Systolic Implementations of Up/Down-dating Cholesky Factorization Using Vectorized Gram-Schmidt Pseudo Orthogonalization

Loading...
Thumbnail Image

Files

TR_91-23.pdf (666.61 KB)
No. of downloads: 812

Publication or External Link

Date

1991

Advisor

Citation

DRUM DOI

Abstract

We propose a new class of hyperbolic Gram-Schmidt methods to simultaneously update and downdate the Cholesky factor of a sample covariance matrix efficiently with applications to sliding window recursive least squares (RLS) filtering problems. Several vectorized versions of this Gram-Schmidt approach are introduced, which include conventional column-updating, modified row/column- updating, and square-root-free methods. Comparisons to the existing known methods, such as Householder transformation and Givens rotation, are also given. Upon further reformulating these algorithms, a systolic triarray structure is proposed to facilitate VLSI implementations.

Notes

Rights