂ A is a finite subgroup whose order is not a

square. Then the abelian variety B = A/H cannot be principally polarized.

Proof. The composition of an isogeny φ with its dual should be the multiplication-

by-deg φ isogeny. Using a putative principal polarization for B in the sequence

A
φ−→ B ∼= B∨

φ̂−→ A∨ ∼= A

produces such an isogeny onA. But becauseA has no extra endomorphisms, the only

isogenies A→ A are multiplication-by-n isogenies which have degree n4. Meanwhile

the centered isogeny A → A has degree (deg φ)2, but by assumption this quantity

is not a fourth power—contradiction.

This proposition tells us that, in general, the kernels of our isogenies need to

have square order. Abelian surfaces are either split, that is, isogenous to the product

of two elliptic curves, or they are simple. If an abelian surface is isogenous to a split

surface it is itself split. Jacobians of curves all carry a principal polarization, so if

we start with a simple Jacobian with no extra endomorphisms it cannot carry an
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isogeny of non-square degree to another Jacobian by the above proposition. If we

look for isogenies of smallest degree possible, this restricts us to looking for kernels

of isogenies that are abstractly isomorphic to Z/`⊕Z/`.6 In what follows we’ll focus

on the latter.

Definition 5.4.1. Two abelian surfaces A and B are called (`, `)-isogenous if there

is an isogeny A → B between them whose kernel is a maximal isotropic Z/` ⊕ Z/`

inside A[`]. (Isotropic is with respect to the Weil pairing.)

The Weil pairing in higher dimensions is a pairing A[n]× Â[n]→ µn. As the

abelian varieties we care about are Jacobians which are principally polarized, there

is an isomorphism Ĵac(C)
∼−→ Jac(C), and so the Weil pairing can be defined on

Jac(C)[n]×Jac(C)[n]. This is explained in Milne [41, §13], as well as why kernels of

(`, `)-isogenies are necessarily isotropic (Proposition 13.8). The polarization induces

a symplectic pairing on (Z/n)4 which can be identified with the Weil pairing. A

subspace of Jac(C)[n] is called isotropic if the pairing restricted to that subspace is

the zero pairing. The largest an isotropic subspace can be is half of the dimension of

the ambient vector space. For us, that means that we’re looking for two-dimensional

subspaces as our kernels. These will be abstractly isomorphic to Z/`⊕ Z/`.

We now need representatives for homothety classes of lattices which are (`, `)-

isogenous to a given lattice Λ. Much as in the one-dimensional situation, with a

6Why not Z/`2? It is true that its order is a square, but a map with cyclic kernel followed by

its dual would produce a map Jac(C)→ Jac(C) of order `4 whose kernel is abstractly Z/`2×Z/`2.

Again, we know every endomorphism of degree `4: there is [`] and [−`] and nothing else. The

kernels of those two endomorphisms have exponent `, not `2.
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homothety we can rearrange it so that the isogeny is given by the 2 × 2 matrix

[ ` 0
0 ` ]. With this convention, each isogenous lattice will correspond to a superlattice

Λ′ ⊃ Λ for which Λ/pΛ′ is a maximal isotropic subspace of Λ/`Λ = (Z/`)4. The

next proposition enumerates those subspaces.

Proposition 5.4.2. There are `3 + `2 + ` + 1 maximal isotropic subspaces of the

symplectic space F4
` .

Proof. The astute reader may have noticed that the stated formula is the cardinality

of P3. We’ll exhibit an (indirect) bijection between the set of isotropic planes and the

set of lines. Given a line L, its orthogonal complement is three-dimensional. Since

every vector pairs with itself to zero, there are two dimensions’ worth of vectors in

L⊥ that are linearly independent from L. Dividing by scalars leaves us with ` + 1

isotropic planes that involve L.

On the other hand, each isotropic plane is a plane, so it possesses `+ 1 lines.

These last two facts taken together imply that there are an equal number of lines

and isotropic planes.

We now need to exhibit these lattices. One way to approach this, as is done

in [5], is to define the group

Γ
(2)
0 (`) =



A B

C D

 ∈ Sp(4,Z) : C ≡ 0 (mod `)

 .

This is the group of transformations which, taken mod `, stabilize the isotropic

plane generated by the reduction of the first two basis vectors. Witt’s extension

theorem [11, Theorem 7.5] implies that Sp(4,F`) will permute its maximal isotropic
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subspaces transitively. As such, the group Γ
(2)
0 (`) has index `3 +`2 +`+1 in Sp(4,Z),

and the planes we’re searching for are going to be spanned modulo ` by the first two

columns of the various coset representatives for Sp(4,Z) /Γ
(2)
0 (`). There are coset

representatives in [5], but only the first `3 of them determine distinct cosets. Here

is a correct list.

Proposition 5.4.3. The `3 + `2 + ` + 1 cosets of Γ
(2)
0 (`) inside Sp(4,Z) can be

organized into four types:

Type (I, a, b, c)



1 0 0 0

0 1 0 0

a b 1 0

b c 0 1


a, b, c ∈ Fp (cardinality `3)

Type (II, a, b)



1 0 0 0

a 0 0 −1

b −a 1 0

0 1 0 0


a, b ∈ Fp (cardinality `2)
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Type (III, a)



0 0 0 −1

1 0 0 0

0 1 0 0

a 0 1 0


a ∈ Fp (cardinality `)

Type (IV)



0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


(cardinality 1)

Proof. That these matrices are in Sp(4,Z) can be checked by computing symplectic

inner products of the columns. The first column must pair with the third column

to 1 and the second column must pair with the fourth column to 1, while all other

pairings must come out zero. It’s easy to check that this is the case for all of our

purported coset representatives.

That no two matrices on our list are in the same Γ
(2)
0 (`) orbit involves deciding

whether the first two columns ever determine the same plane modulo `. Based on

the position of the pivots, we only have to investigate this question within each type.

Note that since our planes are spanned by the columns, we are only allowed to use

column operations to change bases for the subspaces. With that said, no column

operation can transform a plane of a given type into another plane of a that type

because the pivot rows are always [1 0] or [0 1].

One could also verify this classification mechanically by checking that h−1
1 h2 /∈

Γ
(2)
0 (`) for any h1, h2 on the list. (This is the observation that led to the discovery
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that something was wrong with the classification in [5].)

5.5 Tentative algorithm

Algorithm 5.5.1. The following algorithm takes as input a curve C/Q of genus two

for which Aut(C) ∼= Z/2. The program either runs forever or outputs each genus

two curve C ′/Q for which there exists a (p, p)-isogeny Jac(C ′)→ Jac(C).

1. Become convinced that Jac(C) could possess such a cover. (This involves

checking whether p | # Jac(C)(F`) for many primes `.)

2. Calculate the big period matrix ΠC for Jac(C). In what follows we’ll assume

that ΠC is a 2 × 4 matrix with complex entries. Let Λ be the lattice spanned

by its columns.

3. Fix a precision s.

4. Using the coset representatives from 5.4.3, do the following:

(a) Construct the superlattice of Λ corresponding to that coset representative;

(b) Using Streng’s formulas, calculate the theta characteristics of the super-

lattice;

(c) From the theta characteristics, calculate the Igusa invariants i1, i2, and

i3. Check whether they are real to within our tolerance s.

(d) If they are real, test whether they are apparently rational, e.g., by com-

puting their continued fraction and looking for a convergent of larger than

100 digits. If they are, remember the triple (i1, i2, i3).
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(e) If nothing is remembered, repeat step (d) with precision doubled. Continue

this until something is found.

5. For those Igusa invariants remembered in step 4:

(a) Use Mestre’s algorithm to construct a curve C ′ of genus two having those

Igusa invariants.

(b) Calculate the conductors of C and C ′. Quadratically twist C ′ by each

prime that divides only one of these values.

(c) Find a reduced model of C ′, so that C and C ′ have the same primes of

good reduction.

(d) Test whether C and C ′ now have the same zeta function at the first many

primes of good reduction. If so, remember C ′ and stop. Otherwise go on

to step (e).

(e) Systematically further twist C ′ by every product of primes of bad reduc-

tion. After each twist, check whether C ′ and C have zeta functions that

agree at every prime. When they do, remember C ′ and stop.

6. Output every curve C ′ discovered in step 5.

While it is true that the invariants of the isogenous curves satisfy some sort

of “modular equations,” those equations have rational coefficients and have never

been calculated in a form that would allow us to state an analogue of the estimate

we used in §3.3 in the genus two setting. See Milio [39] for a discussion on whether

a different set of invariants might help to overcome this issue.
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Note that because a modular polynomial exists, if a curve C ′ exists its Igusa

invariants will eventually be found in step 4. The logic is much as in the dimension 1

setting: a bound for the denominators of the isogenous invariants is determined by

the degree of the polynomial and the denominators of the coefficients thereof. The

lack of an explicit bound for the denominators obviously hamstrings our ability to

give a runtime analysis, or to say ahead of time what precision is needed. On the

other hand, if no such cover exists, the program will run forever. Note that how long

one needs to test each apparently-real Jacobian could vary from lattice to lattice;

this isn’t explicitly built into the algorithm but deserves mention here.

For a discussion of how to complete Step 5(e), see §6.1.

5.6 Example

In this section we’ll examine the hyperelliptic curve C/Q defined by

y2 = −99x6 − 1782x5 − 23463x4 − 30888x3 − 14652x2 − 12672x− 8976.

The discriminant of the sextic is −221 ·319 ·53 ·1122 ·17, so C has good reduction away

from those five primes. In fact, Magma reports the conductor of C is 23 · 38 · 5 · 17,

so the bad reduction at 11 is an illusion. The homogeneous Igusa-Clebsch invariants

of C are

(I2, I4, I6, I10) =
(
210 · 34 · 112 · 31 · 47, 214 · 39 · 5 · 118 · 1667,

− 221 · 312 · 7 · 1110 · 258173, −241 · 319 · 53 · 1122 · 17
)
.
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This curve is the curve C̃2,1,3 from the paper of Bruin, Flynn, and Testa [7]. In it,

they prove that the Jacobian of C is targeted by a (3, 3)-isogeny from the Jacobian

of the curve

C2,1,3 : y2 = 13x6 + 42x5 + 129x4 + 200x3 + 276x2 + 192x+ 112,

whose invariants are

(I2, I4, I6, I10) =
(
−1 · 210 · 32 · 619, 214 · 35 · 5 · 491,

− 1 · 221 · 36 · 7 · 11 · 149011, −1 · 243 · 39 · 5 · 173
)
.

We will try to reconstruct this cover using the algorithm from §3, ported to the

genus two setting. We are only trying to verify an isogeny that is independently

known to exist because there are some hangups in proving the output of the algo-

rithm is actually isogenous to the starting curve; see §6.1 for a deeper discussion.

For the moment we’ll feign ignorance about C2,1,3 and begin the algorithm.

For every prime p satisfying 20 < p < 500, the Jacobian of C possesses a point of

order three. Nevertheless, Magma tells us that the torsion subgroup of Jac(C) over

Q is trivial. This motivates us to search for a curve C ′ whose Jacobian possesses a

(3, 3)-isogeny targeting Jac(C).

Calculations in this section are done to 500 digits of precision (approximately

1692 bits), though of course printed approximations will be significantly shorter.

Magma computes the big period matrix as follows, by estimating integrals of

holomorphic differentials on C:

Π =

0.0088 + 0.0964i 0.1233 + 0.0542i 0.0316 + 0.0000i −0.0379 + 0.0000i

0.2066 + 0.0120i −0.1770 + 0.0325i −0.0760 + 0.0000i 0.1204 + 0.0000i

 .
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It’s an easy check that for the standard symplectic form

J =



0
1 0

0 1

−1 0

0 −1

0


,

Riemann’s two conditions ΠJ−1Πtr = 0 and iΠJ−1Π
tr
> 0 hold to within our toler-

ance. So for the lattice Λ spanned by the four columns {w1, w2, w3, w4} of Π, the

basis of wi is already symplectic. (As noted, this was to be expected based on how

Magma calculated the matrix in the first place.)

It’s now time to bring in the 40 lattices that are (3, 3)-isogenous to Λ. As

mentioned in the previous section, these are indexed by the coset representatives for

Γ
(2)
0 (3). The superlattice of interest can be derived from a coset representative by

using the columns of the coset representative as coefficients in a linear combination

of w1, w2, w3, and w4, then dividing the first two of those four vectors by 3. This sets

it up so that the isogeny is realized by multiplication by 3. As an explicit example,

consider the coset representative of type (I, 2, 1, 2). The matrix is reproduced below

along with the basis for the superlattice it corresponds to.



1 0 0 0

0 1 0 0

2 1 1 0

1 2 0 1


Λ′ =

〈
w1 + 2w3 + w4

3
,
w2 + w3 + 2w4

3
, w3, w4

〉
.
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Continuing with this example, by multiplying the first two basis vectors by

the inverse of the 2× 2 matrix consisting of the latter two basis vectors, we create a

homothetic lattice of the form ΩZ2 ⊕ Z2. Ω is the following period matrix Ω in the

Siegel upper half-space:

Ω =

2.667 + 2.715i 2.167 + 1.746i

2.167 + 1.746i 1.333 + 1.191i

 .

This matrix is not in the fundamental domain; using Streng’s algorithm II.5.3 [52]

we discover that the fractional linear transformation associated with B ∈ Sp(4,Z)

moves Ω to a period matrix τ in the fundamental domain.

B =



2 −3 2 0

0 1 −3 −2

−1 1 1 1

−1 2 −1 0


, τ =

 0.3063 + 1.230i −0.4187 + 0.2994i

−0.4187 + 0.2994i 0.3010 + 1.435i

 .

Next we calculate the ten theta constants associated to τ , using Streng’s estimate

for the number of terms needed and the precision required for each term. From

this we achieve estimates for the quantities h4, h6, h10, and h12, and then we can

calculate approximations to the absolute invariants i1, i2, and i3.

h4 ≈ 3.8270394 + 0.5064270i

h6 ≈ 4.4333813 - 1.0686329i

h10 ≈ 0.0017842635 + 0.0005356077i

h12 ≈ -0.0020507352 - 0.0096667904i

i1 ≈ 8716.620697448 - 3650.360656750i
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i2 ≈ -21421.44921783 - 36630.55012339i

i3 ≈ 246357160.0004 + 18404949.8119i .

As the hi were calculated to within 10−500, we can confidently say that the

Jacobian corresponding to this point in the Siegel upper half-space is not defined

over the real numbers.

This process is then repeated for the other 40 coset representatives. Six of them

give points that are apparently the Jacobians of curves defined over R. For those, the

Igusa-Clebsch invariants were tested to see if they were close to a rational number of

comparatively small height. This was accomplished by means of continued fractions.

Despite a lack of a rigorous bound for the denominators of the Igusa invariants, we

can achieve practical results as long as we have calculated the hi to precision far

exceeding the size of the denominators of the rational numbers we are searching for.

In such a situation the continued fraction expansion of our estimates will lay bare

the fact that our estimate is a small rational number together with a very small

perturbation coming from rounding error. This small perturbation will manifest

itself as an astoundingly large convergent to the continued fraction. Truncating

the continued fraction at the enormous convergent will give the rational number we

intended.

In our example, six of the 40 lattices had Igusa invariants whose imaginary

parts were on the order of magnitude of 10−500, our working precision. Of those

six real Jacobians, one of them was defined over the rational numbers. For type
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(I, 0, 2, 1), the Igusa invariant i1 had continued fraction expansion beginning

[3601; 4, 1, 4, 6, 3, 14, 1, 4, 2, 1, 6, 1, 2, 477-digit convergent]

strongly suggesting that i1 = [3601; 4, 1, 4, 6, 3, 14, 1, 4, 2, 1, 6, 1, 2] = 9058680441
2515456

. Sim-

ilarly gargantuan continued fraction convergents for i2 and i3 give us hope that the

Jacobian associated with this period matrix is the Jacobian of a hyperelliptic curve

defined over Q. The Igusa invariants of this curve are presented below. By exploit-

ing homogeneity we also can write down the homogeneous invariants. To do this

we use that I2 = h12
h10

. Then we scale the quadruple (I2, I4, I6, I10) in a preliminary

fashion so that I2 = 1. The rest of the invariants should be rational, and we check

this with continued fractions. Then after we have rational invariants we can clear

denominators and write down an integer tuple of homogeneous invariants. This

gives

(I2, I4, I6, I10) = (14826, 66285, 309793869, 509379840),

(i1, i2, i3) =

(
9058680441

2515456
,

20145933765

157216
,

7801287023203417125

1581879721984

)
.

Breaking the fourth wall for a moment, note that this set of homogeneous Igusa

invariants matches that for C2,1,3 up to homogeneity.

Magma’s implementation of Mestre’s algorithm took in the homogeneous Igusa-

Clebsch invariants and returned a degree six polynomial fstart(x) which is too large

to print here. We will have to hack this down to size. There are two principles that

we can use to get underway. First, we can multiply or divide f freely by squares,

since those can be absorbed into y2 on the other side of the equation. Second, if
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a prime divides the leading coefficient, we can clear that prime with a quadratic

twist. Suppose the curve had a model y2 = px6 + · · · . Then twisting by p creates a

curve with the model py2 = px6 +· · · and dividing by p clears the leading coefficient.

Factoring the coefficients of the polynomial from Mestre’s algorithm revealed primes

dividing every coefficient, which can also be cleared with the same twist. There were

also primes which sat in the coefficients in the pattern

a6x
6 + p2a5x

5 + p4a4x
4 + · · ·+ p12a0,

for which we can perform an isomorphism y 7→ p6y, x 7→ p2x in order to clear.

Lastly there was one prime (619) which sat in the coefficients in the pattern

p6a6x
6 + p5a5x

5 + · · ·+ a0,

which can be absorbed into x. Having made these cosmetic changes, we’re down to

the model

y2 = 694626095965745028230294955391585x6

− 10481319775165116968116978940843831518950x5

+ 65897603877401152296211405922072845784012150625x4

− 220964253553870508421121288893336483711391122393600000x3

+ 416770493527637700115454733118980958248490124593143822750000x2

− 419247665361735107956943612244433762183404391074557037760182000000x

+ 175724824257935421232943831835203148453580610817862878046361615940000000.

The discriminant of the sextic is −233 · 369 · 5121 · 1713 · 2330 · 7930 · 97277730,

indicating that we still have work to do at these latter three primes. These last
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three primes do not divide the conductor of this curve, suggesting that we should

not twist it any further. This polynomial reduces to the sixth power of a monomial

modulo 23, 79, and 972777. For instance, mod 23, we get f ≡ (x + 18)6. This

suggests that we can improve the model at 23 without a quadratic twist. Following

van Wamelen [54], in this situation the bad reduction can be cleared by replacing

f(x) with 23−6f(23x− 18). The resulting polynomial is separable at 23. (Note that

this is an admissible change of variables.)

Repeating this process for p = 79 and p = 972777, we now have a model with

discriminant −233 · 369 · 5121 · 1713. Magma tells us the conductor of this curve is

23 · 38 · 5 · 17, matching the curve we started with, so there’s some hope that we are

in fact done at this point. Indeed, the Jacobian of the present curve,

y2 = 694626095965745028230294955391585x6 − 1876945031945052561176765681403210x5

+ 2113200824518592887128993300221025x4 − 1268903854932889653881486911346200x3

+ 428587192513964428603625675261400x2 − 77205526485657988588419249701760x

+ 5794905354192578677033254702160,

has a zeta function which matches that of C for every prime p which satisfies

20 < p < 1000. This gives us high confidence that the two curves have isogenous

Jacobians. Magma tells us that the Jacobian of this curve has torsion Z/3 ⊕ Z/3

over Q, as we expected. To actually prove that they are isogenous, let’s check to

make sure C2,1,3 is in the isomorphism class of the previous centered equation. Ask-

ing Magma if the two curves are GL2(Q)-equivalent returns a satisfying answer of

yes; the change of variables needed is as follows. If g(x) is the sextic above and
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f2,1,3 = 13x6 + 42x5 + · · ·+ 112 is the sextic defining the target curve, then with

(a, b, c, d) =

(
1,

11043

101776
,

451987

203552
,

49041

203552

)
,

we get the equivalence

f2,1,3 = 13 · 4445619213153221742415895855104

34393327766239643096923828125
· g
(
ax+ b

cx+ d

)
· (cx+ d)6.
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Chapter 6: Future directions

6.1 Proof of correctness for the method of §5.5

The algorithm we presented in §5.5 was admittedly a proof-of-concept. There

are two hurdles that need to be cleared in order to prove correctness:

1. A bound for the denominators of isogenous Igusa invariants. This is

the least troubling of the issues. In §3.4 we used the fact that j-invariants of `-

isogenous elliptic curves are related by the modular polynomial Φ`(x, y), which

has integer coefficients and a certain shape. From this we concluded that we

could detect if a complex number is the j-invariant of a curve `-isogenous to

E, provided we could calculate it to precision greater than n−`−1, where n is

the denominator of j(E).

The Igusa invariants of Jacobians that are (`, `)-isogenous to a given Jacobian

are known to satisfy a “modular polynomial” [5], though these polynomials

are very cumbersome. Is it possible to analyze them, or variants of modular

polynomials, to decide upon a precision needed in order to determine whether

given complex numbers are Igusa invariants of isogenous Jacobians?

As mentioned, this is more a practical issue than a theoretical one: the algo-
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rithm can be proved correct without knowing the specific tolerance needed.

But it would be nice to remove the language about the program running

forever—it would certainly be preferable to have the algorithm output a neg-

ative answer if no cover actually exists.

2. Proving apparently isogenous Jacobians are isogenous. If one runs

the algorithm on a general genus-two curve C, a curve C ′ is produced which

has a Jacobian which is apparently isogenous to Jac(C). They have the same

conductor and their reductions at primes of good reduction seem always to

have the same zeta function.

The Serre-Faltings method says that two Galois representations are isomor-

phic once their reductions agree at some finite set of primes. This has been

made more-or-less explicit by Livné in the case that ρ is a two-dimensional

representation (i.e., the Tate module of an elliptic curve) in [35]. The finite

needed is a set of primes whose relative Frobenius elements generate a large

subset of the Galois group of the maximal quadratic extension of Q unram-

ified outside the primes of bad reduction for E. As far as I could see, there

is no comparable description of the set needed to show two four-dimensional

representations are isomorphic. Such a description is needed in order to know

how many local zeta functions to calculate before the algorithm can terminate

with a certificate that two Jacobians are isogenous. It would be interesting to

try to mimic Livné in dimension 4.
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6.2 Equations for covering curves

As mentioned in Warning 4.3.2, the Riemann-Hurwitz formula tells us that the

pullback of an isogeny of degree n targeting the Jacobian of a degree two curve should

have genus n+1. At no point in this thesis do we attempt to give equations for these

covers. It would be interesting to come up with a procedure that explicitly calculates

equations for these higher-genus curves. This could be useful for determining the

exact number of points on a curve of genus two using the Chabauty method, as is

done in Coombes and Grant [14].

6.3 What (`, `)-isogenies are possible over Q?

We saw that Mazur’s theorem implies that the only primes that could divide

# Ker(E/Q) are 2, 3, 5, and 7. The parametrizations of Flynn [20] seems to suggest

that a Jacobian can only possess a (5, 5)-isogeny in the presence of
√

5. Is this the

case? If so, Algorithm 5.5.1 would only need to be run for p = 2 and p = 3 when

the input curve is defined over Q.

6.4 Isogenies besides (`, `)-isogenies

We saw that an isogeny whose domain is a suitably generic1 Jacobian of a genus

two curve and whose degree is not a square will have as its codomain an abelian

surface which is not principally polarizable. Taking duals, the same statement is

1absolutely simple, no extra endomorphisms
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true when the Jacobian is the target of the isogeny. How can we describe these

non-principally polarized varities? I believe that the “challenge curve” C1109 = C

of Bloom, with LMFDB label 1109.a.1101.1 [36], has a Jacobian which possesses

such a cover. The reductio mod p of its Jacobian is always a multiple of five, but

the algorithm which calculates (5, 5)-isogenies turned up nothing. Thus there should

be a non-principally polarized abelian surface, defined over Q and possessing a Q-

rational point of order five, for which the quotient is Jac(C). As Igusa invariants

only describe the moduli space of principally polarized abelian varieties, something

else is needed to get our hands on this surface.

If we’re successful in calculating equations for covers, we could potentially de-

termine the genus 6 curve which is an étale cover of C. This non-principally polarized

variety will then accept a map from the Jacobian of the covering curve. Could that

be leveraged somehow? What if we only care about the Galois representation of the

cover at p = 1109 (a prime of bad reduction)?

6.5 Reducible Jacobians

Some curves of genus two have Jacobians which are reducible: they are isoge-

nous to a product of elliptic curves. Two elliptic curves can be “glued together” to

form the Jacobian of a genus two curve precisely when their n-torsion subgroups are

isomorphic as Gal(Q /Q)-modules, subject to a certain irreducibility criterion. This

is a result of Kani (see, for instance, [21]). Explicit formulas are known for gluing

two curves together along their 2-torsion [25] or their 3-torsion [4], and in [37] it
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is suggested that the groundwork has been laid for generating formulae for gluing

elliptic curves along isomorphic 5-torsion.

Can we use these constructions to create genus two curves with specified tor-

sion over Qab, or even better, specified primes dividing # Ker(C/Q)? For instance,

without using much thought we get the following result.

Proposition 6.1. Let G be one of the groups which occurs in Chou’s classification

[10] of possibilities for Tors(E(Qab)). Then G occurs as a subgroup of Tors(Jac(C)(Qab))

for some curve C of genus two.

Proof. By results of Rubin and Silverberg [50], there is an infinite, explicit family of

elliptic curves whose 2, 3, or 5-torsion as a given elliptic curve. Let E be a curve with

Tors(E(Qab)) = G. Crucially note that no member of Chou’s list is divisible by 30,

so we can choose a prime p ∈ {2, 3, 5} which does not divide #G. Let E ′ be a curve

from the Rubin-Silverberg family which satisfies E[p] ∼= E ′[p] as Galois-modules

with the property that E and E ′ are not isogenous over Q. (Recall that Q-isogeny

classes are very small—at most eight curves!—so this is easy to arrange.)The lack of

an isogeny between the elliptic curves guarantees that the irreducibility condition is

satisfied, so Kani’s results say that E × E ′ possesses a (p, p)-isogeny to a Jacobian

of a genus two curve. Call this curve C. Now the relevant torsion on E is prime to

p and so descends ot the quotient, hence is torsion of Jac(C) defined over Qab.

Pushing these ideas further would require determining something about what

torsion is possible among curves occuring in the Rubin-Silverberg family. Is this

feasible?
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6.6 Torsion of Jacobians over Qab

Mazur’s result on the possible torsion structures of an elliptic curve over Q is a

powerful tool that underlies a lot of the work that has been done for torsion of elliptic

curves since. In particular, the isogeny theorem that states the possible orders of

cyclic isogenies between elliptic curves defined over Q has Mazur’s result as one of

its cornerstones. This theorem in turn is a key ingredient in Chou’s classification of

possible torsion structures for E(Qab).

In genus two there is no corresponding theory; in fact, the situation is almost

embarrassing—not only is there no finite list for the possibilities of Tors(Jac(C))(Q),

no one has yet been able to rule out any single number as never occuring. Howe

in [24] says that a point of order n has been found on a genus 2 Jacobian for all

1 ≤ n ≤ 36 except n = 31, as well as n ∈ {39, 40, 45, 48, 60, 63, 70}. Of course

torsion over Q certainly exists over Qab. No attempt to collect data over Qab has

been done, as far as we are aware. It would be interesting to see to what extent

we could use the promise of a result like the genus 1 isogeny theorem to attempt

to find examples of torsion over abelian number fields. Even wandering in the dark

base-changing curves to quadratic extensions might offer something new.

It’s a personal belief that n ∈ {42, 56, 72} should be possible among the family

of curves with reducible Jacboians; if the questions from the previous section had

satisfactory answers then there would be hope of gluing two elliptic curves together

along their 5-torsion, one of which possessed a point of order 8 and the other a point

of order 9, for instance.
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6.7 Determing Ker(E/Z) or Ker(E/OK)

In §2.3 we presented an algorithm that calculates Ker(E/Q), and mentioned

in passing that it “really” calculates Ker(E/Z[ 1
N

]), where N is the product of the

primes of bad reduction. Is it possible to say what is happening at the primes

of bad reduction in order to provide a statement regarding Ker(E/Z)? We saw

that examples with # Ker(E/Z[
√

29]) > 1 are possible, but is it possible over Z?

Katz and Lang in [32] go through the example of the modular curve C = X0(N),

which naturally has X1(N) as a cover, albeit not an étale one. The maximal étale

subcover between X1(N) and X0(N) is called the Shimura cover, and is a cyclic

torsor of X0(N) over Q. However, they show Ker(X0(N)/Z) is trivial. So I don’t

know an example of a nontrivial element of Ker over Z.

The key to an answer may come from Bloch’s theory; see the following section.

6.8 Relationship to bigger theories

Two other connections should be pointed out before we close this section, both

with similar flavor of passage to a higher codimension.

1. Although Katz and Lang discuss “geometric class field theory” in their paper

defining Ker, the usual class group of algebraic number theory is not a Ker.

However in Bloch’s paper [2] a quotient of πab
1 does generalize the class group

for arithmetic surfaces, which Bloch calls F0K0(X). This group is that part

of K0(X), the Grothendieck group of coherent OX-modules, whose support is
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only on a set of closed points of X. Bloch proves that this group is finite; can

it be calculated?

2. An intriguing paper of Rössler and Szamuely [49] point out that Ribet’s result

[48] that Tors(A(Qab)) is finite can be interpreted in two interesting ways: first,

as a statement about Galois-fixed points of certain étale cohomology groups,

and second as a statement about the torsion of a Chow group CH1(CK(µ)).

They conjecture CHi should also have finite torsion for i > 1. Is this accessible

for i = 2?
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Appendix A: Cardinality of Jac(C)(Fp)

In this appendix we’ll calculate the cardinality of the Jacobian of a curve over

a finite field, in the process proving Proposition 4.3.4. The basic facts we need are

the Weil conjectures and the relationship between the étale cohomology of a curve

and its Jacobian. Throughout we assume that C is a curve of genus g over the finite

field Fq; we do not demand that q is prime.

Definition A.1. Let X/Fq be a variety. Its zeta function is the power series

Z(X, t) = exp

(
∞∑
n=1

#X (Fqn)
tn

n

)
.

The following conjectures, proven by Dwork, Grothendieck, and Deligne, cover

the properties of this function. (See Milne [42] for a longer introduction and the

proof.)

Theorem A.2 (Weil Conjectures). Suppose X/Fq is a variety of dimension n.

1. The power series Z(X, t) is a rational function in t. This rational function

has a factorization of the form

Z(X, t) =
P1(t)P3(t) · · · P2n−1(t)

P0(t)P2(t) · · · P2n(t)

with each Pi(t) a polynomial with integer coefficients. Write Pi(t) =
∏

(1 − αijt)

for complex numbers αij. P0(t) is 1− t and P2n(t) is 1− qnt.
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2. There exists a number E = E(X) whereby

Z(X, q−nt) = ±q
nE
2 TEZ(X, t).

This functional equation implies that αij is equal to qnα−1
(2n−i),k for some k.

3. The complex absolute value of aij is q
i
2 for every i, j.

When X = C is a curve, the zeta function has only one mystery: the poly-

nomial P1(t) in the numerator. This polynomial has an interpretation as the char-

acteristic polynomial of the Frobenius automorphism of C acting on the first étale

cohomology H1
ét(C,Q`). We won’t pursue this here, except to note that this implies

that degP1(t) = 2g. As i = 1 is in the “middle” as far as Conjecture 2 is concerned,

the 2g inverse roots of P1(t) must take the shape α1, . . . , αg,
q
α1
, . . . , q

αg
.

Proposition A.3. For a variety C of dimension one, the polynomial P1(t) takes

the shape

1 + a1t+ a2t
2 + · · ·+ agt

g + qag−1t
g+1 + q2ag−2t

g+2 + · · ·+ qgtg.

Proof. The coefficient on tn is the sum of all products of (reciprocal) roots of car-

dinality n. For k < g, there is an obvious bijection between subsets of the set of

roots of cardinality k and subsets of the set of roots of cardinality g + k—map a

set to its complement. Since the product of all the roots is qg, this map will take a

summand in the coefficient on tk and send it to qg divided by that summand, which

is a constituent of the coefficient of tg+k.

Meanwhile there is an involution on the collection of subsets of the roots of

P1 of cardinality n induced by β 7→ q
β
. This map will send a product of k roots
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to qk divided by that product, for a reason similar to the argument in the previous

paragraph: the product of all the elements of a subset and its involute is qk. It

follows that ak, the coefficient on tk, can be expressed as

∑
S⊂{roots}

#S=K

∏
β∈S

qk

β
.

while the coefficient on t2g−k can be expressed as

∑
S⊂{roots}

#S=K

∏
β∈S

qg−k

β
.

These coefficients differ by a factor of qg−k, as needed.

This formula implies that the numbers a1, . . . , ag determine the entire zeta

function, from which we can recover the cardinality of C over every extension of Fq.

It goes the other way as well:

Corollary A.4. Let C/Fq be a curve. The numbers #C(Fq), . . . , #C(Fqg) deter-

mine #C(Fqn) for all n ≥ 1.

Proof. Take logarithms on both sides of the equality

exp

(
∞∑
n=1

#C (Fqn)
tn

n

)
=

∏2g
i=1(1− βit)

(1− t)(1− qt)

and expand in power series centered at t = 0. (We don’t need the extra information

from Conjecture 2 here.) The left side comes expanded for us: the coefficient of tn

is
#C(Fqn )

n
. On the right, the usual formula for log(1− x) implies the coefficient on

tn is

qn

n
+

1

n
−

2g∑
i=1

βni
n

.
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Thus #C(Fqn) = qn + 1 −
∑2g

i=1 β
n
i . Supposing the numbers #C(Fqn) are known

for n = 1, . . . , g, we now have access to the first g power sums
∑2g

i=1 β
n
i . Since the

elementary symmetric polynomials can be recovered from the power sums, this gives

us access to the first g coefficients of P1(t). By Proposition A.3 above, we now know

all of P1(t), and hence Z(t) has been recovered.

We now have a reasonable handle on the cardinality of the set of Fq-rational

points of a curve. What of its Jacobian? There are two key facts that are needed

to link the theory we’ve developed to the theory we’re seeking.

Theorem A.5. Let A be an abelian variety over an algebraically closed field. The

étale cohomology ring H∗ét(A) is the exterior algebra on H1
ét(A).

Theorem A.6. Let C be a curve over an algebraically closed field and J its Jaco-

bian. The groups H1
ét(C) and H1

ét(J) are isomorphic.

Proof. These facts are contained in one place in Poonen’s notes on rational points

on curves [47].

The second fact means that P1,C(t) = P1,J(t). The first fact then says that,

if α1, . . . , α2g are the roots of P1,C(t), the roots of Pn,J(t) are the various n-fold

products of the αi.

Corollary A.7. # Jac(C)(Fq) = P1,C(1).

Proof. As in the proof of Proposition A.4, the number of points of the Jacobian is

q + 1 minus the sum of the roots of the polynomials Pi,J(t), with signs taken to
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account for whether the term comes from the numerator or the denominator. We

such we get

# Jac(C)(Fq) = q + 1−
2g∑
i=1

αi +

2g∑
i=1

αiαj − · · · .

Since the i-th elemntary symmetric polynomial in the roots of P1,C(t) is the i-th

coefficient of P1,C(t), this sum is actually a gory way to write P1,C(1).

In theory we can use Newton’s identities relating power sums and elementary

symmetric polynomials to derive an expression for the cardinality of the Jacobian

in terms of cardinalities of the curve. These get complicated quite quickly, but for

g = 2 it is manageable.

Proposition A.8. Let C/Fq be a curve of genus two. Then

# Jac(C)(Fq) =
#C(Fq)2 + #C(Fq2)

2
− q.

Proof. Write P1(t) = 1 + at+ bt2 + apt3 + p2t4 for the common P1 shared by C and

Jac(C). Let α1, α2, α3, α4 be the four (reciprocal) roots of P1. Write ei for the i-th

elementary symmetric function in the αi and pi for the i-th power sum of the αi.

We have

−a = e1 = α1 + α2 + α3 + α4

b = e2 = α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4

#C(Fq) = q + 1− p1 = q + 1 + a

#C(Fq2) = q2 + 1− p2 = q2 + 1−
(
a2 − 2b

)
,

the final equality coming from Newton’s relation p2 = e1p1 − 2e2. The term a2

doesn’t appear in our “target” P (1) = 1 + a + b + ap + p2, so we’ll eliminate it by
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calculating

#C(Fq)2 + #C(Fq2) =
(
q2 + 2q + 1 + 2aq + 2a+ a2

)
+
(
q2 + 1 + 2b− a2

)
,

which simplifies to 2q2 + 2aq + 2b + 2a + 2 + 2q. Subtracting 2q and dividing by 2

hits our target.

I’ve never seen formulas for higher genus, but they can in theory be worked

out in a similar fashion. The complexity of the set of divisor classes of degree zero

that are linearly equivalent to multiple effective divisors grows as g does; this implies

(thinking motivically) that the formulas ought to get more and more elaborate. For

instance, if C is a curve of genus three, its Jacobian satisfies

# Jac(C)(Fq) =
2#C(Fp3) + 3#C(Fp)#C(Fp2) + #C(Fp)3 − 6p#C(Fp)

6
−1. (A.1)

The reader can check this by taking the identites

−a = e1 = α1 + · · ·+ α6

b = e2 =
∑
i<j

αiαj

−c = e3 =
∑
i<j<k

αiαjαk

#C(Fq) = q + 1− p1 = q + 1 + a

#C(Fq2) = q2 + 1− p2 = q2 + 1−
(
a2 − 2b

)
#C(Fq3) = q3 + 1− p3 = q3 + 1−

(
−a3 + 3ab− 3c

)
and plugging them into the right side of the expression above. One should get

# Jac(C)(Fq) = 1 + a+ b+ c+ pb+ p2a+ p3

once the dust has settled.
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