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ABSTRACT

We propose a new class of hyperbolic Gram-Schmidt methods to simultaneously update
and downdate the Cholesky factor of a sample covariance matrix efficiently with applica-
tions to sliding window recursive least squares (RLS) filtering problems. Several vectorized
versions of this Gram-Schmidt approach are introduced, which include conventional column-
updating, modified row/column-updating, and square-root-free methods. Comparisons to
the existing known methods, such as Householder transformation and Givens rotation, are
also given. Upon further reformulating these algorithms, a systolic triarray structure is
proposed to facilitate VLSI implementations.

*This work is partially supported by a UC MICRO grant and the NSF grant NCR-8814407. It is also
partially supported by NSF grant ECD-8803012-06.






1 Introduction

The QR decomposition (QRD) has been proved to be numerically stable and suitable for
parallel VLSI implementations in adaptive signal processing applications such as adaptive
antenna arrays, system identification, etc. [2,5,6,9,11,14,19,18,20,22,24,25]. Until now, in-
corporating a forgetting factor to partially discard the effects of those old observed data is
among the most frequently used techniques under nonstationary conditions. This method
is fairly simple and only requires updating the QRD, hence is widely used for VLSI imple-
mentations [14,18,19,20]. Another attractive alternative for time-varying adaptive signal
processing is to employ a fixed-window so that this window can slide in (include) new
data and slide out (discard) old data as time progresses [2, pp. 216], [13, pp. 189]. The
sliding window scheme entails both updating (accepting new data) and downdating (re-
jecting obsolete data) at each iteration as we recursively modify the least squares (1.S)
solution. Previously, researches have been focused on using the hyperbolic Givens rotation
(HGR)[1,12] and hyperbolic Householder transformation (HHT)[22] to effectively downdate
the undesired data. However, the HGR involves higher computational cost and the HHT
requires square-root operations. With these reasons, here we propose another class of simple
and efficient hyperbolic methods to perform downdating, namely, hyperbolic Gram-Schmidt
methods. In addition to the sliding window RLS filtering, downdating some undesired spu-
rious (badly contaminated by noise or interference) data is also useful and of great interest
for some applications [22].

Our attention will be focused on recursive vectorized block data processing, which gen-
eralizes current scalar-valued (e.g., Givens rotation) processing and can possibly reduces the
I/O cost in hardware implementations. For some computing machines, computational speed
is much slower compared to the data movement or the overhead to establish data transfer

degrades the throughput rate; this is the reason why many algorithms are being reformu-



lated into vector-pipelined computing [8, pp. 35] with an aim to speeding up computation
and increasing the degree of parallelism in computing. Vectorized processing also offers the
advantages of reducing arithmetical operations and possibly minimizing the round-off errors
occurring in the intermediate stages in that the wordlengths in the internal registers can be
enlarged.

A key computation for a sliding-window RLS filtering problem is to modify the Cholesky
factor of the sample covariance matrix X7 X recursively as new data arrives and old data
leaves. If we denote X, and X, as the new and old data matrices to be updated and
downdated respectively from the previous data matrix X, then our goal is to obtain the
recent Cholesky factor R of X7X from the knowledge of the previous one R, where X is
the recent data matrix which is obtained by detaching X,4 from X and attaching X,.,

to it. It can be shown that RTR = RTR+ XL X, ew — XoTldXold [21], which amounts to

new

T

I XTI to zero out X, and

performing a pseudo orthogonalization on the matrix [RT X
Xo1q via updating and downdating respectively. To generalize the QRD from orthogonality
to pseudo orthogonality, we reformulate several concepts in computational algebra, such as
inner-product, norms, etc. Following the introduction of the pseudo Cholesky factorization,
a hyperbolic Gram-Schmidt (HGS) procedure and its simile, the hyperbolic modified Gram-
Schmidt (HMGS) procedure are derived to perform pseudo orthogonalization (MGSPO)
decomposition.

Similar to the HHT, these new methods can also perform rank-k updating and rank-£
downdating simultaneously, and are indeed generalizations of the conventional GS and MGS
methods where only updating can be performed. To further avoid the cumbersome square-
root operations when implementing a parallel processing VLSI structure, square-root-free
versions of the HGS and HMGS methods are also provided. If n = k£ 4 £ is much smaller

than the rank of R, say p, then we can tacitly reformulate these MGS algorithms such

that the computational cost can be greatly reduced from O(np? + p3/3) in conventional



approaches down to O(np? + 2n%p) flops in our new proposed schemes. We also note that
the complexity of the previously known HHT [22,26,19] is of O(np? 4 1.5p?), while the HGR
is of O(np? + 1.5np) [1]. In addition, this modification also makes the MGS algorithms
suitable for systolic processing where massive parallelism in computation is feasible.

In Section 2, the pseudo Cholesky decomposition is proposed. The downdating of the
Cholesky factor is considered in Section 3 and the up/down-dating of multiples rows is
presented in Section 4. Finally, a systolic triarray for vectorized up/down-dating employing

the MGSPO method is proposed Section 5. A conclusion is then given in Section 6.

2 Pseudo Cholesky Decomposition

Let Z be an (m+n) X p matrix concatenated from two real-valued data matrices A € R™*?
and B € R™*? i .e.,
Z= : (1)
B
An H,, ,-pseudo sample covariance matriz of Z is defined as ZTHm/nZ, and its correspond-

ing H,,/,-pseudo Cholesky decomposition is defined as follows:
RTR=7"H, %z = ATA- B"B, (2)

where
I
Hppn = e R(m+n)x(mtn) (3)
"In
is called a pseudo identity or signature matrix, and the p X p upper-triangular matrix R

(assuming that R exists and has full rank) is called the H,,/,-pseudo Cholesky factor. For

convenience, from now on we will suppress (-),,/, in H unless it is necessary.



2.1 Notations

An H-pseudo inner product is defined as
<w,v>g=ulHv=<v,u>g, Vu veR"™" (4)
and an H -pseudo vector norm is defined as
lullg = VuTHu, VueR™™ such that w’Hu > 0. (5)

An (m+ n) X p matrix Q is said to be H-pseudo orthogonal if QT HQ = I, namely,

qf
T
qsz
Hlqiq - qp] = (6)
| 4 |
lally  <quqe>m -+ <dqi,qp >H
<d1,92 >H ||Q2||,2q - < q2,9p >H g
i <4qu,q9 >H < 42,9, >H - “qP“%I |

Equivalently, we can say that ¢ has H-pseudo orthogonal columns; which means that for

any two columns of @, their H-inner product satisfies

1 ,ifi=j.
< 4qi,qj >H= (7)
0 , otherwise.

2.2 Pseudo Orthogonalization Algorithms

We denote an H -pseudo orthogonal decomposition of Z as

Z = (@R, (8)



where Q € RU™T™MX? is H.pseudo orthogonal, and R is a p X p upper triangular matrix.
Notice that R is indeed the H-pseudo Cholesky factor of the H-pseudo sample covariance

matrix of Z in that

ZYHZ = RTQTHQR = RTR. (9)
Rewriting eqn. (8) as
11 Ti2z - Tip
To2 -+ T2p
(2122 -z, ] =[q1q2 -+~ qp ] E (10)
b /r‘pp ~d
leads to
Zi = Tdn + Pz + o Qi = Y1y, i=1,...,p (11)
j=1

Premultiplying zJ H on the left-hand-side and r11q} H on the right-hand-side to the first

equation of eqn. (11), and also noticing that ||qq||%, = 1, we have

ri1 = ||z flm (12)

and
q = zl/Tll- (13)

By continuing this procedure, at the ¢—th step, 1 = 2,..., p, all of the ¢ nonzero clements
in the 7 — th subcolumn of R can be computed by pseudo correlating the i — th equation in

eqn. (11) with q1,qo,...,q;_1 respectively, i.e.,
Ty =< q;,% >H, Jj=1,...,1—1 (14)
and r; and q; are given as follows:

rii = ||Zi — radqy — o= rim1iQica||g (15)



and
qi = (zi — rid1 — -+ — Pic1,i%-1)/Tii- (16)
Therefore, a Gram-Schmidt pseudo orthogonalization (GSPO) or hyperbolic Gram-

Schmidt (HGS) procedure is derived as follows:

Algorithm 1 (Gram-Schmidt Pseudo Orthogonalization)
for j=1,---,p,do
t = Zj ;

fori:=1,---,5—-1, do

Tij =< Q;,Zj >H;

t=1-—7i9;;
end;
rii = |t ;
q; = t/745;

end.

To derive the modified Gram-Schmidt pseudo orthogonalization (MGSPO), which is
numerically stable, we first take the pseudo inner products of every equations in eqn. (11)

with z; and also notice that < q;,q; >g= 6;;, so we have ||z¢||} = rd, q1 = z1/711 and
< Z1,%Z; >g=T11"L4, (=2,...,D. (17)

Thus, the first row of R, 711, r12,...,71p, and qy, the first column of @, can be computed.

Next, subtract r1;q; from z;,

2 =2 —Tuq1 = Y Tjid;. (18)
J=2



Similarly, the second row of R,rg9,...,72p, and the second column of @, qq, are ready to
compute. Continuing this procedure, R and @ can be fully known. This process is essentially
a modified Gram-Schmidt [3,4,23] version of pseudo orthogonalization method in that the
columns of Z are successively subtracted by those pseudo projected vectors determined
by pseudo inner products and R is computed row by row while @ is determined column
by column. A modified Gram-Schmidt pseudo orthogonalization (MGSPO) or hyperbolic

modified Gram-Schmidt (HMGS) algorithm is thus given as follows:

Algorithm 2 ( MGSPO (I) ) [row-wise]
fori=1,---,p,do
rii = ||zl ;
Qi = 2i/Tii ;
forj=:+1,---,p,do
Tij =< i, Zj >H ;
Zj = 2j — Qi ;
end;
end.
This algorithm requires about (m + n)p?/2 multiply-and-add, p divisions and p square
roots operations, namely, O((m + n)p?) flops. It is noted that another MGSPO algorithm

where R is computed column by column [10], can also be derived in a similar way, and is

given as follows:

Algorithm 3 (MGSPO (I1)) [column-wise]



for j=1,-..,p,do
fori=1,---,7—-1, do
Tij =< Q;,Z; >H;
Z; =2Zj — Tijq; ;
end;
ris = llZjlla 5
qQj = 2j/rj; ;

end.

Based on the procedures above, we have the following theorem.

I
Theorem 1 (Pseudo Orthogonal Decomposition) Forany Z € RU"TIXP_ Jf =

an H-pseudo orthogonal decomposition of Z, 7 = QR, exists and is unique subject to the
signs of each row in the upper-triangular matriz R and the signs in the columns of the

pseudo orthogonal matriz Q, if and only if ZTHZ is positive definite.

The proof is omitted. A similar theorem for an orthogonal QR decomposition can be found
in [8, pp. 217].

2.3 Square-Root-Free Triangularization Algorithms

For many computations, especially in VLSI implementation, it is advantageous to reduce
the number of square roots operations or even eliminate them altogether. To this end, we

can pull out the inverse of the diagonal elements of R and decompose R into

R = DY’R, (19)



2
1/r11 T TiiT12 o T11T1p
1/r T2, . roor
22 22 2272p
2
] l/rpp_ i Top |

It is noted that the operation of Dll/f is only stated here for symbolic purpose; our interest
is essentially to find R 5(D p can be obtained from the diagonal elements of R ), or,
r?j, for1 < ¢ <p;i<j<p. Itis well known [17,4] that the optimum coefficient vector
of a least squares problem can be computed by firstly upper triangularizing the augmented
data matrix via orthogonalization and then followed by performing back substitution on
the upper triangular matrix. The optimum coefficient vector will not be affected if the
upper triangular matrix (Cholesky factor) is multiplied by any nonzero diagonal matrix.
In our case, if only the least squares solution is of interest, then it makes no difference in
obtaining R or R ;,, while the latter can be computed with no square roots operations. A

square-root-free MGSPO procedure [4] to obtain R , is given below.
Algorithm 4 (Sqrt-Free MGSPO)
for:=1,...,p, do
for j=1,...,p,do
TiiTi; =< 2i,%2j; >H ;
zj = z; — (ririj/r})zi ;
end;

end.

Tor some applications, a complete knowledge of R is desired. In these cases, R can be
computed from R , by dividing each row of R ; by the square root of its leading diagonal

element.



3 Downdating the Cholesky Factor

In adaptive signal processing, it is often necessary to keep the Cholesky factor only, and then
successively update/downdate this upper-triangular matrix as new/old data rows become
available. Updating via orthogonal transformations such as Householder transformation
or Givens rotation method are well known [8,19,20,22]. Here we only consider the Gram-

Schmidt methods. Eqn. (1) now becomes

™11 T2 -+ Tip
Tag -+ Tp
R ,
Z = = R Nl b (20)
D
Tpp
d; dy --- d,

with B € RP*P being upper-triangular and D € R™*? the appended data rows to be
discarded. We are interested in R € RP*P such that RTR = ZTHZ = RTR — DTD. The
signature matrix becomes H,,. If we denote Z (©) = Z, then the sqrt-free MGSPO can be

rewritten as follows:

fori=1, ..., p,do
~ i—1
o=l s

forj=1:41, .-, p,do

fofij = < zl(-’._l),zg"”l) i
zgi) — z§i~1) _ ﬁ% zg,’_l) ;
end;
end.

10



Notice that
79 = (28 e e REFIXED imt oyt (21)

In this scheme, even though we can take advantages of the zeros already in R to reduce
the computational cost by half, the number of flops is still of the order of p to the third

power (where p is the number of the columns of R) , and is given by

p

Sl + - i+ 0+t -] = 207+t + L4 2 ()

i=1

This arises from the computational load in obtaining the lower right R. To see this, it is
noticed that the work to compute 7;;,7 = 1,- - -, p, grows linearly with the index i because
pseudo inner products of size n + ¢ are required in computing the i-th row of R. This
load imbalance among row computations while downdating(or updating) a Cholesky factor
makes the MGS methods less favorable especially under massive-data(very large p) parallel
computing conditions. Another drawback of this unmodified MGSPO(same for GSPO)
is the difficulty in implementing an efficient VLSI architecture to accomplish downdating,
although the sqrt-free computation is very attractive.

To circumvent these difficulties, the previous algorithms must be reformulated to reduce
the order of computation and hopefully also to facilitate VLSI processing.

Next we will reexamine the operations involved in computing 7’s and successive modi-
fication of the appended data block, D. Then an improved algorithm can be derived. At
each step, one row of the updated Cholesky factor will be obtained. The key idea is to
represent the modified data in the old Cholesky factor in terms of the modified appended
data. To clarify this idea, we will derive this algorithm in the Appendix one step by step.

A new MGSPO algorithm with rank-n downdating is thus given below.

Algorithm 5 New MGSPO rank-n downdating algorithm

11



Initialization:

d¥=d;, i=1,--p.
Gy = I,.
Recursion:

fori=1,---,p,do

gi=Gidi™;

=k - df T Gy alf =g gl
Gi = Gi—l - 'g%gl_T ;
forj=i+1, --- ,p,do
Ty Tij = Ty Tij — dz(»z_l) Gi_ dgz_l)
= TiTij — dgi_l)ng‘ ;
() (1-1) _ Fii 7y g(i-1)
dj’ =d; "7 - =t di
end;
end.
It can be shown that this algorithm requires
P P
Z n?4+n4 (n?+n)+ Z (n+n)
i=1 j=i+1

g: ;s

H

} } =np(p+2n+1) (23)

flops. If p > n, this new method needs about O(np?) flops, while the unimproved MGSPO

method needs about O(np?+p®/3) flops. Therefore, asymptotically when 2p%+3p > 12n2+

6n, it is more efficient to use this new method. As for a conventional HGR [1](excluding

fast sqrt-free Givens methods), it can be shown that it needs

p

n-y [2+4(p—i)] = 2np’

=1

12



multiply-and-add, np square-root and 2np division operations, or, O(np? + 1.5np) flops.
HHT [22] requires

P

Yn+3)+2(n+1)(p—1i)]=(n+1)p*+2p

i=1
multiply-and-add, p square-root and (p? — p)/2 division operations, or, O(np*+ 1.5p?) flops.
Our newly reformulated MGSPO becomes very attractive especially when p is much larger

then n among existing methods.

4 Simultaneously Up/Down-dating Multiple Rows

Similar to the hyperbolic Householder transformations(HHT) proposed by Rader and Stein-
hardt [22], our MGS pseudo orthogonalization can also perform rank-£ updating and rank-{

downdating simultaneously as needed in sliding-window and/or robust least squares prob-

lems.
Let ) )
R
Z = Xnew
] Xoug ]
and
I,
H = Ik )

—I
then an algorithm for simultaneously up/down-dating the Cholesky factor R can be derived

in the similar way. All we need to do is to slightly modify the initialization in Algorithm

Xnew Ik 0
5 as follows: replacing d; and I, with the i—th column of and

Xold o -7

respectively. After X,e, and X,;q are zeroed out in an H —pseudo orthogonal manner, the

13



new Cholesky factor R will satisfy

R'R=R"R+ XL Xpew — X5y Xo1d

new

as indicated previously.

5 Block Systolic Triarray Using MGSPO

Suppose under sliding window scheme, we want to up/downdate the Cholesky factor as the
vector-valued new and old data of fixed size k = £ are available. We can either perform
updating and downdating alternatively or simultaneously. Let us take the simultaneous
case as an example and show this can be done in a block systolic triarray.

It is well known that systolic arrays possess many desirable properties in VLSI imple-
mentations [15,16]. Gentleman and Kung [7] first proposed a systolic triarray to perform
QRD updating using Givens rotations. Later Liu, Hsieh and Yao [19] proposed a similar
stucture using Householder transformations. Based on these, we propose another systolic
structure using the reformulated modified Gram-Schmidt methods to up/down-date the
Cholesky factor.

For simplicity, we will focus on recursively up/down-dating R 5, the sqrt-free version,
instead of the Cholesky factor R itself. Suppose 7;; = 'r'?i and 7;; = 775 in eqn. (19). Fig.1
is a block MGSPO systolic array without square roots. In this array, we assume all the
local memory cells in the processors store 7;; and 7;;, the corresponding elements of R ,, in
eqn. (19) Before the new and old data blocks get in the triarray, they need to be skewed
and interleaved, i.e., each processor will fetch from its above 2 data blocks of the same
size k, one new and the other old. From Algorithm 5 and Section 4, we can see that the
initialization corresponds to fetching data blocks from the above; the first nested loop (loop
¢) in the recursion corresponds to the job of a boundary processor; and the second nested

loop (loop j) to that of a regular processor. By further noting that this triarray store R 5,

14



we can thus formulate the required operations in the processors. The boundary and regular
processor elements (PEs) of a block MGSPO systolic array without square-roots work as

follows:

Boundary PE:

g = Giadg
Gi = Giq- 55,
Tii
ng = Ti dzng
Regular PE:
ro= T —dl g
d.
7 _/ 1
d; = d; Tij;;,

6 Conclusions

We have shown the derivation of a new class of hyperbolic Gram-Schmidt methods to pscu-
doly orthogonalize a data matrix with applications in sliding window RLS filtering problems
and rejecting spurious data which is very important in time-varying signal processing. To
facilitate vector-pipelined processing, all data is considered as vector-valued. However, the
inherent computational load imbalance for the Gram-Schmidt method in up/down-dating
the Cholesky factor impedes its application under massive data computation. This is the
first successful effort in tacitly uniformly redistributing the computational load and greatly
reducing the computational cost. By taking the advantages of parallel computation, a
Gram-Schmidt systolic array structure is proposed and proved to be possible in up/down-
dating Cholesky factorization. We also compare our methods with the existing methods,

such as hyperbolic Householder transformation and hyperbolic Givens rotation. Because

15



Gram-Schmidt methods can be sqrt-free, it is very promising in adaptive signal processing

and also in VLSI implementation.

Appendix

We will derive the algorithm 5 in details here.

Step 1.
™1 Ti2 Tip
T22 T2p
7O =
Tpp
FIORC a®
VA1, F1p} (24)
- 0
A
722 T2p
= z(1)
Tpp
aft) o
{71, -+, 1p } can be computed, while {rg) Sere, r&) } and {dgl) Seey d;l) } are
modified as follows:
o= rh - d®a?, (25)
T
fllflj = T’y — dg()) d_EO) > .7 =2, gy (26)

16



dgl) = d§0) - %ﬁldg()) 9 ] = 25 Y (27)

11
1 T1171;5 .
T&]) = Ti;— 72 Jrlla ]:2,"',]7- (28)
11

What we need now is to express rg) in eqn. (28) in terms of d;l) in eqn. (27). With

eqn. (25) and (26) substituting in eqn. (28), it can be shown that

TS) = Tindg())ngl) = f1Td§1)a .] = 23 *y Dy (29)
with
f = a0, (30)
11
Step 2.
— fral” 7V ... fralV -
T22 T23 Top
Tpp
1 1 1
_dg) dg) dg,)_
’U’ {7‘:227""7‘:21)} (31)
[ 7a® ... fa?)
B
733 . 7.317 B Z(Q)
Tpp
dg2) d}(ﬂ?)

17



{22 ,--+, T9p } are computed and {7'13 yre e, 7"1;;) } {7‘2 Seey rgi) }and {d:(f)

are modified as follows:

-2
T22

Toafa;

2, —d" al) + a) g, £ af)
a7 )

ragra; — d$)" a4+ a{V g £7alV)

raare; — (1 = ££1)dD, j=3,..,p,
d§1) 7‘227‘23 d(1)

732
A1) Ta272; (1 flT(d(l 7‘2~227’2jdg1))

j:3a"'ap7

22
fle(2) ’ j: 3""71)7

T22T2]

Toj — Too, J=3,-,p.

75y

,d? )

(32)

(33)

(34)

(35)

(36)

Again, by using eqn. (32, 33, 34), rg) in eqn. (36) can be expressed in terms of d§2)

in eqn. (34), namely,

(2)

1"2]

with

1 TooT2; o
—[raaraj — =13
T22 T59

1 T
——{fmj +dM (1 — £ £7 )d(.”

22272152, + a7 (1 - £,£7)dSV)}
22

L (1 - £y Al - 2 )
22 722

1 T
—d{" (1 - £l
T22

f2Td_§2)7 ] = 37" D

1
£, = —(I - f,£1)al".
T22

18
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Step 3.

7 frald) .. f{df”
2
o Fa® - fa?
733 734 T3p
7(2) = - e T
Tpp
\. a® a® 4@
§ {Faz, > Tap} (39)
[ 3
fa )|
Za® ... ffal
e e
T44 Tap EZ(B)
Tpp
L d513) d;,a) ]
ey s computeand () s 7)Ao 1 )

and {df’) PR d§,3) } are updated as follows:

2= g2 - d® a4 a? neldl + a6 al?)

T3z =
= 2, =@ (1 - 1f] - £, (40)
T T
Faafz; = T33T35 — dﬁf) d§2) + d@?’ flf{‘rdgm

19



+dP)" €7

T
= T33T3; — d;(f) (I- fiff — f2f2T)d§'2) (41)
d,§3) = d§2) - iﬁdi(}2) ’ .7 = 4’ ARy 2 (42)
T33
2) T3y
r? = @ - %dg2>)
= f7dY, j=4,.-.,p, (43)

7’1 .
= e - )

= szdg?)) ’ j:4"",p7 (44)
T35 .
7‘.'(3?) = 7'3j'"73‘2'r33’ J=4,--,p. (45)
733
Now, rg:;-) in eqn. (45) can be written as
1 T
) = r_%dg” (I~ ff — ££]) a® (46)
= fgd§3)7 j:47"'7p7 (47)
where
1
fy = —(1 - it - £,i])af). (48)

Proceeding in this way, it can be shown that

Step i

=rk—d (ol o L)l (49)
Fiifsj = Titij — d,(i_l)T(I —fiff —... fi-lf?_l)d?"” , (50)

@) _ qli-1) _ Tij g(i-1)
djf=d; - godi (51)
PO =gldld ko1 =i, (52)
f; = —17(1 £ — = f7 )al Y, (53)

(23

20



By further defining two new quantities,

g = rnfieR”, i=1,--,p (54)

Gi = I-fff — .. —£fF i=1,...,p, (55)
with Gog = I, , a recursion of formula can be easily derived from eqn. (54) and (53),

Gi_d! Y, (56)

8i

oT
Gi = Gii~fff =Gy - gi%’— e R™", (57)

%

hence eqn. (49) and (50) become

72 o= o2 _di Vg, (58)
fomn T
Tuly; = Tt — dg R g . (59)
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Figure 1: Block MGSPO systolic array without square roots

25



