Hunting Inflationary Fossils in Primordial Inhomogeneities
Files
Publication or External Link
Date
Authors
Advisor
Citation
Abstract
Cosmological observables such as the Cosmic Microwave Background (CMB) allow us to probe the early universe at extremely high energies far beyond the reach of any particle collider on Earth. In the inflationary paradigm, small perturbations in the energy distribution across space can be directly linked to the quantum fluctuations of an "inflaton'' field that drives inflation. Using these perturbations, it is, therefore, possible to learn about physics at energies as high as 10^(13) GeV. In this thesis, we exploit this powerful connection and explore novel mechanisms to hunt for previously unexplored inflationary dynamics.
During inflation, particles with masses larger than the inflationary Hubble scale (H) are produced due to an accelerating spacetime. If coupled to the inflaton, these particles could imprint distinct oscillatory features in higher moments of the density perturbations. Since H can be as high as 5*10^(13) GeV, these oscillatory features present a unique opportunity to directly detect very heavy particles with masses ~ H. In Chapter 2, we explore a mechanism that can boost spin-0 particle production by mining the kinetic energy of the inflaton. This leads to an enhancement of the oscillatory features, which can bring heavier particles with masses up to 60H within the reach of observations.
In the final part of the thesis, spanning chapters 3 and 4, we explore the viability of gravitational wave backgrounds (GWB) as novel data sources for unexplored inflationary physics. It was recently shown that a GWB from a first-order phase transition must exhibit fluctuations, much like the CMB. Despite the close analogy, it is possible for fluctuations of the GWB to differ significantly in their detailed pattern from those of the CMB, which would imply the existence of a second light field during inflation in addition to the inflaton. Such a GWB could thus unlock a wealth of new information about multi-field inflation. In Chapter 3, we elaborate on this point with an example. We show that there may exist signals that cannot be extracted using standard cosmological probes such as the CMB and galaxy surveys, but can in principle be detected within GWB with upcoming and proposed gravitational wave experiments. Lastly, in Chapter 4, we focus on the detectability of GWB itself. We discuss a cosmological mechanism that can enhance the strength of the gravitational wave signal from phase transitions, thereby increasing their detection prospects significantly.