Bio-inspired VLSI Systems: from Synapse to Behavior

dc.contributor.advisorAbshire, Pamelaen_US
dc.contributor.authorXu, Pengen_US
dc.contributor.departmentElectrical Engineeringen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2008-08-07T05:40:15Z
dc.date.available2008-08-07T05:40:15Z
dc.date.issued2008-08-04en_US
dc.description.abstractWe investigate VLSI systems using biological computational principles. The elegance of biological systems throughout the structure levels provides possible solutions to many engineering challenges. Specifically, we investigate neural systems at the synaptic level and at the sensorimotor integration level, which inspire our similar implementations in silicon. For both VLSI systems, we use floating gate MOSFETs in standard CMOS processes as nonvolatile storage elements, which enable adaptation and programmability. We propose a compact silicon stochastic synapse and methods to incorporate activity-dependent dynamics, which emulate a biological stochastic synapse. We implement and demonstrate the first silicon stochastic synapse with short-term depression by modulating the influence of noise on the circuit. The circuit exhibits true randomness and similar behavior of rate normalization and information redundancy reduction as its biological counterparts. The circuit behavior also agrees well with the theory and simulation of a circuit model based on a subtractive single release model. To understand the stochastic behavior of the silicon stochastic synapse and the stochastic operation of conventional circuits due to semiconductor technology scaling, we develop the stochastic modeling of circuits and transient analysis from the numerical solution of the stochastic model. The analytical solution of steady state distribution could be obtained from first principles. Small signal stochastic models show the interaction between noise and circuit dynamics, elucidating the effect of device parameters and biases on the stochastic behavior. We investigate optic flow wide field integration based navigation inspired from the fly in simulation, theory, and VLSI design. We generalize the framework to limited view angles. We design and test an integrated motion image sensor with on-chip optic flow estimation, adaptation, and programmable spatial filtering to directly interface with actuators for autonomous navigation. This is the first reported image sensor that uses the spatial motion pattern to extract motion parameters enabled by the mismatch compensation and programmable filters. The sensor is integrated with a ground vehicle and navigation through simple tunnel environments is demonstrated. It provides light weight and low power integrated approach to autonomous navigation of micro air vehicles.en_US
dc.format.extent3513048 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/8367
dc.language.isoen_US
dc.subject.pqcontrolledEngineering, Electronics and Electricalen_US
dc.subject.pqcontrolledBiology, Neuroscienceen_US
dc.subject.pqcontrolledEngineering, Roboticsen_US
dc.subject.pquncontrolledVLSIen_US
dc.subject.pquncontrolledAdaptationen_US
dc.subject.pquncontrolledStochastic Synapseen_US
dc.subject.pquncontrolledMotion Image Sensoren_US
dc.subject.pquncontrolledStochastic Modelingen_US
dc.subject.pquncontrolledAutonomous Navigationen_US
dc.titleBio-inspired VLSI Systems: from Synapse to Behavioren_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
umi-umd-5656.pdf
Size:
3.35 MB
Format:
Adobe Portable Document Format