On the Generalized Tower of Hanoi Problem I: An Introduction to Cluster Spaces

dc.contributor.advisorGasarch, Williamen_US
dc.contributor.authorRukhin, Andreyen_US
dc.contributor.departmentApplied Mathematics and Scientific Computationen_US
dc.date.accessioned2004-06-04T06:00:04Z
dc.date.available2004-06-04T06:00:04Z
dc.date.issued2004-05-04en_US
dc.description.abstractIn this thesis, we examine the Tower of Hanoi puzzle with p posts (p >= 3) and n disks (n in N). We examine the puzzle in the context of a cluster space: a hierarchical partitioning of the space of all possible disk configurations. This thesis includes two theorems that address the topic of minimal paths connecting disk configurations.en_US
dc.format.extent669140 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/1527
dc.language.isoen_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledTower of Hanoien_US
dc.subject.pquncontrolledCombinatoricsen_US
dc.subject.pquncontrolledCluster Spacesen_US
dc.subject.pquncontrolledClustersen_US
dc.titleOn the Generalized Tower of Hanoi Problem I: An Introduction to Cluster Spacesen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
umi-umd-1510.pdf
Size:
653.46 KB
Format:
Adobe Portable Document Format