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Introduction

In 1883, the French number theorist Edouard Lucas introduced the now-
classic Tower of Hanoi puzzle to the mathematical community as a récréation
mathématique. In his original puzzle, three posts are attached to a single base,
and eight annular disks with mutually distinct diameters are stacked in de-
scending order on one of the posts (i.e., with the largest disk on the bottom
of the stack). The goal of the puzzle is to transfer the initial “tower” of disks

to a tower on a different post, according to the following rules:

i. each turn consists of transferring at most one disk from the top of one

stack to the top of another (possibly empty) stack;

ii. the stacking of any disk on top of a smaller disk is prohibited.

Figure 1: Lucas’ classic Tower of Hanoi puzzle

Numerous variants of the original problem have been considered over the

past century; some examples include introducing an arbitrary number of disks



or extending the number of posts beyond the original three (see Stockmeyer [8]
for a listing of over two hundred references). There is, however, a lack of un-
derstanding of the underlying mathematical structure of the problem (this
issue is aptly summarized by Hinz in [4]). For example, one can find over ten
papers in Stockmeyer’s list that contribute nothing more than solutions that
are equivalent to the well-known solutions of Frame [2] and Stewart [7]. More-
over, one can find arguments based on “intuitive,” and sometimes incorrect,
assumptions (e.g., see Lemmas 4 and 5 in [5]), or arguments about minimality
in the three-post problem (e.g., see either the textbook by Graham, Knuth,
and Patashnik [3] or the article by Er [1]). In this thesis, we examine the
combinatorial underpinnings of the puzzle with p posts (p > 3) and n disks
(n € N), and we obtain results concerning minimality within this structure
that apply to the discussions in several of the articles alluded to above.

To date, the notation used in analyzing and discussing the problem has
not been standardized. The notation used to represent the puzzle in this
thesis is as follows: Each of the p posts is represented by an element of the
set {0,...,p —1}. The n disks are denoted by Dy, ..., D,, where D, is the
j-th largest disk for every j € {1,...,n}. A configuration of the disks is
represented by a string a; . .. a, of elements of {0,...,p — 1}, which indicates
that D; occupies post a; for every j € {1,...,n}. Lastly, the domain of all

variables, unless otherwise stated, is the set of positive integers.



Chapter 1: Path Trees and Cluster Spaces

Graphical structures have served as the basis of analysis for the classical Tower
of Hanoi problem since the 1940s. The state graph Hj = (S, E) of the three-
post problem appears in Scorer, Grundy, and Smith [6], where the vertex set Sy
is the space of valid disk configurations of n disks on p posts, and the edge set
E consists of all pairs of vertices corresponding to pairs of disk configurations
that differ by a valid disk transfer under the rules of the puzzle. Several
authors have investigated the mathematical properties of the state graphs
and have demonstrated natural relationships between them and several well-
known mathematical entities such as the Arithmetic Triangle (a.k.a. Pascal’s
Triangle) and Sierpinski’s Gasket. According to Hinz [4], graphical structures
could provide further insight into the problem with more than three posts.
In this section, we consider a new graphical structure in the analysis of the
Tower of Hanoi problem. A path tree represents a valid sequence of disk config-
urations in the puzzle, and each branch of the tree represents a configuration

in the sequence. Specifically,

1. the path tree is of height n;

2. for every j < n, the nodes of the tree at height j designate the positions

of D; in the various configurations in the sequence;



3. a pair of adjacent siblings at height j corresponds to a transfer of D;

from one post to another.

An example of a valid configuration sequence in the three-disk, three-post
puzzle is shown in Figure 2. This sequence is represented by the path tree

illustrated in Figure 3.
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We derive the combinatorial structure of the Tower of Hanoi problem with p
posts and n disks as follows: Assuming n > 1, we begin by partitioning the set
S, into subsets according to the configurations of the disks, beginning with the
largest disk and proceeding in order to the smallest. For example, if n > 2,
there are p disjoint subsets of the form {a1x | z € S}~'} within the entire
set of disk configurations, and each subset in the partition is distinguished
by the position of D; (we will define S; = {0,...,p — 1}). Furthermore, if
n > 3, each of these p subsets can be partitioned into p distinct subsets of the
form {aia,z | x € SP~}. This partition generates p* disjoint subsets of disk
configurations, and each subset naturally corresponds to one of the p? possible
configurations of both D; and D,. This recursive method of partitioning the
set S, can be extended in a straightforward manner, and leads to our first

definition.

Definition 1.1. A cluster of index j is a complete set of valid disk configurations
in which D,..., D, are in a fixed configuration. We will denote a cluster of
index j by C?. If D; occupies post a; in C7 for every i < j, then the radix
notation for C7 is ay .. .a;. If 5 =1, the notation a; ...a;_; will represent the

empty cluster.



Lemma 1.1. Let j < k < n, and let C? = a;...a;. Then there exist ex-
actly p*=7 clusters C¥ = a; ...a;aj,; . ..ax of index k with the property that

ck C (i,

Proof: The proof is by the combinatorial counting principle. When & > 7,
there are exactly p valid positions of D,. O

For all pairs j,k with j < k < n, we will denote the set {C*|C* C (7}
by S*¥(C7). Also, for every j < n, we will write S’ to designate the set of all

clusters of index j.

Definition 1.2. Let CJ and CY be clusters of index j, and let i < j. Then CJ
and CJ are Dj-adjacent if there exist C* € S™(CY) and CF € S™(C}) whose
corresponding disk configurations differ by exactly one valid transfer of D;. If
this condition holds, then CY and Cg are said to form a D;-adjacent cluster

pair, which is written as (CY, C})".

Lemma 1.2. Let i < j < k. For every D;-adjacent pair (C?, Cg)i, there exist
exactly (p—2)*¥ 7 D;-adjacent pairs (C¥, CF)* with the property that C¥ C CJ

and Cf C CJ.

Proof: Since CJ and CY differ by the transfer of D;, it follows that all disks
smaller than D; must occupy the p — 2 “intermediate” posts (i.e., posts other

than the source and destination posts occupied by D;). From this observation,



the statement in the lemma follows by the combinatorial counting principle.
O
The following definition introduces the notion of a stack of contiguous disks

occupying the same post.

Definition 1.3. Let 7 < n, and let a; ...a; be a cluster of index j. We will

denote the cluster a; ...aja;...a; of index n by (,ya;...a;.
\_\/._/
n—j

Now, we will define two cluster mappings that will be useful in the proofs

of the theorems in the next section.

Definition 1.4. Let 7 < n, let a; ...a; be a cluster of index j, and let a; ...a, €

S"™(ay ...a;). Then

i. for every cluster by ...b; of index j, ¥/(a;...a,) denotes the cluster

of index n defined by
Ui(ay...a;@541...8,) = by...bjaj.1...8,

under the mapping ¥7: a; ...a; — by ... b;;

ii. for every pair qi, ¢, € {0,...,p—1}, ®(a; ...a,) denotes the cluster of

index n defined by

®i(ay...a;_1a5...a,) =ay ... aj_lajgd’]) Al



under the mapping ®’: ¢, <+ g2, where for every k > j:

a. if ay = ¢, then a(¢j) = q2;

b. if a; = ¢o, then a\?) = q1;

c. if ax # ¢1 and ay # @2, then agﬁj) = qy.

As an example, let p = 4 and n = 3. Then the cluster ¥?(123) equals 303
under the mapping ¥?: 12 — 30. Also, the cluster !(123) equals 213 under

the mapping ®': 1 < 2.

Lemma 1.3. Let £ < n, and let C7, C¥ be clusters of index n with the property

that (C7, Cy)*. Then

i. k > 1 = for every j < k: if C7 is the cluster of index j with the
property that C7,C% € S™(CJ), then for every cluster C} of index j the
following hold under the mapping ¥/: CJ — Cj:

a. WI(CP), W(Cy) € S™(CY);
b. (¥/(CT), ¥(C3))*;

ii. for every j < k and every pair ¢;,g2 € {0,...,p — 1}, we have

(®7(CT), ®7(CH))* under the mapping ®7: ¢, <> go.

Proof: The statements in (i) follow from the rules of the puzzle.



For (ii), let

n _
01 = ajp...ak-1AkaAk+1 ---An

and

Cg =a... ak_lbkak+1 ...dp-

From the definition of (CT', C7)*, it follows that
L. ay # by;
2. for every [ > k, we have that a; # a; and by # q;.

Thus from the definition of the mapping ®’: q; <+ ¢» and the fact that

7 < k, we also have
1. agj)j) #+ bgf);

2. for every | > k, we have that ag’j) + al(¢j) and b,(fj) + al(‘bi). O



Chapter 2: On Minimality within Cluster Spaces

In this section, we obtain elementary results concerning minimality within

cluster spaces. We begin with the following definitions.

Definition 2.1. Let £ > 1 and 7 < n, and let C; and C} be clusters of index
j. A cluster sequence from C; to C;, which we will designate by either o =
{C4,...,C4} or o(Cy, Cy), is a sequence of clusters of index j (beginning with
C; and ending in C}) with the property that if ¢ > 1, then for every s < t,

exactly one of the following holds:
L. Cs = Cs—|—1;'
ii. (Cs,Csy1)* for some i < j.

A cluster path o = {ay, ..., a4} is a cluster sequence of index n (i.e., a cluster
sequence that naturally corresponds to a valid sequence of disk configurations

under the rules of the puzzle).

Definition 2.2. Let j < n, let CJ and C] be clusters of index j, and let o(C?, CJ)
be a cluster sequence from CY to Cg . We will write |o| to denote the length of
0. Moreover, we will say that o is minimal if there is no sequence o'(CY, Cg )

with |o’| < |o|.

Note that each occurrence of every cluster in a sequence is counted in
determining its length (e.g., the sequence {0,1,1,0} is of length 4).

10



We will now define some basic properties of cluster sequences.

Definition 2.3. Let s < ¢t and j < n, and let o7y = {C4,...,C,} and oy =
{Cs41,...,C}} be cluster sequences of index j with the property that either

C, = C,yq or (Cy,Cyy1) for some i < j. Then

i. the sum of 0y and o9 is 01 + 09 = {C4,...,Cs,Csy1,...,C}, which is

also a cluster sequence of index j, and |07 + 03| = |o1| + |o9];

ii. the cluster sequence o = {C},...,C;} can be decomposed into the sum

0'1(01, Cs) + 0'2(05+1, Ct)

We will also use the delimited summation notation ) ;" o, to represent the

sum oy + -+ oy

Definition 2.4. Let ¢t > 1, and let 0 = {C1, ..., C}} be a cluster sequence with

|o| = t. Then

i. t>1= forevery s < t: if Cs = Csy1, then o can be reduced to the

cluster sequence

{Cl,...,Cs_l,CsH,...,C't} - {Cl,...,C’s,Cs+2,...,C't}

(the latter being just {C4,...,Cs} if s =1t —1);

ii. ift=1,o0rift > 1 and Cs # Cs,; for every s < t, then o is said to be

irreducible;

11



iii. o can be reduced in a finite number of steps to an irreducible cluster
sequence (o) = {Ch(),.-.,Chm)} with the property that Cyqy = Cf,
Ch(m) = Cy, and exactly one of the following holds:

a. m=1;

b. 1=h(1) <--- < h(m) =t, and Ch) # Ch(+1) for every [ < m.
Note that |{(o)| < |o]| in either case.
We will say that the cluster sequence {C,,...,C,} is empty when r > s.

Definition 2.5. Let i < j < n, and let 0 = {Cf, e, Cg} be a cluster sequence

of index j. The [o]'-decomposition of o,

S
o] = o,
r=1
is the unique decomposition of o with the property that for some irreducible

cluster sequence o’ = {C%,...,C%} of index 4, there exist h(1),...,h(s) with

the following properties:

i 1<h(l)<...<h(s)=t

ii. of = {C],...,Ch )} € SI(C);
iii. if s > 1, then A(1) < --- < h(s), and for every r < s:

a. ol = {Chimysr-- Oy} C Si(Ci,));

12



h(r)—}-l)l for some [ < i.

Under these conditions, we say that o’contains o (and that o traverses o’).

For example, the cluster sequence o = {000, 001,021,022} traverses the
cluster sequences 0> = {00,02} and o' = {0}, while o' contains both ¢? and

a3,

Definition 2.6. Let j < n, and let 0 = {a4, ..., a} be a cluster path. Then

i. if [o]7 = >"", o/ and the cluster sequence of index j traversed by o is
{C?,...,CI}, then for every cluster C7 of index j, the trace of ¢ in CJ

is the sequence

(o)

NE

Ui (0)=

=1

I
NE

qj{({ah(l—l)—l—la SRR ah(l)})

=1

I
NE

{W! (an=1)+1), -, ¥4 (an))

=1

Il

where h is the function which indexes the clusters in o that belong to
the subpaths oy, ..., 0, (h(0) is defined to be 0) and, for every | < m,

W/ denotes the mapping W/: ¢/ — CJ ;

ii. for every pair q;,q; € {0,...,p — 1}, ®/(0) denotes the sequence

{®/(ay),..., P/ ()} under the mapping ®7: ¢, <> go.

13



Lemma 2.1. The sequences ¥/ (o) and (o) defined in items (i) and (ii) of

Definition 2.6 are cluster paths. Moreover, ¥/ (o) C S™(CY).

Proof: This is a direct consequence of Lemma 1.3. O
Now, we will consider the first of two theorems regarding minimality. The

first theorem illustrates the property of acyclicality of minimal paths.

Theorem 2.1. Let j < n, let CY be a cluster of index j, and let O, CY €
S™(C7). Then every minimal path u(C?,C%) has the property that p C
S (CY).

Proof: It can be shown inductively that the space of disk configurations
is connected, hence that paths exist between any pair of clusters of index n
in the space. We will show that for any path o(C?,C}) € S™(C?), there is
a path o'(C?,C%) C S™(C?) with |o'| < |o|, from which it follows that every
minimal path p(C?, C%) has the property that p C S™(CY).

Let o(C?",C%) be any path from C} to C} with ¢ ¢ S"(CY), and let
{CI,C9,...,CI,CI} be the cluster sequence of index j that contains o. With-
out loss of generality, we can assume that o is irreducible. We will construct
a path o’/(C7,C%) C S™(C?) with the property that |o'| = |o| — (m + 1).

If m = 1, consider the decomposition
o) = Og,1 01+ 0g2
= {ala"'aav'} + {a/T+1a' : .,CES} + {O{5+1,. . 'aat}a

14



where 041,042 C S™(CJ) and o, C S™(CY). Now W(c;) C S*(CJ) under the
mapping W/ : C¢ — CJ; in addition, ¥/ (a,11) = o, and W (a,) = oy

Therefore, the path

o' = (¥(0))
= (04,1)" + W (01) + (042)
={ay, ..., 0r_1 )+ {W (i), o, W)} + {Qspa, .-, 0n}

has the property that o/ C S"(CY) and |o'| = |o| — 2.

If m > 1, consider the decomposition

m
[0 = o1 + Z 01+ 042
=1

m
= {aa,la sy aa,r} + Z{al,la feey al,h(l)} + {aa,r—f—la ey aa,r+s}a
=1

where 041,0,2 C S"(C?) and 0; C S”(Cf) for every [ < m. Now for every
I <'m, we have ¥J(o;) C S™(C?) under the mapping ¥/ : C7 — CJ; moreover,
i W) = ayp;

1. \IlZn(ozm,h(m)) = Qg,r+1;

iii. for every I < m, we have that W/ (cynu)) = V7,4 (0us1,1)-

15



Therefore, the path

o' = (¥(0)

= (001) + Wi(00) + Y (¥] ()’ + (0a,)’

=2

= {%,1, R ,Oéa,rﬂ} + {‘I’{(a1,1), ceey \Ij{(al,h(l))}

+ Z{\I’{(Ozz,z), s W ()}
1=2

+{a’a,r—|—27 AR aa,r+s}

has the property that o/ C S"(CY) and |¢'| = |o| — (m +1). O

Theorem 2.1 establishes the implicit assumptions made in Lemmas 4 and
5 in [5].

The second theorem extends minimal path containment from individual
clusters to cluster pairs. This theorem, based on the Reflection Principle,

illustrates the combinatorial analog of the triangle inequality in cluster spaces.

Theorem 2.2. Let j < n, let CY = a; .. .,a;-1a; and C’Z =a;...,aj 1b; be
clusters of index j with the property that (C7,CJ)/, and let Cp € S™(CY).

Then every minimal path p(,)CZ, Cy') is contained in the sequence {C?, Cg}

Proof: We will show that for every cluster path o(,)C%,CJ) that is not
contained in the sequence {Cg,C’g }, there is a path o'((,)CZ,Cy') with the
property that o is contained in {C7,CY} and |o’| < |0/, from which it follows
that every minimal path u(,)CJ#, C) is contained in {CJ, C}}.

16



Let o((,C?, Cy') be a path connecting (,)C? and C}* that is not contained
in the sequence {CJ,CY}, and let {CJ,CY,...,CJ,,C} be the cluster sequence
of index j that contains 0. We can assume that o is irreducible. Moreover, by

Theorem 2.1 and the fact that C7, Cg € S’(ay ...aj-1), we can assume that
i. {CY,...,Ci} C Si(ay...a;.1);
ii. no two of the clusters C4,C?, ..., CJ, CJ are identical.

We will prove that there exists a path o'((,)C?, Cy') = o} +0}, with the property
that 0! C S™(CY), o) C S™(C}), and |o'| = |o| —m. The proof is by induction
on m.
For the case where m = 1, consider the decomposition
[0 =04+ 01+ 0y
={ag, ..., +{apy, . a5t + {asi, .ot
where o, C S*(Ci), o1 C S*(CY), and o, C S™(CY).

If d; is the element of {0, ..., p—1} with the property that Cl=a... a;_1d;,

then d; # a; and d; # b;. Under the mapping ® : b; <> d; we have
i. ®(0,) C S*(CY) and ¥ (01) C S™(C});

ii. ®(ay) = a; and B () = ayq1-

17



Therefore,

o' =& (0, + 01) + (03)

= @j({al, conyast) +F{ast2, .o, )

is a path of length |o| — 1 that connects (,,)C? to C}' and can be decomposed as
o' = 0! 4 o}, where o, = ®(g,) C S*(CI) and o}, = &7 (0,) + (03) € S™(CY).
The case of m > 1 is resolved as follows: Consider the decomposition

m
[0) = 0, + Zal ~+ o
=1

m
= {1, ez} + Z{a’l,la s oamt +{aw, - st
-1

where 0, C S*(C¥), o5 C S*(CY), and o; € S™(C}) for every | < m. Ap-
plying the result of the base case to the path o, + 0; + 09, we get a path
(a1, g n(2)) = 07 + off with the property that o C S™(Ci), o C S™(C3),

and |7| = |0, + 01 + 0| — 1. Thus
0" = T(a1, 02p(2) + 22501+ T

is a path of length |o| — 1 that connects (,)C? to Cy and is contained in a
sequence of index j with only m — 1 intermediate clusters, so the result follows
from the induction hypothesis. O

As an example of the process used in the proof of Theorem 2.2, let p = 4

and n = 2, and let

18



o(11,00) = {11,12,32,31,21,01,00}.

Note that [0]' = 01 + 03 + 02 + 0y.
After applying the mapping ®!: 3 <+ 2 to 01 +03 and reducing the resulting

path, we obtain
o' ={11,13,23,21,01,00},

which is of length |o|—1 and has the decomposition [0']" = (¢")1+ (¢")2+ (0")o-
After applying the mapping ®': 2 <> 0 to (¢'); + (¢)2 and reducing the

resulting path, we obtain
o" ={11,13,03,01, 00},

which is of length || — 2 and is contained in {1,0}.

One important consequence of Theorem 2.2 is that for every p > 3 and
every pair of distinct clusters C}, C} in S, the largest disk transfers only once
in any minimal path p((,)Cs, 2)Cp) (see Wood [9]). In fact, we are now able
to deduce that if D; occupies post a in C! and post b in C}, then if n > 1 the

[p]?-decomposition of y is

[1()Cas )C)])? = Haa + Hac + Ebe + Libb

for some intermediate post c.

19



Conclusion

The concept of a cluster space provides a rigorous mathematical basis for
analyzing the Tower of Hanoi puzzle, a basis which is lacking throughout a
century of literature on the problem. As noted by Hinz [4], the structure of
the problem needs to be firmly established before one can make any claims
regarding minimality of any proposed solution between towers of disks in the
puzzle. As it currently stands, the minimality of the Frame—Stewart solution
([2], [7]) has yet to be demonstrated. In a following article, the author intends
to demonstrate the minimality of this well-known solution by using the concept

of cluster spaces and the results derived in this thesis.
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